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License plate detection from moving vehicles is useful in authenticating owners, detecting 
vehicle misbehaviors, etc. Roadside video outputs are analyzed using computer vision-based 
algorithms/ methods to improve the detection precision. This article thus introduces a 
Boundary Filtering Method (BFM) using Conditional Neural Learning (CNL). In this 
method, the conventional neural network with filtering conditions is used to identify the 
license plate boundary. The congruent textural features are filtered based on trained inputs 
from datasets. The similar boundary indices identified in the training images are used to 
shape the license plate region from the frame inputs. The conditions of maximum similarity 
and boundary displacement connectivity are verified throughout the training process until 
maximum precision is reached. The condition-failing features are filtered to reduce the false 
positives between different frame orientations. The proposed method is verified using 
accuracy, precision, similarity index, false positives, and time metrics. The proposed method 
improves precision by 9.57%and reduces false positives and analysis time by 10.43% and 
6.28% respectively for the boundaries identified. 
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1. INTRODUCTION

In computer vision and security, the identification of vehicle
license plates from surveillance footage is an essential 
application. First, surveillance footage is extracted into frames 
[1]. To handle privacy problems and guarantee responsible 
technology usage, ethical and legal standards are crucial [2]. It 
is anticipated that further technology advancements will 
improve license plate border detecting systems' effectiveness 
and dependability, eventually enhancing general security and 
public safety [3]. 

The identification of automobile license plates from 
surveillance footage is greatly aided by deep learning [4]. 
Relying on sophisticated neural network designs, including 
region-based models or convolutional neural networks 
(CNNs), makes it possible to accurately identify license plates 
[5]. These algorithms get sophisticated characteristics from 
large datasets, which improves their capacity to identify plates 
in a variety of scenarios. Annotated datasets comprising 
pictures of cars and the license plates that go with them are 
used for training [6]. By identifying license plate areas on its 
own, the deep learning algorithm eliminates the requirement 
for human feature engineering [7]. By using pre-trained 
models on huge picture datasets, transfer learning improves 
model efficiency even further. The ongoing progress in deep 
learning methodologies aids in the enhancement of license 
plate recognition systems, rendering them more resilient and 
dependable in actual surveillance situations [8]. The major 
contributions of the article are: 

• Boundary filtering method for detecting license

plate of vehicles from video inputs segregated as 
frames 

• Employing conditional neural learning for feature
filtering and similarity-based region detection to
maximize the connectivity

• Performing a real-time image-based experimental
analysis to verify the proposed method’s working

• Performing a comparative analysis to verify and
assess the proposed method’s metric-based
improvements

The article’s organization is: Section 2 presents the 
discussion of different methods related to number plate 
detection with their pros and cons. In Section 3 the proposed 
boundary filtering method is discussed with suitable 
illustrations and explanations. Section 4 presents the 
experimental and comparative analysis results using real time 
images and metrics. Section 5 concludes the article with the 
findings, limitations, and future work. 

2. RELATED WORKS

Silva and Jung [9] introduced a flexible approach to
automatic license plate recognition (ALPR). The primary 
objective of improve the effectiveness of current ALPR 
systems, particularly in scenarios involving oblique views and 
distorted angles of license plates. IWPOD-NET is designed to 
detect the corners of license plates, enabling the establishment 
of a front-parallel view. The method demonstrated superior 
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ALPR performance across various analyzed datasets. Pan et al. 
[10] combined deep learning techniques for spotting and 
matching license plates in communicating vehicles. Their 
focus was on improving accuracy in detecting and recognizing 
license plates in Transportation IoT's V2V communication. 
The method enables the model to take advantage of the speed 
and accuracy of YOLOV3, as well as the exceptional detection 
capabilities of CRNN. The model scores high for license plate 
detection in terms of accuracy and precision. 

Jia and Xie [11] proposed an efficient approach for license 
plate detection using deep neural networks across diverse 
scenarios. The primary goal is to improve the precision of 
identifying slanted or distorted license plates. The 
Deformation Planar Object Detection Network (DPOD-NET) 
network is specifically designed to correct perspective 
distortions in license plates. The method achieved higher 
performance with better accuracy and lower computational 
cost. Shi and Zhao [12] proposed a system for the 
identification of license plates using an improved YOLOv5 
and GRU. A deep learning model addresses the accuracy and 
speed issues that are inherent in traditional approaches to 
license plate recognition. The channel attention mechanism 
enhances YOLOv5 with much better efficiency in extracting 
features. The model shows better stability and robustness in an 
environment that has been more complex than the ordinary 
environment. 

Pan et al. [13] described an algorithm for the detection of 
license plates from remote surveillance. The suggested 
Automatic Super-Resolution License Plate Recognition 
network improves license plate recognition in surveillance, 
ensuring high-quality images are maintained. The detection 
model of LPs must be trained alone, and then its detection 
results will be used to successively train the subsequent 
modules. The method performs better with higher accuracy 
and improved image quality. Zhang et al. [14] introduced a 
real-time license plate recognition scheme using the CNN-
CatBoost method. The method helps improve reality by 
overcoming poor visibility and irregular vehicle movements in 
real-time traffic scenarios. The method employs a CNN to deal 
with the visualization of license plates and refine identification 
using CatBoost. The combined model is even more accurate 
and efficient compared to other models that exist already. 

Hamdi et al. [15] proposed a technique aiming to enhance 
license plate recognition accuracy through image 
improvement and super-resolution. The method specifically 
addresses challenges posed by blurry and low-quality license 
plate images. By effectively denoising and super-resolving, it 
ensures clearer identification, significantly improving 
accuracy in challenging scenarios. The method proves its 
effectiveness in real-world applications. Cao [16] introduced a 
method using convolutional neural networks (CNNs) to 
enhance license plate detection. The aim is to improve 
applications like law enforcement, toll collection, and parking 
management by deep learning. A huge labeled dataset is used 
to train the CNN-based model using supervised learning. The 
model is fine-tuned to obtain high accuracy in recognizing 
license plates, as is the demonstration on evaluations on both 
validation and new images. 

Gautam et al. [17] presented an automatic license plate 
recognition model using deep learning. The approach uses 
deep learning-based Convolutional Neural Networks (CNNs) 
for tasks such as plate detection, rectification, and character 
recognition. CNNs locate corner points with the help of a mean 
squared error loss function. The method gives accurate license 

plate recognition on the Chinese City Parking Dataset (CCPD). 
Pham [18] propose the use of efficient deep neural networks 
for enhancing license plate detection and recognition. The 
method aims to improve license plate recognition for tasks like 
law enforcement, toll collection, parking management, and 
traffic monitoring. Simplified models are used for higher 
recognition accuracy of license plates, contributing to 
enhanced efficiency. The method's effectiveness is 
demonstrated, especially on datasets like CCPD and AOLP. 

Qin and Liu [19] proposed a technique for location and 
recognition of car license plates in any situation. The main aim 
is to enhance car license plate detection and recognition in 
real-world situations. The method has shown greater 
performance speed and accuracy compared to previous 
methods. The proposed method proves to be better and much 
more accurate than the previous modern and advanced 
methods, revealing practical applicability across many 
datasets. Wang et al. [20] introduced LSV-LP, a novel 
technique for license plate detection and recognition in large 
video datasets. The target of the technique is the improvement 
of license plate detection and recognition in more complex 
scenes, including those realized by using video-capturing 
sources. The method targets those existing, and this one offers 
improved performance concerning real-life applications. The 
approach is better at spotting and recognizing license plates in 
larger videos. 

Seo and Kang [21] proposed a reliable method to detect and 
recognize license plates, taking into account flexibility and 
accuracy using attention. The method aims to boost the 
accuracy of Auto License Plate Detection and Recognition 
(ALPDR) by introducing a flexible framework. The method 
utilizes lightweight technologies to enhance precision, 
particularly in various outdoor conditions. The proposed 
method is indeed more accurate at detecting and recognizing 
license plates. Saitov and Filchenkov [22] have demonstrated 
multilingual license plate detection and recognition using 
transformer and convolutional neural networks. The approach 
aims at significantly increasing the performance of how a 
license plate is detected and identified. The method is well-
suited for border control and customs, addressing challenges 
arising from globalized vehicle traffic, especially in the CIS 
countries. The proposed method significantly increases license 
plate detection and recognition. 

Shafi et al. [23] developed a smart system for the efficient 
identification and recognition of different license plate styles 
found in developing countries. The goal is to efficiently detect 
and identify various license plate styles. The method learns 
from different license plates, improving accuracy with pre-
processing and grid-based techniques. The method 
successfully identified license plates in Pakistan with 97.82% 
accuracy and recognized characters with 96% accuracy. When 
there are possible security threats or questionable behaviors, 
automated boundary detection guarantees that law 
enforcement is notified as soon as possible [24]. 

A continuous boundary detection process is less significant 
in the methods discussed in [11, 16] whereas feature selection 
is precise under different recognition methods discussed in 
studies [14, 22]. A few other methods in studies [18, 19, 23] 
fail in classifying the acquired and demanding features due to 
the orientation of the image. To address such issues in defining 
a concealed boundary across various pixels, the problem of 
feature normalization is required. This article thus 
incorporates the boundary filtering method by incorporating 
the feature-dependent conditional analysis. The proposed 
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method classifies the features based on similarity that 
assimilates different regions. This method outwits the other 
methods through congruent assessment of training and region 
features identified to improve the precision. The alternating 
training intervals rely on the true positives irrespective of the 
frame size and number of objects. 

3. BOUNDARY FILTERING METHOD (BFM) USING
CONDITIONAL NEURAL LEARNING (CNL)

The process of recognizing the vehicle's license plates is 
initiated with the detection of textural features from the image 
sequence/video. The proposed BFM using CNL is applied to 
improve the detection accuracy of the license plate from the 
frame images. The vehicles are captured and detected through 
surveillance systems in different instances that rely on better 
license plate detection accuracy for their textural feature 

extraction. The license plate detection accuracy is a prominent 
factor for which the false positive is to be reduced through 
conventional neural networks. The three main segments such 
as Preprocessing of the image, number plate detection, and 
extraction of textural features are performed to achieve 
maximum accuracy. In Figure 1, the proposed method is 
illustrated. 

The license plate boundary is detected with filtering 
conditions. The congruent textural features in input frame 
images are identified and filtered for trained inputs. Based on 
the image sequence analysis, the similar boundary wavelets 
detected in the training images help to accurately shape the 
license plate region from the input images. The conditions of 
maximum similarity and boundary displacement connectivity 
are observed from the extracted features and are verified 
throughout the training process using CNL until reach 
maximum precision. 

Figure 1. Proposed BF Method using CNL 

3.1 Preprocessing of the frame images 

BFM is the model that makes use of deep learning for 
textural feature extraction from the input frame images. The 
video output is analyzed using algorithms/methods for 
improving the license plate detection precision. CNL is used 
to train the framing inputs captured from the moving vehicles 
for accurately identifying vehicle misbehaviors on the 
roadside. The obtained frame images from moving vehicles 
using surveillance systems placed in the roadside environment. 
The textural features are extracted from the frame images for 
license plate detection and are pursued using deep learning 
based on the pixel arrangement and intensity in the particular 
region. Neural learning is used to train the frame input-output 
for precisely detecting the license plate through correlation 
from the already trained/identified frame inputs. The process 
of BFM is pursued to identify, where the congruent textural 
features are initially identified and filtered. Therefore, the first 
video output of the license plate 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� is represented 
as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂 =
1
𝑇𝑇𝑇𝑇

�� 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� − 𝐹𝐹𝐹𝐹
𝑇𝑇𝑓𝑓

𝑁𝑁=1

� (1a) 

where, 

𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� =
1
√𝜋𝜋

�
𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓

𝑇𝑇𝑇𝑇
𝑇𝑇𝑓𝑓=0

𝑁𝑁=1

 (1b) 

And, 

𝐹𝐹𝐹𝐹 =
1
√𝜋𝜋

�
𝑡𝑡𝑖𝑖(𝑇𝑇𝑇𝑇) + 𝑦𝑦𝑖𝑖(𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇

∞

−∞

(1c) 

where, 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� and 𝐹𝐹𝐹𝐹 denotes the textural features 
of the 𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝  and false positives were identified from the 
frame images. If 𝑉𝑉  and 𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  denotes the number of 
license plate images captured from the current instance and the 
license plate boundary detected. The textural features are 
extracted for processing the images based on varying wavelet 
transform in both  𝑡𝑡  and  𝑦𝑦  coordinates. In this method, the 
CNL with filtering conditions is used to precisely detect the 
license plate boundary. If  𝑡𝑡  and  𝑦𝑦  represent the rising and 
falling edges identified from the frame images at random time 
intervals𝑇𝑇𝑇𝑇. Hence, the images are analyzed for the conditions 
𝑡𝑡 ∈ [0,∞] and 𝑦𝑦 ∈ [−∞, 0] such that the following textural 
feature extraction equation of the filter is expressed as: 

𝑦𝑦𝑁𝑁�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓� = 0.5𝑦𝑦𝑁𝑁�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓 − 1�
− 0.5𝑦𝑦𝑁𝑁�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓 − 2�
+ 𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓� − 𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓 − 1�

(2) 

Based on the filtering condition, the initial congruent 
textural features are filtered and suppressed based on trained 
frame inputs from the stored dataset. The feature extraction 
process is illustrated in Figure 2. 

3085



 
 

Figure 2. Feature extraction process illustration 
 
In the above Figure 2, the frames with 𝑉𝑉 inputs are identified 

to extract  𝑡𝑡  and  𝑦𝑦  under 𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . Such extractions are 
validated for each boundary detected in𝑣𝑣𝑉𝑉𝑉𝑉𝑏𝑏�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝�  and 
𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝�  are differentiated. The 0.5-based even 
distribution for  𝑡𝑡  and 𝑦𝑦𝑁𝑁  are used to detect 𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . 
Therefore, the normalization process is reliable to improve 
similarity-based verification. The feature extracted is used to 
correlate FP across 𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝  to improve 𝑦𝑦𝑁𝑁 . For 
all𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� + 𝐹𝐹𝐹𝐹  illustrates a complete sequence of 

license plate video output analysis for  𝑡𝑡  and  𝑦𝑦  wavelet at 
different time intervals is expressed as (𝑁𝑁 × 𝑇𝑇𝑇𝑇). Here, the 
variable 𝑁𝑁  indicates the total filtering process of congruent 
textural features from the instance. Filtering condition is used 
to reduce the false positives that occur in 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝�. False 
Positives take place in frame inputs due to false boundaries 
detected at the time of video output analysis in random time 
intervals. This normalization follows the filtering condition 
that is described by: 

 

𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶�𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝�,𝑇𝑇𝑇𝑇� =
𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓
∗
𝑁𝑁
2

 𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)

𝐴𝐴𝐶𝐶𝑉𝑉,

𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑡𝑡𝑉𝑉𝐶𝐶𝐶𝐶(𝐹𝐹𝐹𝐹,𝑇𝑇𝑇𝑇) =
𝑇𝑇𝑇𝑇(𝑡𝑡𝑖𝑖 + 𝑦𝑦𝑖𝑖)

𝑇𝑇𝑇𝑇
∗
𝑁𝑁
2

 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ⎭
⎪
⎬

⎪
⎫

 (3) 

 
where, 

 

𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ = 𝑁𝑁(𝑇𝑇𝑇𝑇) �
𝛼𝛼 + 𝛽𝛽

2 � 𝑡𝑡(𝑇𝑇𝑇𝑇)𝑖𝑖−1
𝑁𝑁𝐶𝐶𝑉𝑉,

𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙 = 𝑁𝑁(𝑇𝑇𝑇𝑇)−1 �
𝛼𝛼 + 𝛽𝛽

2 � 𝑦𝑦(𝑇𝑇𝑇𝑇)𝑖𝑖−1⎭
⎪
⎬

⎪
⎫

 (4) 

 
As per the Eqs. (3) and (4), the variables 𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ  and 

𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙  represent the high and low similarity based on already 

trained frame inputs from the dataset. The factor 𝑁𝑁(𝑇𝑇𝑇𝑇) and 
𝑁𝑁(𝑇𝑇𝑇𝑇)−1  is the congruent and low textural feature filtering 
condition based on 𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙  addressed from the 
inputs. Based on the detection of the license plate boundary 
(i.e.) 𝑡𝑡 or 𝑦𝑦, the high/low similarity textural features are used 
to shape the region using the frame inputs. The variables 𝛼𝛼 and 
𝛽𝛽  represent the training inputs used for the license plate 
boundary detection. Hence, the normalized wavelet based on 
𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� is described as: 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂[𝑁𝑁(𝑇𝑇𝑇𝑇)] =
2
𝛼𝛼+𝛽𝛽
2 [(𝑉𝑉 × 𝑇𝑇𝑇𝑇) −𝑁𝑁]

𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ − 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙
 

𝑁𝑁𝐶𝐶𝑉𝑉

𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂[𝑁𝑁(𝑇𝑇𝑇𝑇)] =
2
𝛼𝛼+𝛽𝛽
2

𝑇𝑇𝑇𝑇
��

𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ[(𝑉𝑉 × 𝑇𝑇𝑇𝑇) − 𝑁𝑁]
𝐹𝐹𝐹𝐹

∞

0

−�
𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙[𝐶𝐶 × 𝑡𝑡) − 𝑁𝑁]

𝐹𝐹𝐹𝐹
 

0

−∞

�
⎭
⎪⎪
⎬

⎪⎪
⎫

 (5) 

 
In Eq. (5), the normalized false positive less video output is 

identified after performing the filtering condition. From this 
𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂[𝑁𝑁(𝑇𝑇𝑇𝑇)], the two factors namely similarity and boundary 
displacement are extracted for further analysis. Eqs. (6a) and 
(6b) used to validate the similarity �𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)�  and 
boundary displacement �𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇)�  in different time 
interval is as follows: 

 

𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇) =
1

2𝜋𝜋(𝑁𝑁 × 𝑇𝑇𝑇𝑇) ��
(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝐹𝐹𝐹𝐹𝑖𝑖−1

𝛼𝛼,𝛽𝛽

𝑁𝑁=1

� , 

∀ 𝑉𝑉 ∈ 𝛼𝛼 + 𝛽𝛽 

(6a) 

 
And, 

𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇) = −� 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)
∅ℎ

𝑖𝑖=∅𝑙𝑙
= log 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)𝑖𝑖 

(6b) 

 
From the above equation, ∅ℎ and ∅𝑝𝑝 are the high and low 

similar boundary indices observed from trained frame inputs. 
The connectivity of maximum  𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)  and 
𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇) for the 𝑁𝑁(𝑇𝑇𝑇𝑇) as in Eq. (6c): 

 

𝐿𝐿𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡[𝑁𝑁(𝑇𝑇𝑇𝑇)] =
𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇)

log �
𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝�

∅ℎ − ∅𝑝𝑝
�
 

(6c) 
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Figure 3. Neural training model for congruency analysis 
 
This connectivity is verified for synchronizing maximum 

similarity and boundary displacement alone with the different 
time intervals for precise detection. The classification of 
maximum and minimum 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇) and 𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇) is 
performed through the deep learning process. This 
classification helps to identify the true positives and false 
positives in both features. In this classification, the textural 
features are independently analyzed at each level of the neural 
network followed by classification output. The neural training 
model is illustrated in Figure 3. 

In Figure 3, the neural learning process for 𝑆𝑆𝑆𝑆𝐿𝐿𝐻𝐻𝑖𝑖𝑖𝑖ℎ  and 
𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑏𝑏𝑙𝑙  are validated across ∅ℎ  and ∅𝑝𝑝  differentiation. This 

∅ℎ is equated with 𝑇𝑇𝑓𝑓 to increase the 𝑁𝑁(𝑇𝑇𝑓𝑓) for 𝛼𝛼 and 𝛽𝛽. Here, 
∅ℎ  with 𝑇𝑇𝑓𝑓  is the 𝛼𝛼  and ∅ℎ with 𝑁𝑁(𝑇𝑇𝑓𝑓)−1  is the 𝛽𝛽  under a 
different 𝑦𝑦𝑁𝑁�𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓�. The training iterations for congruency 
are analyzed from the normalized output of ∅ℎ  and ∅𝑝𝑝 . If 
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡 [𝑁𝑁(𝑇𝑇𝑓𝑓)]  is observed between successive high and 
low(𝑡𝑡,𝑦𝑦), the 𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑁𝑁𝑦𝑦𝐷𝐷 is detected. This learning does not 
pursue any conditional validation and thus the max𝐷𝐷  is 
identified from 𝑁𝑁(𝑇𝑇𝑓𝑓) and 𝑁𝑁(𝑇𝑇𝑓𝑓)−1 variations (Figure 3). The 
frame inputs and training images are determined as in Eqs. (7a) 
and (7b) for the conditions of maximum similarity and 
boundary displacement connectivity. 

 
 

𝐶𝐶𝑁𝑁𝐿𝐿[𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇,𝛼𝛼,𝛽𝛽)] = −�𝑇𝑇𝑇𝑇𝑖𝑖 −�𝐿𝐿𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡[𝑁𝑁(𝑇𝑇𝑇𝑇)]𝑖𝑖

𝛼𝛼,𝛽𝛽

𝑗𝑗=1

−��𝑇𝑇𝑇𝑇𝑖𝑖𝐿𝐿𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡[𝑁𝑁(𝑇𝑇𝑇𝑇)]𝑖𝑖

𝛼𝛼,𝛽𝛽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (7a) 

 
And, 
 

∆[𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇,𝛼𝛼,𝛽𝛽)] =
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓�

−𝐶𝐶𝑁𝑁𝐿𝐿[𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑝𝑝𝑆𝑆𝑆𝑆(𝑇𝑇𝑓𝑓)]

∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑓𝑓�
−𝐶𝐶𝑁𝑁𝐿𝐿[𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑝𝑝𝑆𝑆𝑆𝑆(𝑇𝑇𝑓𝑓)]𝑖𝑖𝑁𝑁×𝑇𝑇𝑓𝑓

𝑖𝑖=1

 (7b) 

 
From the Eqs. (7a) and (7a), 𝐶𝐶𝑁𝑁𝐿𝐿[. ]  indicates the 

conditional neural learning function for similarity index 
identification and ∆[. ] represents the initial training image at 
random time intervals. Similarly, the initial training image and 
already trained frame inputs are comparatively analyzed for 
final boundary displacement detection𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇) as: 

 
𝐶𝐶𝑁𝑁𝐿𝐿[𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇), 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)]

=

⎩
⎪
⎨

⎪
⎧�𝑇𝑇𝑇𝑇𝑖𝑖∅ℎ

1
𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ

, 𝑉𝑉𝑖𝑖 𝑡𝑡𝑖𝑖(𝑇𝑇𝑇𝑇) ∈ [0,∞]
𝑁𝑁

𝑖𝑖=1

�𝑇𝑇𝑇𝑇𝑖𝑖∅𝑝𝑝
1

𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙
, 𝑉𝑉𝑖𝑖 𝑦𝑦𝑖𝑖(𝑇𝑇𝑇𝑇) ∉ [0,∞]

𝑁𝑁

𝑖𝑖=1

 (7c) 

 
And, 
 

∆[𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇), 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)] =
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹

 (7d) 

 
In the above equations, the connectivity of similarity and 

boundary displacement is verified throughout the process of 
training until maximum license plate detection precision 
through deep learning. The maximum precision is achieved 
using the condition  𝐶𝐶𝑁𝑁𝐿𝐿[𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇), 𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)]  is 
computed for both  𝑡𝑡  and  𝑦𝑦  coordinates. This computation 
helps to differentiate the true positive and false positive based 
on time intervals to achieve the maximum possible detection. 

Based on the connectivity analysis, conditional neural learning 
is used for both 𝐶𝐶𝑁𝑁𝐿𝐿[. ] and ∆[. ] instances. The condition of 
maximum similarity and boundary displacement connectivity 
is to reduce condition-failing features. The textural features are 
extracted from the maximum/minimum similarity and 
boundary displacement are independently verified for video 
output analysis. The high/low similarity and boundary 
displacement connectivity are verified through CNL. The 
condition-failing features in high and low similarity observed 
features are administered to prevent false positives and thereby 
improve true positives. Conditional neural learning ensures 
filtered textural features between the training inputs for 
accurate region detection. The filtering is pursued for 
identifying condition-failing features in frame inputs through 
deep learning. The aforementioned process is discussed in the 
following sections. The conditional analysis of the learning 
process is illustrated in Figure 4. 

The conditional validation based on 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡 [𝑁𝑁(𝑇𝑇𝑓𝑓)]  is 
performed in the above learning process. The ∅ℎ, ∅𝑝𝑝, and ∆[. ] 
are the iterated process for 𝐷𝐷 collaboration. The 𝑇𝑇𝑓𝑓 and (𝑇𝑇𝑓𝑓)−1 
variants are useful in deciding boundary split and similarity 
checks. In this process, the new boundary split is augmented 
with new 𝐷𝐷 for ∆[′] validation. However, the continuous 𝐷𝐷 is 
yet to be completed from  𝜃𝜃  extracts. If 𝜃𝜃  satisfies (𝑇𝑇𝑓𝑓)  or 
(𝑇𝑇𝑓𝑓)−1 similarity checks, then 𝐷𝐷 is correlated for detecting the 
boundary of the number plate. The conditional failure requires 
a boundary similarity check for ∅ℎ or ∅𝑝𝑝 or both (Figure 4). 
 

3087



 
 

Figure 4. Conditional analysis of the learning process 
 
3.2 False positive reduction 

 
The conditional neural learning is defined using two types 

of segments namely connectivity and no-connectivity between 
the training images and trained frame inputs. The connectivity 
is responsible for achieving maximum congruent textural 
features and boundary displacement whereas in no-
connectivity administers low similarity textural features and 
false positives. The connectivity is performed with 
𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 = {1,2, …𝜃𝜃} set of frame inputs; this frame input is 
used to extract textural features from all the neural network 
layers. The 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏  contains different types of features in 
different time intervals  𝑇𝑇𝑇𝑇 . Let  𝑄𝑄  represent the number of 
condition-failing features that are present in the frame inputs. 
Based on the verification, the number of image sequence 
processing per unit time𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓  such that the license plate 
detection (𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏) is given as: 

 
𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏

= �
𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 × 𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓 × 𝑇𝑇𝑇𝑇 ∀ 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 ∷ 𝑇𝑇𝑇𝑇 𝑁𝑁𝐶𝐶𝑉𝑉 𝑄𝑄 = 0

𝐹𝐹𝐹𝐹 ×
𝜃𝜃 − 𝑄𝑄
𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏

× 𝑇𝑇𝑇𝑇 ∀ (𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏,𝑄𝑄) ∷ 𝑇𝑇𝑇𝑇 𝑁𝑁𝐶𝐶𝑉𝑉 𝑄𝑄 ≠ 0 (8) 

 
Such that, 
 

𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 ∷ 𝑇𝑇𝑇𝑇 = �𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓

𝑁𝑁

𝑖𝑖=1

 (9) 

 
And, 
 

(𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 ,𝑄𝑄) ∷ 𝑇𝑇𝑇𝑇 = �𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓 − 𝐹𝐹𝐹𝐹�𝑇𝑇𝐹𝐹
𝑄𝑄

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (10) 

 
where, 

 

𝐹𝐹𝐹𝐹 =
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓

𝑇𝑇𝐹𝐹
 (11) 

 
Based on the above equations, the false positives and 

condition-failing features from frame inputs in different time 
intervals. In the above equation, 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 ∷ 𝑇𝑇𝑇𝑇 
and (𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 ,𝑄𝑄) ∷ 𝑇𝑇𝑇𝑇  represents the mapping of the 

maximum/minimum similarity index addressed from the video 
processing and false positives in the time interval  𝑇𝑇𝑇𝑇 . The 
license plate detection from the surveillance system is 
processed based on boundary displacement. In the 
connectivity observation, the frame input sequence and region 
are the added-up factors for improving the detection precision 
using the mapped time interval 𝑇𝑇𝑇𝑇. For training the images, 
no-connectivity-based detection and filtering are performed. 
The detection of license plates between 𝜃𝜃 ∈ 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 and 𝑄𝑄 is 
computed through the observation of their connectivity and 
time metrics. In Eq. (8), the condition  𝑄𝑄 > 𝜃𝜃  produces 
condition-failing features from the frame inputs. The time 
metric for filtering the condition-failing features and the 
routine connectivity based on  (𝜃𝜃 × 𝐹𝐹𝑃𝑃𝑇𝑇𝑓𝑓)  are the verifying 
conditions for detection. 

 

𝑇𝑇𝑇𝑇𝑆𝑆 = �
𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 − 𝑄𝑄

𝐹𝐹𝐹𝐹

𝜃𝜃

𝑖𝑖=1

 (12) 

 
And, 
 

ℸ𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏 =
𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏

(𝜃𝜃 − 𝑄𝑄)
(𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏 − 𝐹𝐹𝐹𝐹) (13) 

 
In the above equation, the variable 𝑇𝑇𝑇𝑇𝑆𝑆  and ℸ𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏  

represents the timed connectivity and routine detecting 
instance. From Eqs. (12) and (13), the precise detection of the 
license plate is achieved at each instance. This analysis is 
performed to identify the conditions of 𝑄𝑄 ≠ 0 and 𝑄𝑄 = 0 in 
different intervals through recurrent analysis. The false 
positive reduction process is illustrated in Figure 5. 

The FP reduction process is illustrated in the above Figure 
5 using 𝜃𝜃  as the input. This method first estimates 𝑇𝑇𝑓𝑓𝑚𝑚  to 
verify if it requires 𝛼𝛼 and 𝛽𝛽 or both. Depending on the verified 
condition, if ℸ𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑓𝑓 is the required output, and then ∅ℎ > ∅𝑝𝑝  
alone generates precise 𝐷𝐷. This is false positives free requiring 
an added training. Considering the ∆[′] verification, new false 
positives are presented from causing errors in the further 
iterations. The case of  𝑄𝑄  requires new feature verification 
between different 𝑡𝑡  and 𝑦𝑦  to detect𝑦𝑦𝑁𝑁 . Thus, the different 
processes of 𝑆𝑆𝑆𝑆𝐿𝐿𝐻𝐻𝑖𝑖𝑖𝑖ℎ  and 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑏𝑏𝑙𝑙  are precise in detecting 
new 𝑇𝑇𝑓𝑓𝑚𝑚  until the FPs are reduced. The recurrent analysis is 
dependent on filtering sequences from similarity and boundary 
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displacement connectivity verification such that precise 
detection is achieved using deep learning. If this sequence is 
observed in any instance, then the license plate detection 
from  𝜃𝜃 ∈ 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑏𝑏  is terminated to reduce no-connectivity 
observed instances between different frame orientations. The 
neural learning gives the output of maximum similarity to 

achieve precise detection to address the false positives. The 
boundary in the frame inputs is accurately identified and 
segregated to improve precision. This prevents false positives 
and condition-failing features by processing frame inputs 
whereas, the true positive is high. 

 

 
 

Figure 5. False positive reduction process 
 
 
4. RESULTS AND DISCUSSION 

 
The results and discussion are provided as two sub-sections: 

experimental and comparative analysis. 
 
4.1 Experimental analysis 

 
Table 1. Boundary displacement outputs 

 
Input 𝒚𝒚𝑵𝑵 ∅𝒉𝒉 ∅𝒍𝒍 

    

    

    

    
 

In the experimental analysis, the “Car License Plate 
Detection” [25] dataset is inherited to validate the proposed 
method. The dataset provides 433 images with bounded boxes 
detecting license plates for testing and training. The frames are 
extracted from PASCAL video format at a rate of 64fps. Each 
image is annotated with the number of boundaries detected and 

the actual number. The training iterations pursued is 900 using 
MATLAB experiment under an epoch of 8/annotation. The 
optimal image size is 256×256 to 500×300 pixels depending 
on the resolution and orientation. The experimental results are 
tabulated for 4 sample inputs in Tables 1 and 2 for different 
processes undertaken. 

 
Table 2. Boundary detected outputs 

 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒍𝒍𝑺𝑺𝑺𝑺(𝑻𝑻𝑻𝑻) 𝑪𝑪𝑪𝑪𝑪𝑪𝑻𝑻𝑪𝑪𝑪𝑪[𝑵𝑵(𝑻𝑻𝑻𝑻)]] 𝑩𝑩𝑪𝑪𝑩𝑩𝑪𝑪𝑩𝑩𝑺𝑺𝒚𝒚𝑫𝑫(𝑻𝑻𝑻𝑻) 

   

   

   

   
 

4.2 Comparative analysis 
 
The comparative analysis is performed using accuracy, 

precision, similarity index, false positives, and analysis time. 
The highest features extracted are 11 and the boundaries are 
13 that are used to estimate the performance variations. The 
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metrics are analyzed comparative with the existing IWPOD-
NET [9], D_GAN_ESR [15], and LEAFDN [21] methods. 

 
4.2.1 Accuracy 

In this article, the proposed BFM is designed to achieve high 
license plate detection accuracy based on verifying the 
connectivity between maximum similarity and boundary 
displacement from frame inputs and training images 
represented as in (Refer to Figure 6). The accurate license plate 
detection with fewer false positives and analysis time is the 
optimal output here. The congruent textural features are 
filtered through trained inputs for similarity index 
identification to reduce analysis time. This proposed method 
identifies the license plate boundary for filtering conditions 
using CNL. The license plate is detected from the moving 
vehicles for authenticating owners based on identifying 
boundary displacement in each region. 

 

 
 

 
 

Figure 6. Accuracy 
 
Detecting the pixel arrangement and intensity in a particular 

region and comparing with trained inputs for similarity 
analysis. The textural features extracted from the frame images 
are analyzed in different time intervals to prevent false 
positives. 

 
4.2.2 Precision 

In this method, textural feature extraction from the video 
output of the license plate is analyzed to reduce vehicle 
misdetection (Refer to Figure 7). The high detection precision 
is achieved through similarity analysis of maximum/minimum 

similar textural features observed from frames through the 
proposed method and CNL. The false positives and true 
positives present in video-based license plate detection are 
analyzed using the condition 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓�𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝� + 𝐹𝐹𝐹𝐹  for 
minimizing the condition-failing features. In this method, the 
textural features extraction process initially terminates the 
displacement-identified frame inputs. The congruent textural 
features are identified and filtered through CNL to reduce false 
positives. 

This represents maximum similarity and boundary 
displacement from the raw video frame inputs for accurately 
detecting license plate region. In this method, the smoothed 
video-based license plate is generated by identifying the 
license plate boundary on a gray-scale image sequence to 
highlight false positives. The acquired information from 
video-based license plates is analyzed based on extracted 
textural features through CNL using deep learning resulting in 
high detection precision with less analysis time. Hence, the 
condition-succeeding features are recurrently analyzed using 
filtering conditions to satisfy high precision. 

 

 
 

 
 

Figure 7. Precision 
 
The similarity and region are verified and compared with 

already trained frame inputs using CNL for improving 
accuracy. Hence, high detection accuracy is achieved. 

 
4.2.3 Similarity index 

The textural feature obtained from the input video is 
compared with trained frame images using CNL with less 
boundary displacement (Refer to Figure 8). The analysis of 

3090



video outputs is pursued for extracting similar textural features 
to detect boundaries from the frame images. Hence, the license 
plate boundary is used to satisfy high accuracy and precision 
for the detection of license plates using video outputs. In this 
video-based license plate captured from the moving vehicles 
is analyzed to identify its boundary and region for which the 
condition-failing features are reduced. The least possibility of 
similar boundary indices is detected based on the trained 
inputs through CNL. 

 

 
 

 
 

Figure 8. Similarity index 
 
However, the proposed method aided CNL for video output 

analysis results in high false positives and analysis time. To 
reduce this complexity use the optimal condition to shape the 
license plate region. The similarity index identification for 
region and connectivity output for accurate license plate 
detection whereas the similarity index detection for false 
positives is trained to identify boundary. In this method, the 
CNL is used to improve boundary detection with high 
similarity indices. 

 
4.2.4 False positives 

In this method, the less false positives are achieved by the 
boundary filtering method and CNL for identifying the region 
in frame inputs. The textural feature extraction is pursued to 
merge all the connectivity observed frame inputs for precise 
detection of a license plate from the original video output. 
However, the condition-failing features are initially filtered to 
reduce false positives through CNL. Therefore, additional 
verification is performed to address false positives in the frame 
inputs to increase analysis time. The learning process is used 
to train images for terminating no connectivity between 
similarity and boundary displacement identified from the 

original frame image. The least possible false positive is 
detected to recurrently analyze the video outputs using 
computer-based algorithms/methods for improving detection 
precision. The connectivity is verified to accurately identify 
boundaries through the proposed method. Therefore, similar 
boundary indices independently identified based on license 
plate region and connectivity verification which leads to fewer 
false positives is as illustrated in Figure 9. 
 

 
 

 
 

Figure 9. False positives 
 

4.2.5 Analysis time 
In this method, conditional neural learning is used to 

identify the condition-failing features from the frame inputs. 
This is to improve the detection accuracy and precision with 
BFM as represented in Figure 10. The appropriate connectivity 
is verified to maintain maximum similarity indices from the 
training images and is analyzed to achieve fewer false 
positives and analysis time through the proposed method. In 
this analysis, the boundary displacement in frame inputs is 
accurately detected to avoid false positives for preventing 
complexity. Based on the textural features extracted from 
video outputs is analyzed using deep learning for achieving 
high detection precision with less analysis time. The 
classification of maximum and minimum  𝑆𝑆𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑇𝑇)  and 
𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑇𝑇)  is pursued using deep learning to improve 
accuracy. This classification helps to identify the true positives 
and false positives between different frame orientations. Thus 
the proposed method is used to identify such similar boundary 
indices from frame inputs. Here, the analysis time is less 
compared to the other factors in this method. 
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Figure 10. Analysis time 
 

4.2.6 Recall 
 

 
 

 
 

Figure 11. Recall analysis 

The proposed method improves the recall for the varying 
FPR and boundaries identified. The changes in frame inputs 
are detected by suppressing the condition-failing features 
provided the false positives are confined. As the false positives 
are confined by identifying the displacements using CNL this 
proposed method is reliable in confining the false positives. 
Therefore the precision-based training and improvements are 
validated across multiple boundaries and their corresponding 
features. This property enhances the recall by reducing the 
false negatives over true positives. Therefore the different 
iterations of the CNL training process enhance the recall as 
presented above (Figure 11). 

 
4.2.7 F1-Score 

The conditional neural learning process is responsible for 
improvising the boundary detection of the number plates 
across various features extracted. Identifying the high and low 
variations in the features and the false positive rates under 
multiple boundaries, the proposed method is reliable in 
improving the F1. 

Besides, the similarity measure across different conjugative 
features improves the true positives. As the precision and 
recall are improvised by this conditional neural learning, the 
proposed method is capable of leveraging the F1 score. As the 
product of precision and recall to the sum of precision and 
recall is the representation of the F1 score, the proposed 
method is reliable in achieving the above over different factors. 
Hence in this case, the proposed method is optimal in 
improving the F1 for different FPR and boundaries (Figure 12). 
Table 3 summarize the comparative analysis results. 

 

 
 

 
 

Figure 12. F1 analysis 
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Table 3. Comparative analysis results for boundaries identified 
 

Metrics IWPOD-NET D_GAN_ESR LEAFDN BFM-CNL 
Accuracy (%) 60.57 72.83 58.93 93.318 

Precision 0.637 0.764 0.846 0.9404 
Similarity Index 0.667 0.742 0.846 0.9523 
False Positives 0.141 0.114 0.101 0.0839 
Analysis Time (s) 0.937 0.744 0.654 0.4851 

Recall 0.956 0.874 0.82 0.743 
F1 0.954 0.799 0.614 0.543 

 
Table 4. Individual metric validation for different optimizers 

 
Optimizer Error Accuracy Precision Recall F1 Score Execution Time (ms) 

ADAM (Benchmark) 0.11 87.6 0.90 0.85 0.87 0.248 
CONVBATCH [9] 0.098 87.89 0.92 0.87 0.894 0.122 

ADN [15] 0.078 88.47 0.95 0.88 0.941 0.139 
AN [21] 0.045 89.54 0.94 0.92 0.925 0.208 

NLM  0.03 91.4 0.96 0.96 0.958 0.109 
 

Table 5. Activation function-based metric validation 
 

Activation 
Function Accuracy Error Precision Recall F1 Score Execution Time 

(ms) 
Tanh 88.5 0.089 0.92 0.87 0.894 0.201 
Elu 87.6 0.03 0.96 0.95 0.902 0.22 

Softplus 90.1 0.086 0.94 0.92 0.926 0.159 
Prelu 91.4 0.11 0.92 0.956 0.959 0.187 
Relu 89.2 0.078 0.93 0.945 0.945 0.237 

Maxout 90.1 0.069 0.94 0.939 0.956 0.231 
 
In Table 3 the comparative analysis results for different 

boundaries identified are presented. The impact of FPR over 
the boundaries and features is non-congruent in detecting these 
outputs. Therefore, considering the change between 
successive features and variations the employed method 
increases the chances of detection between varying intervals. 
This result representation also follows the same pattern as the 
previous method to detect the improvements. The proposed 
method improves accuracy, precision, and similarity index by 
14.6%, 9.57%, and 10.03% respectively. This method reduces 
false positives and analysis time by 10.43% and 6.28% 
respectively. Table 4 presents the individual metric validation 
for different optimizers from the existing to the proposed work. 

In Table 4, the different optimizers used in the existing 
methods are validated for the individual metrics considered. 
The ADAM optimizer is the benchmark for CONN BATCH 
[9], adversarial Network (ADN) [15], and the attention 
network (AN) [21]. Therefore these 4 classifiers are grouped 
in the above tabulation along the proposed method. In this 
process the  ∆  [similar  (𝑇𝑇𝑓𝑓 ,𝛼𝛼𝛽𝛽)]  is the verified induced 
classifier for 𝜙𝜙ℎ  and 𝜙𝜙𝑝𝑝  provided 𝑁𝑁(𝑇𝑇𝑓𝑓)  and  𝑁𝑁(𝑇𝑇𝑓𝑓)−1  are 
high/low or vice versa. Therefore, the classification is 
influenced by 𝛼𝛼 and 𝛽𝛽 under different stages of the number 
plate detection process. Followed by the above optimizers, in 
Table 5, the activation function-based metric validation is 
presented. 

For the different activation functions considered, the 
different metrics are analyzed in Table 5. Each function 
discriminative 𝑡𝑡  and 𝑦𝑦  for 𝜙𝜙ℎ  and 𝜙𝜙𝑝𝑝  differentiations. In the 
activation function, 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏[𝑁𝑁(𝑇𝑇𝑓𝑓)] is alone inducted to validate 
different intervals such that the processes of extraction and 
detection are robust across Δ [𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑉𝑉𝑁𝑁𝑁𝑁𝑦𝑦𝐷𝐷(𝑇𝑇𝑓𝑓), 𝐿𝐿𝑉𝑉𝑁𝑁𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑓𝑓)]. 
Therefore the 𝜙𝜙ℎ and 𝜙𝜙𝑝𝑝 influences each of the classifications 
highlighted in the detection process. This further impacts the 
execution based on different 𝜙𝜙ℎ and 𝜙𝜙𝑝𝑝 entries increasing the 

accuracy factor. Table 6 analyzes the error, validation, and 
evaluation of the different activation functions for different 
learning rates. 

 
Table 6. Error, validation, and evaluation of different 

activation functions under learning rates 
 

Activation 
Function 

Learning 
Rate Error Validation Evaluation 

Tanh 

0.2 0.11 0.59 0.741 
0.4 0.101 0.62 0.784 
0.6 0.098 0.68 0.841 
0.4 0.095 0.74 0.854 
1 0.09 0.81 0.874 

Elu 

0.2 0.108 0.79 0.891 
0.4 0.105 0.81 0.921 
0.6 0.098 0.85 0.947 
0.4 0.095 0.87 0.963 
1 0.093 0.90 0.974 

Softplus 

0.2 0.098 0.85 0.654 
0.4 0.096 0.87 0.714 
0.6 0.0958 0.885 0.789 
0.4 0.0927 0.897 0.801 
1 0.0901 0.901 0.821 

Prelu 

0.2 0.121 0.4 0.698 
0.4 0.12 0.45 0.745 
0.6 0.118 0.487 0.854 
0.4 0.105 0.496 0.874 
1 0.098 0.524 0.965 

Relu 

0.2 0.124 0.621 0.987 
0.4 0.121 0.635 0.925 
0.6 0.105 0.741 0.954 
0.4 0.095 0.782 0.974 
1 0.092 0.814 0.987 

Maxout 

0.2 0.13 0.748 0.897 
0.4 0.128 0.847 0.921 
0.6 0.125 0.868 0.965 
0.4 0.104 0.891 0.984 
1 0.097 0.897 0.989 
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Table 7. Overall and average accuracy analysis of different 
activation functions 

 
Activation Function Parameter Accuracy 

Tanh OA 0.915 
AA 0.885 

Elu OA 0.924 
AA 0.876 

Softplus OA 0.934 
AA 0.901 

Prelu OA 0.928 
AA 0.914 

Relu OA 0.951 
AA 0.892 

Maxout OA 0.938 
AA 0.901 

 
In Table 6, a detailed analysis of the activation functions 

under different learning rates is presented. The error validation 
and evaluation for different activation functions and learning 
rate is optimized using identifiable 𝜙𝜙ℎ  and 𝜙𝜙𝑝𝑝 . The 𝛼𝛼 and 𝛽𝛽 
are the learning rate-improving factors based on FP 
occurrences. Hence in such cases, the evaluation is instigated 
by normalization (𝐹𝐹𝐹𝐹,𝑇𝑇𝑓𝑓) until the error is reduced. The loss 
impacts the validation using 𝛼𝛼 or 𝛽𝛽 whereas both metrics are 
considered for evaluation through 𝑁𝑁(𝑇𝑇𝑓𝑓) and 𝑁𝑁(𝑇𝑇𝑓𝑓)−1. Each 
activation function utilizes this output to improvise the metrics 
under different rates. The overall and average accuracy of 
different activation functions are analyzed in Table 7. 

In Table 7, the OA and AA analysis for different functions 
is presented. Each function is unique in selecting 𝜙𝜙ℎ and 𝜙𝜙𝑝𝑝 
with and without normalization. The number of execution 
steps is validated across different 𝑆𝑆𝑆𝑆𝐿𝐿ℎ𝑖𝑖𝑖𝑖ℎ  and 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝𝑏𝑏𝑙𝑙  
for  𝐿𝐿𝐶𝐶𝐶𝐶𝑇𝑇𝐿𝐿𝑡𝑡[𝑁𝑁(𝑇𝑇𝑓𝑓)] . This is the key factor for detecting 
maximum/minimum classification features for 𝛼𝛼 and 𝛽𝛽 inputs 
stabilizing  𝑂𝑂𝐴𝐴 . The  𝐴𝐴𝐴𝐴  is the mean of different OA under 
varying learning rates and (𝜙𝜙ℎ + 𝜙𝜙𝑝𝑝) variations. 

 
 
5. CONCLUSION 

 
To improve the detection accuracy of vehicle license plates, 

this article proposed and briefed the boundary filtering method 
using conditional neural learning. This method first extracts 
the textural features to identify the congruent features based 
on similarity. The similarity index-based validations are 
performed to differentiate high and low feasible feature 
detection between the edges of the input image. The 
conditional neural learning filters the high similarity features 
to improve the training and detection precision. In this 
conditional assessment, the texture congruency is verified 
using similarity and displacement factors. These factors are 
augmented to add up the boundary feature continuity that 
improves the detection accuracy. As the feature augmentation 
based on similarity index is pursued the highest precision in 
detecting the boundary is achieved. From the comparative 
analysis, the proposed method improves accuracy, precision, 
and similarity index by 11.3%, 10.23%, and 11.06% 
respectively for the highest feature. The advantage of 
boundary feature continuity turns out to be less feasible for 
color variant features. This requires an equalization process 
before its edge detection process; this constructive feature is 
planned to be incorporated in the future with dynamic 
concerns. 
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