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 Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity, 

leading to sudden seizures that can cause loss of consciousness, convulsions, involuntary 

movements, and communication difficulties in patients. The unpredictability of when and 

where these seizures will occur can result in accidents, deaths, and negatively affect a 

patient's quality of life and social relationships. Therefore, it is crucial to take preventive 

measures against potential adverse events by predicting epileptic attacks in advance. For 

more accurate and sensitive forecasts, advanced computer-based algorithms have become 

an indispensable tool in seizure prediction. Epileptic seizures can be predicted using EEG 

data through various methods developed over time. This study provides an overview of 

epileptic seizure prediction methods and explains current and emerging deep learning 

techniques. 
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1. INTRODUCTION 

 

Today, epilepsy is treated with methods such as medication 

and surgical procedures that remove the part of the brain 

causing seizures. However, surgery is only an option for a 

small number of patients. Approximately 30%-40% of 

epilepsy patients cannot be treated with medication because 

they have a drug-resistant form of epilepsy [1]. The global 

prevalence of epilepsy is estimated to be around 1%, and a 

significant proportion of these patients are classified as 

untreatable. The prediction of uncontrolled epileptic seizures 

has been a focus of research for many years due to the potential 

risks associated with such seizures. EEG data is commonly 

used for predicting epileptic seizures, with studies in this area 

dating back to the early 1970s [2]. Although signal analysis 

methods were frequently used in the early stages of research, 

faster and more efficient results have been achieved over time 

with advanced machine learning techniques. In recent years, 

deep learning methods have gained significant popularity and 

have been extensively utilized due to their ability to efficiently 

process vast amounts of data, including EEG data, which is 

crucial for the accurate prediction of epileptic seizures. 

 

Table 1. EEG datasets 

 

Dataset 

Number 

of 

Channels 

Type of Signal 

Number 

of 

Subjects 

Subject Type 

Recording 

Length Per 

Segment 

Numbers 
Frequency 

(Hz) 

University of Bonn 1 Scalp/Intrac. EEG 10 Human 23.6 s 500 segments 173.86 

CHB-MIT Scalp EEG 18 Scalp EEG 23 Human 1h 198 events 256 

Melbourne-NeuroVista 16 Intracranial EEG 12 Human Av. 107 s 2979 segments 400 

Kaggle American Epilepsy Society 16 Intracranial EEG 7 Human  Canine 10min 111 events 400–5000 

Neurology and Sleep Centre Hauz Khas 1 Scalp EEG 10 Human 5.12 s 100 segments 200 

TUH EEG Seizure Corpus (TUSZ) 23-31 Scalp EEG 642 Human 1h 3050 events Min 250 

Helsinki University Hospital EEG 19 Scalp EEG 79 Human 74m 460 events 256 

Siena Scalp EEG 20/29 Scalp EEG 14 Human varied 47 events 512 

University of Bonn 24 https://www.ukbonn.de/en/epileptology/workgroups/lehnertz‐workgroup‐neurophysics/downloads/  

CHB‐MIT Scalp EEG 53 https://physionet.org/content/chbmit/1.0.0/  

Melbourne‐NeuroVista seizure trial  https://melbourne.figshare.com/articles/dataset/Seizure_Data/6939809  

Kaggle American Epilepsy Society  https://www.kaggle.com/competitions/seizure‐prediction/data  

Neurology and Sleep Centre Hauz Khas  https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets  

TUH EEG Seizure Corpus (TUSZ) 21 https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml  

Helsinki University Hospital EEG 23  https://zenodo.org/record/2547147#.Y7eU5uxBwlI  

Siena Scalp EEG 22 https://physionet.org/content/siena‐scalp‐eeg/1.0.0/  
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This study aims to provide a detailed description of epileptic 

seizure prediction methods and to compare the techniques 

used at each step of the process. Currently, there is no single 

study that comprehensively combines and describes all these 

methods in detail. By reviewing both past and present studies, 

this research offers an overview of the evolution of seizure 

prediction. Table 1 presented highlight various rates and 

criteria, with the goal that the advantages and disadvantages of 

the methods will serve as a guide for future research. 

 

 

2. INFORMATION ON EPILEPSY, EEG, AND EEG 

DATASET 

 

2.1 Epilepsy 

 

Epilepsy is a physiological anomaly characterized by 

abnormal electrical activity caused by temporary asynchrony 

in brain neuron activities. These abnormalities, known as 

seizures, can occur at any time and last for several minutes, 

leading to uncontrollable involuntary movements, and loss of 

emotion and consciousness in the patient. Epilepsy can present 

in two forms based on its symptoms: focal and generalized. 

Focal epilepsy is further divided into two types: simple focal, 

where consciousness is not lost but communication becomes 

difficult, and complex focal, where consciousness is lost, and 

abnormal behavior is exhibited. Generalized epilepsy, on the 

other hand, affects the entire nervous system because it 

involves the whole brain. In prediction studies, generalized 

epilepsy is used more frequently.   

 

2.2 EEG 

 

Electroencephalography (EEG), which measures and 

records the electrical waves in the brain, is used to diagnose 

neurological issues and detect any functional disorders in the 

brain. These electrical waves are obtained by placing thin 

wires, called electrodes, on the scalp. The EEG signals are 

generated by the electrical activity in the brain, which is 

caused by the movement potential of neurons within the brain 

structure. The most influential type of neuron responsible for 

generating EEG signals is the pyramidal cell. The summation 

of postsynaptic potentials in these cells produces the electrical 

signals measurable by EEG.  

In 1929, Hans Berger demonstrated that the electrical 

activity of the human brain could be recorded, coining his 

system the Electroencephalogram (EEG). The method 

proposed by Herbert Jasper in 1958 for obtaining EEG signals 

was later accepted as a standard by the International 

Federation of EEG Societies, known as the "International 10-

20 System". EEG measurements can be made using single-

channel or multi-channel techniques. Mormann et al. [3] 

compared studies using these techniques and found that 

studies employing the single-channel measurement technique 

were less successful. 

 

2.3 EEG dataset 

 

One of the most important factors when selecting a dataset 

is its size. Since deep learning algorithms require a larger 

number of examples, large-scale, comprehensive, and 

consistent datasets are crucial for developing seizure 

prediction algorithms. While early studies on epileptic seizure 

prediction were limited to EEG data from local databases with 

a small number of patients nowadays, the availability of larger 

datasets are relatively easy. The most commonly used ones in 

studies are shown in Table 1. These datasets are long-term and 

include daily activities such as sleep, wakefulness, and 

physical activity are generally used in studies by categorizing 

periods as ictal, interictal, preictal, and postictal. Among these 

periods, the preictal period can be easily confused with 

physiological signals, so proper time adjustment through 

testing will affect the results. As a result, although the 

databases used today are sufficiently large, the lack of detailed 

information and data imbalance remains a challenge. It should 

also be noted that periodic changes in individuals and their 

activities can cause variations in the signals. 

In an analysis of studies on epilepsy conducted over the past 

five years, the CHB-MIT dataset is found to be the most 

commonly utilized resource. This dataset provides 1-D data 

obtained from channels placed according to the 10-20 system. 

In the CHB-MIT dataset, interictal data significantly 

outnumbers preictal data. To mitigate this imbalance, 

researchers frequently use overlapping window techniques. 

Additionally, generating synthetic data, such as through the 

use of Generative Adversarial Networks (GAN), is another 

method employed to address this issue. 

 

 

3. THE PREDICTION OF EPILEPTIC SEIZURE 

 

When examining studies on epilepsy, it is evident that most 

research focuses on diagnosing epilepsy to provide the 

necessary treatment. In contrast, there are fewer studies on 

seizure prediction, which aims to alert the patient a certain 

time before an upcoming seizure. The expectation for a seizure 

prediction study is that it functions in a way that minimizes 

interruption of the patient’s life, provides sufficient time for 

medical intervention, and has the lowest possible number of 

false predictions. One of the most critical aspects of seizure 

prediction is the selection of the appropriate approach. Two 

different approaches are used to predict epileptic seizures. The 

first approach, known as preictal-interictal classification, 

involves labeling a specific periods preictal and interictal. A 

specific period before the onset of a seizure, such as 15, 30, 

60, or 120 minutes, is considered preictal, while the period 

before the preictal phase and after the end of the seizure is 

considered interictal. Typically, a moving window is used to 

temporarily characterize these interictal and preictal stages, 

where a linear or nonlinear measure is calculated and ranges 

from 5 to 50 seconds. These windows may overlap to a certain 

extent. Classifier is then applied to distinguish between these 

phases. The second approach, which is rarely studied, involves 

the threshold methodology. In this method, increasing and 

decreasing values are detected during the preictal period, and 

an alarm is activated when a certain threshold is reached. An 

example of the second approach is Usman and Hassan’s 

research [4]. He worked exclusively with seizure data and 

determined threshold values based on various statistical 

calculations, such as variance, entropy, skewness, complexity, 

and kurtosis. Using these values, he performed classification 

by applying machine learning algorithms. However, this 

method is not preferred because preictal signals are often 

unclear and may overlap with artifacts. Another important 

consideration in predicting epileptic seizures is whether the 

study is patient-specific or patient-independent. Although 

patient-specific studies often achieve high success rates, the 

limited number of samples can pose challenges. In such 
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studies, each patient is classified according to their own data. 

Patient-independent studies, on the other hand, are more 

applicable to real-world scenarios but have a lower success 

rate and a more complex classification structure, as EEG data 

vary significantly from patient to patient. In these studies, data 

from all patients are used for training and testing is conducted 

on any individual patient. Upon reviewing the studies for the 

prediction of epilepsy attacks, it was observed that the process 

shown in Figure 1 was generally applied. 

 

 
 

Figure 1. A common process in the prediction of epileptic 

seizures 

 

In reviewing the literature, it would be logical to examine 

epileptic seizure prediction studies in two distinct periods: 

(1) The early period and traditional machine learning: Until 

the 1990s, linear methods were frequently used, especially in 

the feature extraction phase. While these approaches offer 

computational advantages, they have low sensitivity to 

artifacts. Since EEG signals are multidimensional and chaotic, 

these methods have yielded limited success. From the 1990s 

onward, methods based on nonlinear dynamics theory started 

to be employed. Studies conducted in the early 1990s initially 

focused only on the preictal period; however, Lehnertz and 

Elger [5] compared the preictal and interictal periods using the 

correlation dimension method, a nonlinear approach for time 

series analysis. This method enables the prediction of epileptic 

seizures minutes before they occur by detecting signal 

deterioration during the preictal stage. 

Given the uncertainty and irregularity of EEG signals, 

nonlinear methods, which are chaotic and dynamic, offer 

higher accuracy in predicting seizures and are relatively 

preferred despite requiring more computational costs than 

linear methods [6]. As chaotic methods, the Large Lyapunov 

Exponent [7] and Correlation Intensity [8], which are time-

domain analyses providing information about the brain's 

dynamic stability, have been used. Iasemidis et al. [7] analyzed 

the chaotic state before the onset of an epileptic seizure using 

the moving window method and reported that it decreased. In 

their later work, Iasemidis et al. [9] developed a real-time 

statistical algorithm that continuously calculates the maximum 

Lyapunov exponent and monitors the T-index curves of this 

calculation. The measurement calculated by the algorithm 

generated a warning when it exceeded a specified threshold. 

The study, which predicted seizures 45.3 minutes in advance, 

achieved an average sensitivity of 81% and a specificity of 

78%. However, these methods cannot provide fast analysis 

due to their computational complexity on a long time scale. 

Since the EEG signal is not static and linear, EEG signal 

analysis of some mathematical models in the time domain is 

difficult. To overcome this difficulty, some studies have used 

frequency domain methods. Frequency Domain, also known 

as Spectral Analysis, which is more sensitive to the presence 

of artifacts than Time Domain statistical methods, is another 

method used in the feature extraction phase in the traditional 

method. The most commonly used frequency domain property 

is the Power Spectral Density (PSD). Bandarabadi et al. [10], 

Direito et al. [11] and Zhang and Parhi [12], used Spectral 

Power Analysis as their feature extraction method. They 

windowed the EEG data and calculated the spectral power 

property of the data in each window. They reported that this 

method is very cost-effective in terms of calculation and 

therefore suitable for portable warning systems. They also 

found that Spectral Power Analysis could show promising 

results for seizure prediction, especially in high gamma 

frequency bands. 

An example of the use of Time-Frequency (TF) techniques 

is the research by Gadhoumi et al. [13]. They used the 

Continuous Wavelet Transformation (CWT) analysis method 

for preictal and interictal periods. In this method, wavelet 

energy and entropy in different frequency bands were 

calculated using a two-second non-overlapping sliding 

window. They used LDA for classification and achieved an 

average sensitivity of 85% in the data of seventeen patients. 

However, CWT conversion increases file size, and therefore 

working with large files can lead to hardware and time issues. 

In this period, in 2002, the first international workshop on 

epileptic seizure prediction took place. In 2007 and 2009, the 

International Workshop on Seizure Prediction (IWSP3) 

organized two competitions using iEEG datasets from dogs 

and humans. Although these competitions contributed to 

significant progress in seizure prediction, the overall 

performance remained low, and no standardized methods were 

established. 

A small number of data sets were used in the Early Stage 

and these data sets were of low quality and short time. There 

is no controlled and standardized evaluation method. The 

transition to nonlinear chaotic feature extraction methods and 

the classification process by comparing preictal-interictal 

periods instead of preictal period analysis alone is noteworthy. 

in the Early Stage, linear approaches that are frequently used 

have a computational advantage, but on the other hand, the 

artifact sensitivity is low. They are also able to identify certain 

changes that occur before the seizure. Although it was stated 

in early studies that epilepsy attacks could be predicted 

between 20-90 minutes before, the performance of these 

methods was not evaluated in long and high-quality data. 

Although traditional signal processing methods with phases 

such as pre-processing, feature extraction, and feature 

selection provide good accuracy in Machine Learning-based 

studies conducted in the following years, process complexity, 

length of time, lack of a generalized model, and constraint in 

big data can be listed as disadvantages. Since most of the 

operations are done manually, it can cause data loss.  

(2) Deep learning: Due to the development of technology 

for fully automated systems to overcome the constraints of 

traditional methods, Deep Learning techniques have been used 

in the prediction of epileptic seizures since the second half of 

the 2010s. Deep Learning, a subset of Machine Learning, 

models human learning ability in computer science and is the 

multi-layered version of Artificial Neural Networks (ANN) 

consisting of neurons. In seizure prediction studies, CNN and 

RNN models, along with their derivatives, are commonly 

utilized as deep learning algorithms. CNN was the first method 

employed due to its success in image processing and automatic 

feature extraction, as proposed by Troung et al. [14]. Troung 

and colleagues initially transformed the Freiburg and CHB-

MIT datasets using STFT and achieved a sensitivity of 89.8%, 

FPR of 0.17 with CNN classification. Subsequent studies 

applied various CNN models, such as 1D, 2D, and 3D. Ra and 
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Li [15] utilized a 1D CNN model for feature extraction. 

However, while this model demonstrates high performance in 

certain datasets, it can be restrictive in some application areas. 

The LSTM model, derived from RNN, was first employed by 

Tsiouris et al. [16], where they developed different LSTM 

models, addressed the overfitting problem, and achieved a 15–

120-minute early alert with a sensitivity of 99.37% and 

specificity of 99.6%. Liu et al. [17] proposed the Bi-LSTM 

model, which captures contextual information from both past 

and future sequences, for a patient-independent model. Their 

performance reaching 99.37% and 99.6% for sensitivity and 

specificity. However, since this model operates 

bidirectionally, it is inefficient in terms of time consumption 

and computational efficiency. Additionally, it may pose 

challenges for real-time applications with continuous data 

flow. Bhattacharya et al. [18] were the first to propose the use 

of transformers for epileptic seizure prediction, achieving a 

sensitivity and false-positive rate per hour (FPR/h) as 98.46%, 

94.83% and 0.12439, 0, respectively in their study. Deep 

learning methods are explained in detail in Chapter 4. 

 With automatic feature extraction, data loss can be 

minimized, and model complexity can be reduced. However, 

the drawbacks include the requirement for large datasets, the 

need for powerful hardware to support automatic feature 

extraction, and consequently, increased energy consumption. 

 

3.1 Preprocessing 

 

This phase involves cleaning the raw EEG data by removing 

artifacts and organizing the data. High-amplitude signals are 

typically identified as artifacts. The pre-processing stage aims 

to reduce noise by detecting and eliminating these artifacts, 

thereby enhancing the accuracy of the classification process. 

Although the filtering techniques used may vary based on the 

type of artifacts present, the methods frequently employed for 

predicting epileptic seizures are generally divided into two 

categories: 

(1) Use of Simple Filters: This method involves applying 

uncomplicated digital filters, such as band-pass, high-pass, 

and low-pass filters, by selecting a specific frequency range. 

Among these, the band-pass filter is the most commonly used 

in EEG signal analysis. An example of a band-pass filter that 

allows signals within a defined frequency range is the 

'Butterworth' filter. As the filter's order increases, it offers a 

wider transition zone compared to other band-pass filters.  

(2) Use of Signal Analysis Methods: Simple digital filters 

become ineffective when signal frequency bands overlap with 

artifact frequencies. To address this, various techniques from 

Signal Analysis are employed for filtering. These methods are 

also used for decomposing data and reducing its size. In signal 

analysis methods used for preprocessing, PCA, which is a 

linear transformation, is used to rotate the coordinate system 

to obtain lower dimensional components. ICA, generally 

utilized to remove artifacts, the first axis, which corresponds 

to the first component, that is, the main component, is selected 

according to the maximum variance of the data in a given 

direction and rotated in the direction in which the variance of 

the data is maximum. The next component, the secondary axis, 

is perpendicular to the first component and shows the next 

highest data variance. Other components are selected in this 

way and so on [19].  

 

3.2 Feature extraction 

 

The feature extraction phase involves applying methods to 

the filtered EEG data. In traditional methods, signal analysis 

techniques are generally used, while in some cases, studies 

may employ deep learning approaches that utilize automatic 

feature extraction. Feature extraction is the process of 

identifying significant properties from the recorded EEG data 

and obtaining a feature vector. This step reduces the size of the 

feature vector while selecting the most relevant features for the 

classifier [20]. Feature extraction methods for the prediction 

of epileptic seizures are based on various approaches, 

including multichannel, single-channel, linear, and nonlinear 

(chaotic) analysis. As shown in Figure 2, feature extraction 

methods used in studies can be categorized into four groups: 

time domain, frequency domain, time-frequency domain 

(signal analysis), and automatic feature extraction (deep 

learning techniques). 
 

 
 

Figure 2. Feature extraction methods 
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In the Time Domain, signal analysis is usually performed 

with statistical calculations. Unlike the time domain, 

frequency domain relates to the spectral component of a signal 

and it does not contain any information about time. Time-

frequency domain analysis is the method that characterizes the 

energy of EEG and other signals over time and frequency and 

decomposes the signal in a two-dimensional level, one 

dimension in time and the other in frequency. 

 

3.3 Feature selection 

 

One of the important phases for the correct and effective 

classification of EEG data is feature selection. The feature 

selection approach falls into two categories: (1) Feature order-

based approach; each feature is ranked according to a specific 

selection criterion, and the top-ranked features are selected as 

relevant based on a predefined threshold value. (2) Feature 

subset selection approach; this method evaluates an 

independent subset of features using a measure of feature 

selection, such as correlation, consistency, and so on. It 

generates possible combinations of subsets using various 

search methods, such as the Greedy algorithm. The feature 

ranking method is less computationally expensive and has 

lower complexity. Although it is not commonly used in deep 

learning algorithms, it can be preferred by most machine 

learning algorithms to enhance performance.  

 

3.4 Classification 

 

In the general process for predicting epileptic seizures, 

classification is performed by making a preictal-interictal 

comparison at this stage. Classification, a type of learning used 

in statistics, data analysis, pattern recognition, and machine 

learning, involves determining the class to which the data 

belongs based on its characteristics, using information about 

the input dataset. In classification, each test identifies the class 

of its instance by combining features and finding patterns from 

the training data that are common to each class. Classification 

is simply conducted in two stages: first, a classification 

algorithm is applied to the training dataset, and then the 

extracted model is validated against a labeled test dataset to 

evaluate model performance and accuracy.  

Algorithms called 'non-black box' classifiers in the studies 

of the Machine Learning Period in which each process step can 

be interpreted because it is visible and understandable and 

methods that do not offer explanations called 'black boxes' 

have been used. Examples of Non-Black Box methods are 

'Decision Trees', 'Random Forest', 'Naive Bayes', and Black 

Box methods are 'SVM', 'ANN', 'KNN', and 'LDA'. Although 

there is a wide range of machine learning methods, from 

simple to extremely complex computational approaches, SVM 

is the most popular technique used in the classification of 

epileptic seizure prediction.  

In deep learning methods, while filtering or signal analysis 

techniques can be used for preprocessing, this step can also be 

skipped, allowing the raw EEG data to be processed directly 

with deep learning techniques. Additionally, these techniques 

can automatically extract features. In deep learning 

applications, EEG data can generally be processed in two 

ways: as images or time series. For instance, the Convolutional 

Neural Network (CNN) technique is used for image 

processing, while derivatives of Recurrent Neural Networks 

(RNNs) are used for processing time series data. Upon 

reviewing recent studies, it is evident that, in addition to those 

employing the transfer and transformer models, various deep 

learning algorithms can be utilized in hybrid forms, transfer 

learning and multiple methods can be integrated through 

fusion techniques. 

 

3.5 Assessment 

 

The results obtained after classification are evaluated using 

some criteria. Various methods are used to evaluate these 

prediction results. The assessments are shown Figure 3.   

 

 
 

Figure 3. Performance evaluation 

 

 
 

Figure 4. SPH/SOP evaluation 

The prediction period before the seizure occurs is another 

criterion. This involves determining the Seizure Prediction 

Horizon (SPH) and the Seizure Occurrence Period (SOP). As 

shown in Figure 4, SOP represents the interval in which the 

seizure is expected to occur, while SPH indicates the time 

between the alarm and the start of the SOP. 

Predicting a seizure too early can cause discomfort for the 

patient, and there must be sufficient time for preparation 

before a seizure occurs; thus, determining the optimal 

SPH/SOP is crucial. In their study on the optimal SPH/SOP 

duration, Alaei et al. [21] found that the best times are 7 
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minutes for SPH and 27 minutes for SOP. The k-of-n method 

is used in SPH/SOP evaluation, where an alarm is triggered if 

k out of n predictions are identified as preictal within the 

specified period. 

 

 

4. CURRENT DEEP LEARNING METHODS AND 

EMERGING TRENDS 

 

Epileptic seizure prediction studies, which initially relied on 

classical machine learning methods, have now largely shifted 

towards deep learning algorithms. As shown in Figure 5, the 

reviewed studies used deep learning methods with three 

different approaches. 

(1) Following the classical process in machine learning 

methods, signal analysis techniques were employed for feature 

extraction after filtering, and more advanced deep learning 

methods were utilized for classification due to their 

effectiveness in handling large datasets. This approach 

assumes that effective signal processing will enhance 

classification accuracy, given that the EEG dataset is 

composed of signal data. An example of this approach is the 

study by Liu et al. [22]. In their preprocessing phase, they 

segmented the raw EEG data into 30-second intervals without 

overlap. They then applied PCA to reduce the data size and 

used the FFT method to convert the segmented dataset into the 

frequency domain during the feature extraction phase. For 

classification, they implemented the CNN technique from 

deep learning methods. 

 

 
 

Figure 5. The deep learning process for predicting 

 

(2) In this approach, the pre-processing step is applied in 

some studies, and alongside simple filtration methods like 

band-pass filtering, signal analysis techniques commonly used 

in classical methods are also employed during the feature 

extraction stage. Deep learning is utilized for both feature 

extraction and classification stages. At this point, feature 

extraction and classification can be performed using the same 

method, or a separate deep learning technique can be applied 

specifically for feature extraction, taking advantage of deep 

learning's capability for automatic feature extraction. In other 

words, different deep learning techniques may be used 

separately for feature extraction and classification. Assuming 

that manual feature extraction in classical methods may lead 

to data loss, Daoud and Bayoumi [23] used CNN for automatic 

feature extraction and then classified the features with LSTM. 

Other studies, such as those by Daoud et al. [24] and Avcu et 

al. [25], applied a less stepwise approach by using deep 

learning for both automatic feature extraction and 

classification directly after the filtering phase. 

(3) Another approach is end-to-end deep learning, which is 

applied directly to the raw EEG dataset. In this method, with 

the aim of fully automating all stages, the pre-processing step 

is omitted, and feature extraction and classification are 

combined into a single integrated stage. For example, Daoud 

and Bayoumi [26] utilized the CNN technique on the raw EEG 

signals without requiring any additional processing steps in 

their study. The deep learning methods used for predicting 

epileptic seizures can be categorized into five groups: 

Supervised / Semi-Supervised Learning 

These methods use labeled data for classification. The key 

difference in the semi-supervised approach compared to 

supervised learning is the lower proportion of labeled data 

during the training process. With this trained data set, effective 

predictions are made of the data set whose results are 

unknown.   

•Convolutional Neural Network (CNN): If the data is 

converted into image format during the pre-processing phase, 

the CNN deep learning technique is typically used. CNN, 

developed based on artificial neural networks, is one of the 

most widely utilized methods in recent years for predicting 

seizures from EEG data. Owing to its effectiveness in image 

recognition and classification, the CNN method is applied to 

EEG data by converting signals into image formats, such as 

spectrograms.  

Various studies have applied the CNN technique for both 

feature extraction and classification. For instance, Wei et al. 

[27] utilized CNN during the feature extraction phase, while 

Hussein et al. [28] employed it in the classification stage. Zhao 

et al. [29] noted the limitations of image processing when 

applied to EEG signals; therefore, they implemented the 

Binary Single-dimensional Convolutional Neural Network 

(BSDCNN) technique directly on the raw EEG data without a 

separate feature extraction stage, achieving a sensitivity of 

94.69%. In some studies, ready-made DNN-based 

architectures namely transfer learning, such as AddNet [30], 

RepNet [31], and ResNet50, were used to prevent overfitting. 
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Using the European database, Sarvi Zargar et al. [32] divided 

the EEG signals into 5-second segments and converted them 

into tensors. By utilizing ImageNet convolutional networks 

and MobileNet-V2 models, they achieved sensitivity rates of 

98.47% and 98.39%, respectively. As mentioned earlier, CNN 

has been applied with significant success in image processing. 

However, when reducing the size of the pooling layer, some 

information may be lost, and the training time is long due to 

the large amount of training data required. Additionally, CNN 

struggles to maintain the spatial relationships between 

components within an image. For example, while it may make 

a correct classification when the components of an object 

change position, it does not recognize that the component’s 

position has shifted. Hinton et al. addressed these 

shortcomings with the “CapsNets” technique, which they 

proposed in 2017, preserving the spatial relationships of object 

features. In their study, Toraman [33] used the CapsNets 

technique to overcome the limitations of CNN. By selecting 

channels from the raw EEG data and applying windowing, 

they achieved an accuracy rate of 97.74% using CapsNets. 

Capsule Networks are structures that learn various attributes 

of objects, such as posture, position, angle, and orientation. 

Despite their successful performance, image processing-based 

studies have disadvantages, such as high computational and 

memory bandwidth requirements. Considering these 

limitations and the time series nature of EEG data, researchers 

have increasingly turned to RNN and its derivative models. 

•Recurrent Neural Network (RNN): Due to its effectiveness 

in processing time series data, this structure has been 

increasingly used in recent years for predicting epileptic 

seizures. Recurrent neural networks (RNNs) are designed to 

utilize sequential information and retain historical data, 

effectively using memory within the input data. In this 

network architecture, the hidden layer feeds its output back to 

its input, making the network recurrent. This type of neural 

network can maintain its state across sequential inputs, 

processing temporary sequences of data based on operations 

performed in previous sequences. This characteristic makes 

RNNs well-suited for applications like time series prediction. 

The RNN, which links previous information to the current task 

and is structured as a chain of recurrent connections, typically 

has a simple design with only the tanh activation layer. Models 

such as LSTM and GRU as RNN derivatives are frequently 

used in seizure prediction.  

Unsupervised Learning 

When training data is unclassified and unlabeled, 

unsupervised learning techniques are applied. These 

techniques analyze how the system can develop a function to 

identify hidden patterns within unlabeled data. Unsupervised 

learning algorithms do not require an explanation to define the 

relationship between input and output. Clustering and 

dimensionality reduction are commonly used methods in 

unsupervised learning approaches. Examples of deep learning 

models used in seizure prediction include GANs and 

AutoEncoders (AEs). 

•Generative Adversarial Networks (GAN): GANs were 

developed based on the principle that a high number of 

examples contribute to the performance of deep learning 

algorithms. Introduced by Goodfellow in 2014, GAN is an 

unsupervised deep learning algorithm consisting of two 

networks: the 'Generator', which creates artificial outputs 

similar to the original data, and the 'Discriminator', which 

differentiates between the generated outputs and real ones. The 

discriminator network calculates the probability that the input 

images are real, assigning values between '0' and '1'. The 

network's values are updated in each iteration to minimize the 

loss value, which is the difference between the probability 

assigned by the discriminator and the true value, aiming to 

bring it as close to '0' as possible. Conversely, the generator 

network aims to have the fake images it produces evaluated as 

'1'. In their study, Usman et al. [34] utilized GAN to address 

the class imbalance problem that limits classification 

performance. Similarly, Rasheed et al. [35] used GAN to 

compensate for the lack of data in their study. After evaluating 

the effectiveness of the newly created dataset using SVM and 

CNN, they applied transfer learning and CNN methods for 

classification, achieving a sensitivity rate of 96%. 

GAN generates synthetic data, making it useful for 

replicating preictal data in epileptic seizure prediction studies. 

Since interictal data is typically more abundant in EEG 

datasets, it is important to balance these two datasets before 

classification.  

•Auto Encoder (AE): As an unsupervised neural network 

model, the Autoencoder (AE) compresses the 

multidimensional data it receives into a layer called the 

“Hidden Space” and then reconstructs it. AE has numerous 

applications, such as noise removal, data compression, 

dimensionality reduction, and feature extraction. It is 

composed of two parts: an encoder and a decoder. The encoder 

compresses high-dimensional input data into a lower-

dimensional representation known as the latent space, while 

the decoder restores the data back to its original size. Deep AE 

models can be created by extending both the encoder and 

decoder with multiple hidden layers. However, the gradient 

vanishing problem, where the gradient becomes very small as 

it propagates through the layers, is a significant challenge in 

deep AE models. Despite the utility of GANs, certain 

limitations have led to the prominence of Variational 

Autoencoders (VAE). These limitations include difficulty in 

generating specific images and distinguishing clearly between 

real and fake objects. VAE addresses these challenges using 

the latent space layer. In their study, Abdelhameed and 

Bayoumi [36] developed a convolutional Variational 

Autoencoder model based on AE to create a low-dimensional 

representative dataset and classify this dataset. They utilized a 

CNN structure in both the encoder and decoder stages, 

achieving a sensitivity of 94.45%. In their study, Gözütok and 

Ademoülu [37] used a convolutional AE for both feature 

extraction and dimensionality reduction. In the subsequent 

stage, they classified the data using LSTM, achieving an 

accuracy of 87.6%. 

Hybrid Methods 

These methods involve the integral use of multiple deep 

learning techniques. One of the most efficient combinations 

for predicting epileptic seizures from EEG signals is the CNN-

RNN architecture. LSTM, an enhancement of the RNN 

method suited for time series data, is often paired with CNN. 

In the context of hybrid methods, Daoud and Bayoumi [26] 

conducted a comprehensive study. They compared patient-

dependent models, including DCNN+MLP, DCNN+Bi-

LSTM, DCAE+Bi-LSTM, and DCAE+Bi-LSTM+CS, and 

found that the DCAE+Bi-LSTM method was the most 

successful, achieving a training time of 4.25 minutes and an 

accuracy rate of 99.6%. Another study, conducted by Affes et 

al. [38], applied the CNN-GRU model and achieved a 75% 

accuracy rate. In this study, a 30-second sliding window 

technique was used, where CNN was employed for feature 

extraction, and GRU was utilized for making predictions based 
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on these features. 

Transformer-Based Deep Learning Models 

Today, classification studies using image processing can 

achieve high accuracy. However, these classifications often 

lack the simplicity needed to generalize well with training, 

testing, and a limited set of parameters. The transformer 

architecture, created by Vaswani et al. [39]. To address this 

issue, a neural network model based on the 'self-attention' 

mechanism, which assigns different weights to each part of the 

input data, was developed. Although the Transformer was 

initially designed for Natural Language Processing (NLP), as 

mentioned earlier, it has also been adapted for image 

processing with models like ViT and DETR. The Transformer 

handles dependencies between input and output using 

'Attention' and 'Recurrent' mechanisms. In image processing, 

they are generally preferred over LSTM models. Unlike RNN-

based sequential and recurrent models such as LSTM, the 

Transformer processes input sequences using the self-attention 

mechanism without requiring data labeling.  

In studies focused on predicting epileptic seizures, 

transformer-based models have gained significant popularity 

recently. Li et al. [40] used a transformer-based model in their 

study, specifically a Transformer-guided CNN. Their method 

first applies the Short-Time Fourier Transform (STFT) to 

extract features from EEG signals. The proposed method 

achieves a sensitivity of 91.5% and an Area Under the Curve 

(AUC) of 93.5% using the CHB-MIT database. Similarly, Yan 

et al. [41] leveraged the advantages of the transformer 

architecture. In their proposed method, EEG signals were 

processed using STFT, followed by classification with the 

transformer model. Experiments conducted with the CHB-

MIT database achieved a sensitivity of 92.11%. Another 

example of this model is the research by Zhang and Li [42]. In 

their method, the raw EEG signal from the CHB-MIT dataset 

was filtered, and the preictal and interictal periods were 

labeled. The EEG signal was then transformed into 

spectrograms using STFT. They employed the Vision 

Transformer model for feature extraction and classification, 

achieving an accuracy of 94.6%.  

Power consumption and computational costs pose 

significant challenges for transformer methods. 

Fusion-Based Models 

It involves combining different machine learning or deep 

learning models to overcome the limitations of a single model 

in machine learning/deep learning and achieve better 

performance. This approach is applied to build more robust 

models. The fusion process can be carried out in three stages. 

A notable example of a fusion model is the study conducted 

by Ma et al. [43], where they achieved 94.83% accuracy. 

However, fusion models can sometimes increase 

computational load due to their complexity. 

Data Level Fusion: This involves combining various 

interrelated data from multiple sources and merging them into 

a single dataset. 

Feature Extraction Level Fusion: It is the integration of 

different features extracted from various methods and sources 

at the neural network level. 

Decision Level Fusion: This process combines the outputs 

obtained from different classifiers and merges them into a 

unified decision. 

Wang et al. [44] achieved an accuracy of 98.4% by using 

feature fusion and a transformer with multi-domain dynamic 

changes in a deep graph structure specifically designed for the 

patient, which they referred to as a 'multi-branch dynamic 

multi-graph convolution-based channel-weighted transformer 

feature fusion network.' In their study, Kapoor and Nagpal [45] 

combined features such as logarithmic band power, statistical 

features, wavelet features, spectral features, common spatial 

pattern, and entropy-based features extracted from the 

frequency bands at the feature fusion level. In their patient-

specific study, Yang et al. [46] extracted features from EEG 

and ECG datasets using Bi-LSTM and CWT methods, 

respectively. After classifying both branches, they achieved an 

accuracy of 99.70% using decision-level fusion. Sun et al. [47] 

combined spatiotemporal features extracted with STFT and 

raw EEG signals for further feature extraction. The 

combination of two inputs from different domains allows for 

the representation of distinct and distinguishable features of 

EEG signals, enhancing the ability to utilize temporal, 

spectral, and spatial information. After applying the attention 

mechanism to the two distinct feature domains, feature-level 

fusion was performed. They achieved an accuracy of 91.7% 

following simple CNN classification. While fusion can create 

stronger models, it also presents challenges such as 

computational cost and an increase in parameters. 

Table 2 provides an overview of the deep learning models 

preferred in studies conducted over the last five years. 

 

Table 2. Studies using deep learning techniques 

 
CHB-MIT Dataset 

Ref. No. Preprocessing Deep Learning Techniques Pred. Time Achievement 

[48] Raw Data CNN - 

Spec 92.5% 

Acc  97.7% 

Sens 95.6% 

[49] Raw Data CNN 30 min 

Sen 96.1% 

ROC 0.918% 

FPR 0.096 

[50] Raw Data CNN 10 min 

Acc 99.47% 

Sens 97.83 % 

Spec 92.36% 

[29] Raw Data BSDCNN 5 min 
Sens 89.26% 

FPR 0.117 

[30] Raw Data AddNet-SCL 30 min 

Auc 94.2% 

Sens 94.9% 

FPR 0.077 

[31] Raw Data RepNet 30 min 

Sens 93.1% 

FPR 0.033 

Auc 0.950 
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[51] Raw Data CapsNet 30 min 

Acc 95.7% 

Sens 88.6% 

FPR 0.127 

[33] Raw Data CapsNets 30 min Acc 97.74% 

[52] STFT RDANet 50 min 

Acc 91% 

Sens 89.33% 

Spec 93% 

[53] STFT ResNet - Auc 0.877 

[54] STFT Hybrid CNN + SVM - Acc above 90% 

[41] STFT Transformer-Based 5 min 
Sens 96.01% 

FPR 0.047 

[42] STFT Transformer-Based 10 min 

Acc 94.6% 

Spec 90.5% 

AUC 0.989 

[4] 

EMD+STFT 

Band-Pass+ GAN 

Statistical, Spectral 

CNN 

Hybrid SVM+CNN+LSTM 
34 min 

Acc 97.07% 

Sens 88.89% 

Spec 97.49% 

[55] CWT CNN 44 min Sens 98.9% 

[56] CWT Transformer-Based - Sens 99.8% 

[57] DWT SVM 25.1 min 
Acc 96.38% 

FPR 0.19 

[58] DWT Hybrid AE+ CNN - 
Acc 94.54% 

Auc 92.15% 

[59] WPT Bi-LSTM - 

Acc 99.47% 

Sens 99.34% 

Spec 99.60% 

[26] N/M 
Hybrid 

DCAE + Bi-LSTM 
60 min 

Acc 99.6% 

Sens 99.72% 

[24] AE LSTM  Acc 96.1% 

[36] Sample Entropy Bi-LSTM - 
Sens 94.45% 

FPR 0.06 

[6] Two-Dimensional Segments of Five Sec. Hybrid DCNN + Bi-LSTM - 
Acc 91.50% 

Sens 94% 

[16] Time and Frecansy Features LSTM 30 min 
Sens 99.37% 

Spec 99.6% 

[22] 
FFT 

PCA 
CNN - N/M 

[44] STFT and Raw Data Fusion-Based 5-9 min 

Sens 97.8% 

Auc 0.935 

FPR 0.059 

[45] Statistical-Spectral Fusion-Based - 

Acc 97.76% 

Sens 95.6% 

Spec 92.5% 

Otrher EEG Datasets 

[46] 
Bi-LSTM 

CWT 
Fusion-Based 5 min 

Acc 99.7% 

Sens 99.76% 

Spec 99.61% 

[28] 
Band-Pass 

STFT 
CNN - 

Sens 87.85% 

AUC 0.84 

[60] Power Spectrum Transformer-Based 30 min 
Sens 0.86 

FPR 0.18 

[32] 
Linear 

Features 

ImageNet 

MobileNet-V2 
40 min 

Sens 98.47% 

FPR 0.031 

[61] STFT Transformer-Based 29 min 

Sens 82% 

FPR 0.38 

AUC 0.746 

[27] Band-Pass ICA Hybrid LSTM + CNN 21 min 

Acc 93.4% 

Sens 91.88% 

Spec 86.13 

 

 

5. DISCUSSION AND FUTURE DIRECTION 

 

Research on the prediction of epileptic seizures, which 

began in the early 1970s with linear approaches such as 

spectral analysis and pattern recognition using spike rates, 

later solved many problems through the development of 

machine learning techniques; however, these efforts were still 

not sufficient. With an increase in the availability of sample 

data, machine learning approaches gradually gave way to deep 

learning methods. Recently, the rise of transformer-based 

models and the use of deep learning models in hybrid and 

fusion forms have led to significant progress in addressing 

existing challenges. Nevertheless, despite these 

advancements, several issues remain unresolved. These 

persistent challenges can be outlined as follows:  

•It remains unclear which model performs best under 

specific conditions.  

•The most critical issue appears to be related to datasets. 
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The EEG datasets used for seizure prediction are not 

sufficiently descriptive and suffer from artifacts, data 

deficiencies, and imbalances.  

•Single-channel EEG systems, which are typically used to 

collect data, negatively impact performance, while multi-

channel EEG systems are impractical for widespread 

application.  

•While traditional methods demonstrate low performance, 

advanced algorithms come with high hardware and 

computational costs. • In addition to brain signals, seizures are 

often accompanied by changes in heart rate, muscle 

contractions, tremors, and blood values. However, most 

studies focus primarily on EEG signals, neglecting these other 

symptoms.  

•Many of the methods used so far have not been evaluated 

on real patients. 

Precise and effective seizure prediction methods are 

necessary to improve the quality of life for epilepsy patients 

who do not respond to medication or surgery. Although 

current studies have made significant progress, there is still no 

definitive solution. However, the pursuit of more effective 

models using new deep learning algorithms continues. It 

seems that we will encounter algorithms like Transformers 

more frequently. Similarly, methods such as GANs will be 

preferred, especially to address the dataset problem. First of 

all, for adaptation to real life, there is a need for a system that 

is more practical for obtaining EEG signals, can be applied at 

any time, and is capable of acquiring artifact-free signals that 

can be easily utilized in practice. This will facilitate the clinical 

application of future studies. Additionally, we will likely see 

that it will incorporate not only EEG signals but also different 

sensor information through fusion models, which are now 

frequently used in deep learning. In the future, there will be an 

increased focus on designing real-time alert systems, 

particularly within the realm of wearable technologies. For 

this, models that require less hardware will be needed. 

 

 

6. CONCLUSIONS 

 

Not knowing when and where epileptic seizures will start 

can negatively affect the lives of people with this disease and 

even cause fatal accidents. Therefore, the prediction of 

epileptic seizures is a critical issue. In this article, the existing 

literature on seizure prediction has been analyzed 

comprehensively and especially the most preferred methods 

have been included as much as possible. In this context, 

starting from the methods used in the first studies, signal 

analysis, machine learning and finally how deep learning 

algorithms are used are explained and the results of the studies 

are given. Finally, the discussion section focuses on the 

problems that still remain unsolved and the possibilities that 

will be focused on more in the future. 
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