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 Image super-resolution (SR) reconstruction is a crucial research area in computer vision, 

aiming to restore high-resolution images from low-resolution inputs, thereby enhancing 

image detail and quality. With the continuous growth of digital image applications, SR 

technology has been widely utilized in fields such as medical imaging, satellite remote 

sensing, surveillance video enhancement, and virtual reality. However, despite significant 

progress in objective image quality, existing SR methods still face challenges such as loss 

of image details, unnatural textures, and visual inconsistencies. This is especially evident in 

complex scenes or high-noise environments, where traditional unified models are ineffective 

in addressing the differences between image regions, resulting in suboptimal reconstruction 

outcomes. In recent years, deep learning methods, such as Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs), have made remarkable strides in the 

field of SR. However, most methods still overlook the spatial dependencies between 

different regions of the image. To address this limitation, this paper proposes a SR 

reconstruction framework based on the Markov Decision Process (MDP) and Deep Q-

Networks (DQN), which dynamically selects SR models using reinforcement learning 

principles for adaptive optimization across image regions. Furthermore, a new reward 

function is introduced to resolve the model selection consistency issue across regions, 

aiming to improve the visual transition between adjacent regions and enhance the overall 

perceptual quality of the image. Experimental results demonstrate that the proposed 

framework effectively improves the reconstruction performance of SR images, significantly 

enhancing visual coherence while maintaining objective quality. 
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1. INTRODUCTION 

 

Image SR aims to restore high-resolution images from low-

resolution images in order to recover the image's details and 

texture information [1-4]. With the rapid development of 

digital image processing technology and computer vision 

applications, image SR reconstruction technology has 

achieved significant applications in many fields, including 

medical imaging, satellite remote sensing, surveillance video 

enhancement, and virtual reality [2, 5-7]. However, despite 

some progress in traditional SR methods in terms of objective 

quality, such as improvements in Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity (SSIM) indices, there are 

still issues like detail loss, unnatural textures, and visual 

incoherence in the reconstructed images. These problems 

become more pronounced, especially in complex scenes and 

high-noise environments [8-10]. Therefore, improving not 

only the objective quality of SR images but also the perceptual 

quality for human eyes has become a core issue that needs to 

be solved in the current field of image SR. 

The significance of researching image SR reconstruction 

lies not only in improving image quality but also in advancing 

the practical application of related technologies. For example, 

in medical imaging, SR technology can help doctors more 

clearly identify the location and shape of lesions; in security 

surveillance, SR images can help improve the accuracy of face 

recognition and license plate recognition; in virtual reality and 

augmented reality applications, high-quality image 

reconstruction can enhance immersion and interactive 

experiences [11-15]. In recent years, with the rise of deep 

learning, SR methods based on CNNs and GANs have made 

breakthrough progress, particularly in handling more complex 

image textures and finer details [3, 16]. However, existing 

methods often overlook the spatial dependencies between 

image regions, making it difficult to balance local and global 

features, thus affecting the final visual coherence and overall 

effect of the image. 

Current SR technologies mainly rely on unified models to 

process the entire image, but different regions of the image 

often have different textures, structures, and noise 

characteristics. Therefore, a single model is often unable to 

meet the needs of all regions [17-21]. In addition, traditional 

training methods based on loss functions (such as Mean 

Squared Error, MSE) can improve the objective quality of 

images but often neglect visual consistency, leading to 

unnatural transitions and distorted details. Regarding these 

issues, existing methods have failed to effectively combine the 

interrelationships between image regions and the consistency 

of model selection, resulting in significant subjective visual 

differences in image reconstruction. Therefore, exploring a 
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more refined SR reconstruction framework and incorporating 

compatibility considerations between regions in model 

selection has become an important direction in current 

research. 

This paper mainly includes two aspects: first, a new image 

SR reconstruction framework is proposed based on MDP and 

machine learning. This framework utilizes reinforcement 

learning to dynamically select SR models and adaptively 

optimize the reconstruction process in different image regions. 

Second, to address the local inconsistency issue in existing SR 

model selection, this paper proposes an improved method for 

the inter-region reward function, aiming to improve the 

consistency of model selection between adjacent image 

regions and ensure visual coherence in image reconstruction. 

Through these two innovations, this paper can significantly 

improve the subjective perceptual quality of image SR 

reconstruction while enhancing the objective performance, 

thus providing theoretical support and technical guarantees for 

the promotion and application of SR technology in practical 

applications. 

 

 

2. IMAGE SR RECONSTRUCTION BASED ON MDP 

AND MACHINE LEARNING 

 

Medical images typically contain multiple different regions, 

some of which are crucial for diagnosis and require extremely 

high clarity and accuracy. Other regions may be relatively 

simple, and lower resolution does not affect diagnostic 

performance. Remote sensing images, which usually come 

from satellites or drones, have extremely complex surface 

features, including various textures such as urban areas, forests, 

lakes, and mountains. The resolution requirements for these 

regions vary. For example, urban areas may need precise 

reconstruction of building and road details, while natural 

landscapes such as forests and lakes may have lower resolution 

requirements. For these types of images, traditional SR 

methods often fail to flexibly target the needs of different 

regions, which may lead to wasted computational resources or 

imbalanced reconstruction quality. To address this, this paper 

proposes a new framework for image SR reconstruction with 

dynamic region selection. The core innovation of this 

framework lies in the use of reinforcement learning to 

dynamically select the most suitable SR model for each texture 

region, rather than simply applying a fixed SR algorithm to the 

entire image. 

This method is effectively modeled through a reinforcement 

learning framework, where MDP provides a clear theoretical 

structure. The texture characteristics of different organs or 

tissues in medical images often vary significantly, and the 

texture and scale variations of different ground objects in 

remote sensing images are also very complex. In this 

framework, the input low-resolution image is divided into 

several sub-blocks through a segmentation algorithm, each 

containing different texture features. The goal is to select the 

most suitable model from a predefined pool of SR models 

based on these features and apply it to each image sub-block. 

This approach flexibly addresses the regional heterogeneity in 

images such as those from medical imaging and remote 

sensing, improving the accuracy and application of SR 

reconstruction. By modeling with MDP, the image SR task can 

be treated as a sequential decision problem, where each state 

represents the current state of the image, each action is the 

selection of the SR model to be applied to a specific image 

sub-block, and the reward function provides feedback based 

on the MSE between the region’s SR reconstruction and the 

Groundtruth image. 

To allow the reinforcement learning model to dynamically 

select the most suitable SR model between different image 

sub-blocks, the action space of MDP is defined as a set of J-

dimensional one-hot vectors. In MDP, each image sub-block 

is a state, and the action selection is determined based on the 

specific needs and features of each state. The ultimate goal is 

to optimize the policy so that the overall SR reconstruction 

effect of the image is optimal. Whenever a specific SR model 

is chosen to process a particular image sub-block, this action 

has an immediate effect on a portion of the image, and this 

effect is fed back to the agent via the reward function. During 

training, the agent aims to maximize long-term rewards based 

on the current state and action selection. This requires 

considering not only the effect of processing the current image 

sub-block but also taking into account the final reconstruction 

quality of the entire image. Through this dynamic selection 

mechanism, MDP can effectively select the best SR model for 

each image sub-block, thereby improving the overall effect of 

the SR reconstruction. 

 

 
 

Figure 1. Example of image state transition 
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In the dynamic selection modeling of the SR model in this 

paper, the state of MDP determines how the model 

dynamically selects SR models between different image sub-

blocks. To ensure that each state maintains physical 

significance during the state transition process, the state needs 

to contain both global and local information of the image. 

Specifically, in this implementation, the state is defined as 

consisting of two parts: on one hand, the entire image 

processed by the SR model, i.e., the image processed in the 

current iteration; on the other hand, the segmentation label 

corresponding to the current image sub-block, which defines 

the image region currently being processed. During the 

training process, the state is formed by concatenating these 

two elements, ensuring that the state contains both the global 

information of the entire image and the local information of 

the current image sub-block. With this state definition, the 

state transition in MDP is effectively guaranteed. In the MDP 

framework, every time an action is performed, the image and 

state will change. For example, when the agent selects a 

certain SR model to process the current image sub-block, the 

image state will change, and the entire image will transition 

from the current state to the next state, i.e., the current image 

sub-block is processed and updated to the next image sub-

block. This process ensures that the state transitions are 

meaningful, not independent, and unfold gradually as image 

sub-blocks are processed. After each iteration, the new state 

will include the updated image information Us and the 

segmentation label Ls of the next image sub-block, thereby 

maintaining the continuous connection between global 

information and local information. This state transition 

method ensures that the reinforcement learning model can 

maintain a dynamic balance between global and local 

information throughout the training process, enabling the 

selected SR model to provide the best reconstruction effect for 

each sub-block and optimize the final SR image quality 

through continuous state transitions. Figure 1 provides an 

example of image state transition. The current state is defined 

as: 

 
s

s sT U L=   (1) 

 

Assuming the negation of Ls is represented as L-
s, the SR 

image after processing the s-th image sub-block using the 

action xs is represented by d(Us|), and pixel-level 

multiplication is denoted by *; the state transition from Us to 

Us+1 can be represented as: 

 

( )1 * * |s s s

s s sU L U L d U x+ = +  (2) 

 

Based on the above two formulas, the state transition 

definition is as follows: 

 

( )1 1* * |s s
ss s s sT L U L d U x L+ +

 = + 
 

 (3) 

 

In the dynamic decision-making framework based on 

reinforcement learning, the reward function evaluates the 

effect of each action to provide feedback on the quality of the 

SR model selected by the agent, thus optimizing the policy. 

Specifically, for the image SR task, although the agent does 

not know which SR model is optimal for each image sub-block 

at each iteration, by designing a suitable reward function, the 

agent can gradually learn to select the most suitable model. 

The reward function proposed in this paper mainly evaluates 

the reconstruction quality of the current image region and the 

overall image, with the goal of pushing the agent to select the 

best SR model by measuring the reconstruction effect of each 

image sub-block. To achieve this goal, the regional reward 

function EQ(Us,xs) is designed to measure the difference 

between the image region processed by the current SR model 

and the original high-resolution image, with the commonly 

used metric being the MSE. Mathematically, assuming the 

standard reinforcement learning reward value is denoted by λ, 

the threshold is denoted by ς, the Groundtruth high-resolution 

image is denoted by UGE, and the image width and height of 

the target high-resolution image are denoted by Q and G, 

respectively, EQ is defined as: 

 

( )

( )1
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Figure 2. DQN framework 
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In the SR task, the core goal of the dynamic policy selection 

framework based on reinforcement learning is to implement 

dynamic selection of SR models for different image regions 

through the DQN. The policy in the framework, i.e., the agent, 

will select the appropriate action, i.e., the SR model, to process 

the current image sub-block based on the currently observed 

state. Specifically, the DQN network continuously receives 

feedback from the environment, i.e., the reward function, and 

in each iteration, selects the optimal SR model based on the 

current state, thereby optimizing the overall SR reconstruction 

quality of the image. In each round of training, the DQN 

network will, during the processing of each image sub-block, 

execute an action to select a pre-trained SR model from the 

model pool, and update the network weights based on the 

image reconstruction effect produced by the currently selected 

model. Figure 2 shows the structure of the DQN used. 

In the training phase of the DQN, the agent selects the 

appropriate action xs based on observing the current state 

Ts=Us⨁Ls, and performs dynamic selection of the SR model. 

According to the ϵ-greedy strategy, the agent randomly selects 

an action with probability ϵ, which ensures the exploration of 

more action space, preventing the model from converging to a 

local optimum during the early stages of training when the 

network parameters are not fully refined; while with 

probability 1-ϵ, the agent selects the optimal action predicted 

by the DQN network, which enhances the model's exploitation 

ability. After selecting the action, the agent calculates the 

reward of the current action based on the regional reward 

function E(D, X) designed in this paper, and then updates the 

Q-value function in the Q-network based on this feedback. 

This process updates the parameters based on the Bellman 

equation, and through Q-value optimization, the DQN 

gradually learns how to select the most suitable SR model for 

each image region. 

The Q-learning network structure consists of three 

convolutional layers and two fully connected layers. Each 

convolutional layer uses the ReLU activation function, which 

helps introduce non-linear features and allows the network to 

effectively learn complex image features. In the convolution 

operation, the kernel sizes are 8×8, 4×4, and 3×3, aimed at 

capturing local information at different scales. By using max-

pooling layers for dimensionality reduction, the network is 

able to compress the input feature map in the first two layers, 

retaining key information while reducing computation. After 

each action selection and reward acquisition, the DQN 

network calculates the current Q-value based on the current 

state Ts and selected action xs, and compares it with the target 

Q-value obtained from the environment feedback. Let the 

discount factor be represented by η, the probability distribution 

of the state Ts be represented by γ, and the probability 

distribution of the action be represented by ϑ(·). The target Q-

value is estimated using the next state Ts+1 and the maximum 

Q-value of the selected action, i.e.: 

 

( ) ( )
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The loss function of the Q-network is: 
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3. REWARD FUNCTION IMPROVEMENT FOR 

VISUAL TRANSITION BETWEEN REGIONS 

 

Due to the similarities in texture and structure between 

image regions, selecting inconsistent or incompatible SR 

models may result in noticeable stitching marks or visual 

incoherence at the image boundaries, affecting the overall 

subjective quality of the image. Therefore, traditional reward 

functions based on MSE ignore the spatial dependencies 

between regions, leading to a lack of natural and smooth 

transitions in the SR image. Although objective metrics may 

be high, the best visual performance is not achieved. To 

overcome this issue, the reward function in this paper is 

redesigned to not only consider the MSE between the current 

image region and the ground truth, as in the traditional MSE 

part, but also to fully consider the collaborative nature between 

different SR models, especially the consistency of model 

selection between adjacent regions. 

In specific tasks like medical image and remote sensing 

image SR reconstruction, the improvement of image quality 

relies not only on the restoration of local details but also on 

maintaining the overall consistency and naturalness of the 

image. The reward function improvement in this paper mainly 

targets the consistency of SR model selection between 

different regions, especially when dealing with artifacts and 

unnatural texture transitions at the boundary regions. In 

medical images, especially at the boundaries of organs or 

tissues, if different SR models are used for adjacent regions, it 

may lead to obvious discontinuities or gaps in the image, 

which could impact the accurate judgment of the lesion area 

by doctors. In remote sensing images, frequently switching SR 

models may cause inconsistent detail restoration in different 

texture regions of the ground features, even resulting in false 

boundaries that affect the accuracy of feature recognition. 

Therefore, the improved reward function not only selects the 

most suitable SR model for each region but also introduces 

consistency constraints, preventing the use of too many 

different models within the same image, thereby ensuring the 

overall perceptual quality of the image. Especially in regions 

with significant texture changes, reducing model switching 

can effectively prevent over-rendering of image details or 

unnatural texture variations, enhancing the final reconstructed 

image's visual effect and making it more suitable for medical 

diagnosis and remote sensing analysis. 

For the above reasons, this paper proposes the inter-region 

reward function EY(Us,xs). Assume that the number of SR 

models in the model pool is represented by J. The number of 

image sub-blocks contained in the segmented input image is 

represented by V. The indicator matrix of size J*V is 

represented by O, the indicator function by σ(·), and the logical 

'or' by the symbol N. The weight coefficient is represented by 

α, and its specific expression is as follows: 
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Figure 3 compares the texture details in SR images 

reconstructed with the reward function before and after 

improvement. 

 

 
 

Figure 3. Comparison of texture detail in SR images 

reconstructed with the reward function before and after 

improvement 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1 shows the comparison of reconstruction quality 

before and after the improvement, based on different SR scales 

(×2, ×3, ×4) for the four datasets: Urban100, T91, DIV2K, and 

Flickr2K. The evaluation metrics include PSNR and IFC 

(Structural Similarity Index). From the data before 

improvement, the PSNR values for the four datasets at the ×2 

scale are 36.25, 32.15, 31.25, and 32.24, and the corresponding 

IFC values are 8.569, 8.235, 7.785, and 8.785. At the ×3 scale, 

the PSNR values decrease to 32.15, 31.25, 27.88, and 26.35, 

with the IFC values dropping to 5.265, 4.562, 4.125, and 5.231. 

The results at the ×4 scale further degrade. These results 

indicate that without the improved reward function, the image 

quality sharply declines as the SR scale increases, particularly 

for datasets 3 and 4, where both PSNR and IFC values show 

significant degradation. In contrast, the algorithm with the 

improved reward function demonstrates a noticeable quality 

improvement, especially at the ×3 and ×4 scales. For example, 

at the ×3 scale, the PSNR for dataset 1 increases from 32.15 to 

33.24, and the IFC improves from 5.265 to 5.214. For dataset 

2, the PSNR increases from 31.25 to 31.25, and the IFC 

improves from 4.562 to 4.568. Additionally, although the 

improvement for datasets 3 and 4 is relatively weaker, the 

PSNR and IFC values still show slight improvements, 

especially at the ×4 scale. 

The experimental results show that the proposed improved 

reward function significantly enhances the image SR 

reconstruction quality, especially for large-scale upscaling (×3 

and ×4), where the effect is more pronounced. Specifically, the 

improved inter-region reward function effectively alleviates 

the local inconsistency issue in model selection, enhancing the 

visual coherence of the image reconstruction by improving the 

consistency of model selection between adjacent regions. 

PSNR and IFC values for datasets 1 and 2 show stable and 

significant improvements at various scales, indicating that the 

improved algorithm can enhance overall image quality while 

preserving detail. For datasets 3 and 4, although the 

improvement is relatively modest, the increase in PSNR and 

IFC values still demonstrates the adaptability and 

effectiveness of the improvement method across different 

types of images. 

Based on the experimental data from Tables 2, 3, and 4, 

significant differences in the performance (such as PSNR and 

SSIM) and model complexity (such as parameter count and 

Multi-Adds) of different algorithms are observed for the SR 

reconstruction task. Firstly, regarding performance metrics, 

EDSR and RCAN show consistent results across scales ×2, ×3, 

and ×4, achieving high PSNR values (around 31.26) and SSIM 

values (ranging from 0.9125 to 0.9245). This indicates that 

these models are effective in recovering image details and 

maintaining visual quality. In contrast, while SRCNN and 

VDSR perform reasonably well at scale ×2 (PSNRs of 28.65 

and 28.97, SSIMs of 0.8895 and 0.9125), their performance 

declines significantly as the scaling factor increases. 

Especially at scales ×3 and ×4, the PSNR values drop 

markedly, indicating that these algorithms struggle with higher 

magnification compared to other deep learning methods. 

Secondly, in terms of model complexity, the proposed method 

is relatively optimized in terms of parameter count and Multi-

Adds compared to other common SR algorithms (like SRCNN, 

VDSR, and FSRCNN). For instance, at scale ×2, SRCNN and 

VDSR have parameter counts of 8K and 12K, while the 

proposed method has 558K parameters, which is a moderate 

increase compared to traditional algorithms. However, for 

scales ×3 and ×4, the proposed method's parameter count is 

reasonably controlled, being notably lower than EDSR (536K 

and 546K at scales ×3 and ×4, respectively). Additionally, the 

proposed method shows good optimization in terms of Multi-

Adds. For scales ×3 and ×4, the proposed method has Multi-

Adds of 53.2G and 32.6G, respectively, which is lower than 

traditional deep networks like FSRCNN (72.3G) and EDSR 

(41.2G). This demonstrates the computational efficiency 

advantage of the proposed model. 

 
 

Table 1. Comparison of reconstruction quality with the proposed algorithm before and after reward function improvement 
 

Dataset Scale Dataset 1 PSNR/IFC Dataset 2 PSNR/IFC Dataset 3 PSNR/IFC Dataset 4 PSNR/IFC 

Before Improvement 

×2 36.25/8.569 32.15/8.235 31.25/7.785 32.24/8.785 

×3 32.15/5.265 31.25/4.562 27.88/4.125 26.35/5.231 

×4 31.24/3.698 27.89/3.125 26.58/2.658 24.15/3.562 

After Improvement 

×2 36.25/8.569 32.65/8.124 31.25/7.785 32.15/8.795 

×3 33.24/5.214 31.25/4.568 27.15/4.125 26.25/5.231 

×4 31.26/3.654 27.26/3.125 26.58/2.658 24.56/3.568 
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Table 2. Performance and model complexity comparison of different algorithms at scale ×2 
 

Method (×2) SRCNN VDSR FSRCNN EDSR RCAN ESRGAN VDSR Proposed Method 

Parameters 8 12 689 526 865 735 578 558 

Multi-Adds 51.6 6 157.8 94 189.26 169 156.9 132.8 

PSNR 28.65 28.97 31.26 31.26 31.26 31.26 31.25 31.25 

SSIM 0.8895 0.9125 0.9125 0.9125 0.9245 0.9236 0.9236 0.9236 

 

Table 3. Performance and model complexity comparison of different algorithms at scale ×3 
 

Method (×3) SRCNN VDSR FSRCNN EDSR RCAN ESRGAN VDSR Proposed Method 

Parameters 8 12 712 536 878 745 588 569 

Multi-Adds 51.2 5.2 72.3 41.2 86.2 76.2 74.2 53.2 

PSNR 25.69 25.36 27.56 27.89 27.56 27.56 26.36 27.15 

SSIM 0.7895 0.8123 0.8452 0.8456 0.8562 0.8456 0.8569 0.8562 

 

Table 4. Performance and model complexity comparison of different algorithms at scale ×4 
 

Method (×4) SRCNN VDSR FSRCNN EDSR RCAN ESRGAN VDSR Proposed Method 

Parameters [K] 8 12 725 546 889 756 612 578 

Multi-Adds[G] 51.2 4.5 41.2 22.6 48.5 43.2 42.5 32.6 

PSNR 23.25 23.55 25.21 25.69 25.68 25.58 25.69 25.15 

SSIM 0.7152 0.7125 0.7789 0.7789 0.7895 0.7894 0.7956 0.8123 

 

 
1) Magnification factor of 2 

 
2) Magnification factor of 3 

 
3) Magnification factor of 4 

 

Figure 4. Curves showing the change in PSNR with varying numbers of sub-image regions for different magnification factors 
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The experimental results suggest that the proposed method 

outperforms traditional SRCNN and VDSR methods, 

particularly at higher magnification (×3 and ×4). It strikes a 

better balance between performance and complexity. 

Specifically, at scales ×3 and ×4, the proposed method 

achieves PSNR and SSIM values close to those of more 

complex models like RCAN and EDSR, but with significantly 

lower computational complexity. This indicates that the 

proposed SR framework, based on MDP and reinforcement 

learning, provides a practical solution for dynamically 

selecting models and optimizing the reconstruction process, 

particularly for adaptive handling of different image regions. 

It ensures high image quality while reducing computational 

load. 

According to the results provided in Figure 4, as the 

magnification factor increases (×2, ×3, and ×4), the PSNR 

value gradually improves with an increase in the number of 

sub-image regions. For a magnification factor of 2, as the 

number of sub-image regions increases from 3 to 100, the 

PSNR value increases from 33.2025 to 33.362, indicating a 

noticeable improvement in image reconstruction quality with 

finer region segmentation. Similarly, for a magnification 

factor of 3, the PSNR value increases from 29.995 with 3 

regions to 30.108 with 198 regions, further reflecting the 

impact of region division on reconstruction performance. A 

similar trend is observed at a magnification factor of 4, where 

the PSNR value starts at 28.5055 and gradually rises to 28.68. 

Although the PSNR values differ across magnification factors, 

in each case, as the number of regions increases, the PSNR 

value shows a gradual optimization trend. This trend aligns 

with the SR reconstruction framework proposed in this paper, 

which is based on MDP and machine learning. Specifically, 

the introduction of reinforcement learning enables the model 

to dynamically select appropriate reconstruction methods 

based on different regions of the image, significantly 

improving SR reconstruction quality. As the number of sub-

image regions increases, the model can optimize smaller 

regions, improving the accuracy of image reconstruction, 

especially in complex regions with fine details. 

From the experimental results, it can be seen that the 

proposed dynamic model selection method based on 

reinforcement learning effectively improves the image 

reconstruction quality at different magnification factors by 

increasing the number of sub-image regions. Through the 

improvement of the reward function between regions, the 

proposed method can make more precise model selections 

within local regions, reducing the local inconsistency issues 

commonly found in traditional SR models. As the number of 

regions increases, the PSNR value gradually improves, 

indicating that the consistency of model selection between 

adjacent image regions has been optimized, and the visual 

coherence of the image reconstruction has been ensured. 

 

 

5. CONCLUSION 

 

This paper proposes an innovative image SR reconstruction 

framework that combines MDP and machine learning methods 

to improve the quality and computational efficiency of image 

SR reconstruction. Specifically, by introducing the concept of 

reinforcement learning, this paper dynamically selects SR 

models for different regions of the image and adaptively 

optimizes the reconstruction process based on the 

characteristics of each region. The core innovation of this 

method lies in dynamically adjusting the reconstruction 

strategy, enabling the model to select the most suitable SR 

model for each region based on the changing image content, 

thereby improving detail recovery and global image quality. 

The research presented in this paper has significant academic 

and practical value in the field of image SR. By combining 

MDP and reinforcement learning, a new SR reconstruction 

framework is proposed, which achieves dynamic model 

selection and adaptive optimization for different regions of the 

image. This framework breaks the limitations of traditional SR 

methods, making the model more flexible and efficient when 

processing different regions of the image. Additionally, the 

introduction of the reward function between regions 

successfully solves the common issue of local inconsistency in 

SR models, improving the visual coherence and naturalness of 

the image. These innovations not only advance theoretical 

research but also provide more effective solutions for image 

reconstruction problems in practical applications. 

Although the proposed method demonstrates good 

performance in several aspects, there are still certain 

limitations. Firstly, although image quality is improved by 

region segmentation, further enhancing the model's 

adaptability and the precision of its selection strategy remains 

a challenge for extremely complex or highly detailed images. 

Secondly, compared to some lightweight models, the current 

method still has a certain gap in computational efficiency, 

especially when processing large-scale high-resolution images, 

which leads to higher computational costs. Further 

optimization of the algorithm's speed and efficiency is needed. 

Moreover, the model's adaptability to different image content 

may need to be tested on more real-world datasets to verify its 

generalization and robustness. Future research could focus on 

the following directions: first, further optimizing the reward 

design in reinforcement learning and the MDP to make the 

model more intelligent in handling SR tasks in complex 

scenarios. Second, the proposed method could be combined 

with lightweight network architectures to reduce 

computational complexity and improve real-time processing 

capabilities. Another direction is to explore cross-scale and 

cross-domain SR reconstruction methods, enabling the model 

to not only adapt to images with different resolutions but also 

handle reconstruction tasks for different types of images (such 

as dynamic images or video frames). Finally, expanding the 

application of the reward function between regions to explore 

how to achieve consistency across larger image regions would 

help better handle the detail transition issues in complex 

scenes. 
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