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 With the continuous development of intelligent transportation systems, traffic object 

detection technology has been widely applied in fields such as autonomous driving, traffic 

monitoring, and public safety. However, existing traffic object detection methods still face 

numerous challenges in complex traffic environments, such as occlusion, dynamic changes, 

and uneven lighting, which lead to a decrease in detection accuracy. Traditional deep 

learning methods, although performing well in static scenarios, often fail to maintain stable 

performance in dynamic, complex traffic scenes. Therefore, improving the robustness and 

accuracy of object detection has become a pressing issue in the field of intelligent 

transportation. To address these challenges, this paper proposes an intelligent learning 

filtering-based improvement to the deep learning training mechanism and applies it to traffic 

object detection. First, the training data is optimized using intelligent learning filtering 

techniques to eliminate noise and irrelevant information, improving data quality and 

enhancing the learning effectiveness of deep learning models. Next, a hybrid Kalman Filter 

(KF)-Transformer network for traffic object detection is constructed, combining the 

advantages of Kalman filtering and Transformer models to strengthen the model's ability to 

capture dynamic information and long-term dependencies. Experimental results show that 

the proposed model achieves higher accuracy and stability in traffic object detection tasks, 

especially in handling high-speed motion, partial occlusion, and complex backgrounds, 

demonstrating significant advantages. This study provides a novel solution to improve the 

accuracy and robustness of traffic object detection systems, with important theoretical and 

practical value.  
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1. INTRODUCTION 

 

With the continuous development of traffic management 

and intelligent transportation systems, the application of traffic 

object detection technology has become increasingly 

widespread in fields such as autonomous driving, traffic 

monitoring, and road safety [1-4]. Traditional traffic object 

detection methods often rely on manually designed features 

and classical image processing techniques. However, in 

complex traffic environments, these methods face issues such 

as target occlusion, complex backgrounds, and lighting 

changes, which make it difficult for their performance to meet 

practical application requirements [5, 6]. In recent years, the 

rise of deep learning, especially convolutional neural networks 

(CNNs) and Transformer models, has greatly advanced the 

technology of traffic object detection. Deep learning, through 

automatic feature extraction and end-to-end training, has 

significantly improved the accuracy and efficiency of object 

detection [7-10]. However, existing deep learning systems still 

face problems such as data imbalance and noise interference, 

which limit their application effectiveness in real traffic 

environments. 

Although a large number of studies have explored the 

application of deep learning in traffic object detection in recent 

years, there are still some notable flaws and shortcomings [11-

14]. First, most existing research focuses on improving model 

structures, while less attention has been paid to improving data 

quality and optimizing the training mechanism [15-19]. 

Secondly, existing methods often exhibit instability when 

handling complex traffic scenes, especially in dynamic 

environments. Models are prone to interference from factors 

such as noise, occlusion, and lighting changes, thus affecting 

detection accuracy [20-24]. Moreover, many methods have 

failed to fully explore the potential of multi-source 

information, leading to insufficient robustness and real-time 

performance in object detection. Therefore, a new approach is 

urgently needed to address these issues and improve the 

performance of traffic object detection systems. 

The main research content of this paper includes two 

aspects: on one hand, we propose a deep learning system 

training mechanism based on intelligent learning filtering, 

which optimizes the training data through filtering algorithms, 

improving the learning efficiency and robustness of deep 

learning models. On the other hand, we design and construct a 
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traffic object detection network based on the KF-Transformer 

hybrid network. This network combines the dynamic 

information estimation capability of Kalman filtering and the 

advantage of Transformer models in modeling long-term 

dependencies, which can effectively improve the accuracy and 

stability of object detection. Through these two aspects of 

research, this paper provides a new solution to improve the 

performance of traffic object detection systems, with 

significant theoretical and practical value. 

 

 

2. DEEP LEARNING SYSTEM IMPROVED BY 

INTELLIGENT LEARNING FILTERING 

 

The deep learning system training mechanism improved by 

intelligent learning filtering refers to the introduction of 

intelligent learning filtering algorithms during the training 

process of deep learning models, dynamically adjusting and 

optimizing input data and training parameters to enhance the 

model's learning efficiency and accuracy [25, 26]. This 

mechanism uses intelligent algorithms to analyze and filter 

training data in real time, identifying and eliminating noise and 

redundant information while retaining key information, 

thereby improving the model's generalization ability and 

convergence speed. With this method, the training process 

becomes more efficient, resource utilization becomes more 

reasonable, and the model's final performance is accordingly 

improved. 

Traffic object detection tasks face complex and changing 

environments, as well as large amounts of real-time data, 

which contain a great deal of noise and redundant information. 

Traditional deep learning methods are difficult to process and 

learn efficiently in a short amount of time. At the same time, 

traffic object detection requires high precision and reliability, 

especially in autonomous driving and intelligent transportation 

systems, where any detection errors or missed, detections can 

lead to serious consequences. Therefore, this paper proposes 

applying the intelligent learning filtering improvement 

mechanism to traffic object detection. The intelligent learning 

filtering mechanism can dynamically optimize training data, 

enhance the model's adaptability in complex environments, 

and effectively improve the model's accuracy and robustness, 

further ensuring the safety and reliability of traffic object 

detection systems in real applications. 

This paper proposes an optimized training strategy 

combining the KF algorithm and the deep learning network 

Transformer. This mechanism integrates the recursive update 

capability of the KF with the self-attention mechanism of 

Transformer. When processing video sequences in complex 

traffic object detection, the filter precisely estimates the state 

of the object, reduces the noise impact, and improves the 

global search ability during the training process by optimizing 

the learning rate, allowing the model to better converge to the 

global optimal solution in complex environments. 

 

2.1 KF 

 

In the Transformer-based traffic object detection model 

optimized by Kalman filtering proposed in this paper, the main 

function of the KF is to estimate and predict the dynamic state 

of traffic objects, thereby providing accurate and smooth input 

data for the Transformer model. In traffic surveillance videos, 

such as cars, pedestrians, etc., the dynamic changes in the 

motion trajectory of objects are often present, and due to the 

complexity of the environment, the position and speed of the 

objects are often affected by noise. The KF estimates and 

predicts the state using the historical motion information and 

current observations of the target, such as position and speed, 

which can effectively reduce the impact of these noise sources. 

Specifically, the working principle of the KF in traffic object 

detection is based on a recursive process of Bayesian 

estimation. At each moment, the KF predicts the target's 

position and speed at the next moment based on the current 

observation data and previous state estimates, combined with 

the system's motion model. Then, the filter fuses the current 

observation with the predicted value and updates the target's 

state estimate through a weighted average. This process 

includes two main steps: the prediction step and the update 

step. In the prediction step, the KF predicts the future state of 

the target based on the motion model; in the update step, the 

filter optimizes the state estimate by calculating the Kalman 

gain, combining the actual observations and predicted results. 

This recursive process not only allows real-time estimation of 

the target's motion trajectory but also effectively reduces 

detection errors caused by factors such as poor image quality 

and partial occlusion of the target. The state vector and 

observation vector of the system at time j are represented by 

Aj and Bj, the input variables at time j-1 are represented by ij-1, 

and the system matrix, control matrix, observation matrix, and 

feed-forward matrix are represented by X, Y, Z, and F, 

respectively. The system noise and observation noise are 

represented by q(j) and n(j). The state transition equation and 

observation equation of the KF are given by the following 

formulas: 

 

( )1 1j j jA XA Yi q j− −= + +  (1) 

 

( )1 1j j jB ZA Fi n j− −= + +  (2) 

 

2.2 Transformer 

 

The main function of the Transformer model is to process 

the temporal information and spatial features in traffic 

surveillance video images through the self-attention 

mechanism, thereby effectively capturing and recognizing 

traffic objects. Although traditional CNNs can extract spatial 

features, they often have limitations when faced with dynamic 

scenes that involve long-term dependencies [27, 28]. The 

motion trajectory of traffic objects is usually continuous and 

changes over time. The Transformer model, through its self-

attention mechanism, can establish relationships between 

targets across different time steps and capture dynamic 

features across time frames [29, 30]. For example, in traffic 

object detection, the Transformer can capture the motion 

trajectory, position changes, and interactions between the 

target and background by propagating information across 

different frames, thus achieving efficient object recognition 

and tracking. In this way, the Transformer model can 

effectively handle the spatial and temporal variations of 

objects in traffic surveillance videos and provide high-

accuracy object detection results. Let the time step be 

represented by s, the feature dimension by u, the length of the 

input sequence by l, and the position encoding matrix by OR. 

The position encoding calculation method for the Transformer 

network is given by the following formulas, used to represent 

the position information of each element in the sequence: 
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The Transformer network consists of two sub-layers: the 

multi-head self-attention mechanism layer and the feed-

forward layer, which extract key features from each image 

frame and model and predict the target using global contextual 

information. In the traffic object detection scenario, the 

relationships between targets rely not only on the features of a 

single frame but also require cross-frame information to infer 

the motion state of the targets. The Transformer, by calculating 

the similarity between each target and other targets, generates 

attention weights, ensuring that the network can focus on 

important target features at each time step. Let the mapping 

weights be represented by QWQ
i, KWK

i, VWV
i and the multi-

head attention weights by Q°, with the self-attention 

mechanism parameters represented by W, J, and N. The multi-

head self-attention mechanism can be represented by the 

following equation: 

 

( )
( ) ( )1 2

        HEAD =ATT , , , =1,2...

MULTIHEAD , , =CONCACT  HEAD , HEAD ... HEAD

W J N

u u i u

v

WQ JQu NQ u v

W J N Q

 
(5) 

 

Let fg=f/g, the key dimension be represented by fg, and the 

transpose parameters by S. The attention weight matrix 

expression is: 

 

( )ATT , , SOFTMAX
S

g

WJ
W J N N

f

 
 =
 
 

 (6) 

 

Let the weights be represented by Q1 and Q2, and the biases 

by y1 and y2, with the input data represented by a. The 

calculation for the feed-forward layer is: 

 

( ) ( )1 1 2 2FNN RELUa aQ y Q y= + +  (7) 

 

 

3. KF-TRANSFORMER HYBRID NETWORK FOR 

TRAFFIC OBJECT DETECTION 

 

3.1 Traffic object detection dataset 

 

The datasets used in this paper are standard datasets 

specifically for traffic object detection and tracking tasks. 

These datasets contain a large amount of traffic surveillance 

video images used to validate the model's performance in 

different traffic scenarios. The selected traffic object detection 

datasets include KITTI, Cityscapes, which provide high-

quality traffic scene images that cover various environmental 

conditions such as different lighting, weather, time, and speed. 

The KITTI dataset, as a widely used standard dataset in the 

autonomous driving and object detection fields, provides the 

localization and labeling of traffic scene targets such as 

vehicles, pedestrians, and cyclists. The dataset contains rich 

dynamic image sequences, making it suitable for validating the 

performance of traffic object detection systems in dynamic 

environments, including object detection, classification, and 

tracking tasks. The Cityscapes dataset provides more fine-

grained urban traffic image data, suitable for object detection 

and segmentation tasks in street scenes. This dataset includes 

various traffic participants from urban environments, 

including pedestrians, cyclists, vehicles, etc., and covers 

different occlusions, background complexities, and various 

city road scenes, making it quite challenging. The dataset not 

only has accurate target position annotations but also provides 

high-resolution images and detailed pixel-level annotations, 

which help train and validate the model in a variety of complex 

traffic scenarios. 

 

3.2 Traffic object detection task description 

 

The traffic object detection task refers to the process of 

recognizing, locating, tracking, and classifying various objects 

in traffic scenes, such as vehicles, pedestrians, traffic signs, 

etc., from real-time or historical video images using computer 

vision and deep learning technologies, within traffic 

surveillance systems or autonomous driving scenarios. The 

core objective of this task is to accurately extract useful 

information from complex traffic environments to enable fast 

response and effective management of traffic objects. Traffic 

object detection is not limited to identifying the presence of 

objects but also includes tracking and predicting the spatial 

location and temporal changes of the objects. Therefore, traffic 

object detection is a comprehensive task involving object 

recognition, temporal modeling, target tracking, and dynamic 

prediction. 

In traffic object detection, the challenges mainly arise from 

the dynamic and complex nature of traffic scenes. The 

appearance of objects in images is influenced by factors such 

as lighting, weather, occlusion, and viewing angle, making a 

single object recognition method insufficient for all situations. 

Furthermore, objects in traffic environments often exhibit 

strong dynamic features, such as acceleration, deceleration, 

and turning behaviors of vehicles, requiring the detection 

system not only to recognize static objects but also to predict 

and track the motion trajectories of objects. Therefore, the 

successful implementation of traffic object detection tasks 

requires high precision and robustness, especially in complex 

urban traffic environments. One of the major technical 

challenges in this task is how to handle rapidly changing target 

information and reduce false positives and missed detections. 

 

3.3 Data preprocessing 

 

Data preprocessing for traffic object detection based on the 

intelligent learning filter improved deep learning system 

involves effectively handling noise, redundant information, 

and dynamic changes in traffic surveillance video images, so 

that clean and high-quality input data can be provided for the 

subsequent object detection system. In traffic surveillance 

video images, due to camera movement, lighting changes, 

weather factors, and occlusion of objects, the images often 

contain a large amount of noise and unnecessary information. 

To address this, this paper performs image denoising as a 

preprocessing step to remove noise and improve the quality of 

the images. In this way, irregular fluctuations and irrelevant 

background information in the images are effectively 

suppressed, thereby improving the recognizability of traffic 

objects in the images. The preprocessed image data becomes 

more stable, providing more accurate input for the subsequent 
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KF and Transformer models, ensuring that the training and 

inference processes of the detection system are more efficient 

and robust. 

 

3.4 Autoencoder 

 

Traffic surveillance video images often contain 

considerable noise, such as lighting changes, weather effects, 

camera shake, etc. This noise can seriously interfere with the 

performance of the object detection system, especially in 

complex urban traffic environments, where object recognition 

and tracking become more challenging. Therefore, this paper 

introduces an autoencoder in the proposed traffic object 

detection model to effectively denoise and extract features 

from the initial traffic surveillance video images, further 

improving the accuracy and robustness of the subsequent 

object detection. The autoencoder, through its encoding-

decoding structure, can compress the original image into a 

lower-dimensional latent space representation, capturing the 

most useful features of the data while suppressing unnecessary 

noise. Specifically, the autoencoder compresses the input 

image into a low-dimensional latent space representation, 

retaining the key features of the image while removing 

redundant information and noise. Let the output be represented 

by C, the activation function of the autoencoder by d(a), the 

transpose of the autoencoder's weight matrix by QS, the image 

sequence data with added Gaussian noise by a~
s, and the bias 

parameters obtained through gradient descent training by y. 

The output of the data processed by the autoencoder is: 

 

( )S

sc d Q a y= +  (8) 

 

3.5 Network framework 

 

Instead of placing the KF at the front or back end of the 

Transformer network, this paper chooses to insert the KF 

design between the encoder and decoder to achieve more 

refined dynamic information learning and prediction. Adding 

the KF at the front end can perform initial noise filtering in the 

input data stage but cannot fully utilize the self-attention 

mechanism of the Transformer for long-range dependencies in 

time series, nor can it handle dynamic changes in the model 

during the prediction stage. Adding the KF at the back end can 

improve prediction accuracy, but it may miss the effective 

capture of dynamic information during the encoding phase. By 

embedding the KF between the encoder and decoder, the 

model can, based on the high-quality input features, use the 

KF's dynamic updating mechanism to further accurately 

estimate the movement trajectory and state of the target, 

ensuring temporal consistency and dynamic adaptability 

during the object detection and tracking process. Especially in 

complex urban traffic scenarios, this strategy can better handle 

changes in the movement trajectories of different targets, 

occlusion, and background interference. Figure 1 shows the 

structure diagram of the KF-Transformer network designed in 

this paper. 

The KF-Transformer hybrid network, by combining the 

advantages of the KF and Transformer network, is designed 

for traffic object detection with the aim of improving detection 

accuracy. The first step in the experimental process is to 

normalize the image data. Images in traffic surveillance videos 

often contain a lot of noise and redundant information, so 

normalization standardizes the image data, making it more 

consistent when input into the network, thus improving the 

training efficiency and stability of the network. Through this 

process, the network can focus on key information in the 

image content, such as vehicle behavior, pedestrian movement, 

etc., while also uncovering potential real-time traffic situations 

behind the images. Furthermore, in order to enhance the 

network’s ability to learn the relationships between elements 

in the input image, the normalized image data is added to the 

position encoding matrix to generate an embedding matrix 

with positional information. Position encoding helps the 

network understand the relative positions and semantic 

relationships of different regions in the image, which is crucial 

for analyzing the temporal and spatial variations of object 

responses and traffic event developments in traffic 

surveillance video images. This enhances the model's 

generalization ability, allowing it to effectively handle a 

variety of real-time traffic situations. 

 

 
 

Figure 1. KF-Transformer network structure designed in this 

paper 

 

Next, the image data, after position encoding, is input into 

the KF-Transformer hybrid network. The core of the network 

lies in the introduction of the KF, which is positioned between 

the Transformer encoder and decoder, primarily used for 

smoothing and noise removal of the temporal features of the 

image data. Since traffic objects usually exhibit sudden and 

fluctuating behaviors, the KF helps the network accurately 

track the dynamic changes of these image data and remove 

disturbances caused by noise, especially in fast-changing 

public opinion environments. Finally, the image features 

processed by the filter are sent to the decoder part of the 

Transformer network, where the complex relationships 

between the images are further explored through the self-

attention mechanism. The decoded information is then passed 

to the linear layer, where the output signal is mapped, and the 

final detection result is obtained. 

 

3.6 Network training principle 

 

The loss function used in this paper is mean square error, 

and its formula is: 

 

( )
2

1

1
ˆl

v

f s

s

M a a
v =

= −  (9) 

 

Let the network objective function be represented by M', the 

parameters that help control denoising and the object detection 

task be represented by β, the regularization parameter be 

represented by η, the regularization equation be represented by 

E(a), and the model’s learning parameters be represented by 
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Φ. The objective function formula for training the network is: 

 

( ) ( ) ( )
2

1 1

ˆ ˆ' l l
v v

u u u u

u s

M x a a a a E
= =

= − + − +    (10) 

 

Training deep learning models often faces the issue of 

getting stuck in local optima, especially in complex traffic 

object detection tasks where the dynamic changes of objects 

and data noise may cause the model to fall into undesirable 

local solutions. In this paper, the cosine annealing method is 

introduced into the model training process to optimize the 

learning rate adjustment strategy. The cosine annealing 

method gradually reduces the learning rate, allowing the 

model to converge quickly in the early stages and gradually 

approach the optimal solution. Later, a smaller learning rate 

helps the model avoid excessive updates during the 

convergence process, thereby preventing oscillation or 

overfitting. Let the learning rate at the current epoch be 

represented by λs, the number of restarts be represented by c, 

the maximum and minimum learning rates be represented by 

λu
MAX and λu

MIN, the current number of periods executed be 

represented by SCU, and the total number of epochs for the c-

th restart be represented by Su. The process of cosine annealing 

is represented by the following formula: 

 

( )
1

1
2

u u u CU
s MIN MAX MIN

u

S
COS

S
   

  
= + − +   

   
 (11) 

 

Figure 2 shows the traffic object detection network structure 

built in this paper. 

 

 
 

Figure 2. Traffic object detection network structure diagram 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental results shown in Figure 3, it can be 

seen that the deep learning training mechanism based on 

intelligent learning filtering proposed in this paper shows 

significant improvements across multiple metrics. Specifically, 

the losses for Box, Objectness, and Classification all show a 

decreasing trend as the training progresses, with significant 

drops observed at the 400th epoch. For example, the Box loss 

decreased from an initial value of 0.12 to 0.032, the Objectness 

loss decreased from 0.1 to 0.001, and the Classification loss 

decreased from 0.28 to 0. This indicates that the training data 

optimized by the intelligent learning filtering mechanism 

significantly improves the model's performance in object 

detection, with noise effectively reduced, resulting in more 

stable training and faster convergence. Moreover, the changes 

in Precision and Recall also show a gradual optimization of the 

model in the object detection task. Precision increased from 0 

to 0.86, and Recall increased from 0 to 0.86, indicating 

significant improvements in both accuracy and recall. More 

importantly, the changes in mAP@0.5 and mAP@0.5:0.95 

also show significant improvements. mAP@0.5 increased 

from an initial value of 0 to 0.8109, and mAP@0.5:0.95 

increased from 0 to 0.6109, indicating that the model 

demonstrates good adaptability and stability in detection 

accuracy and multi-scale object detection. 

 

Table 1. Parameter comparison of different traffic object 

detection models 

 

Model 
Pretrained 

Weight (MB) 

Parameters 

(Million) 

F1 

Score 
mAP(%) FPS 

Faster R-CNN 354 27.256 0.562 52.3 41 

SSD 21.3 6.125 0.648 61.2 162 

YOLO9000 3.6 1.784 0.632 65.8 123 

YOLOv5n 12.9 7.125 0.723 74.5 112 

DETR 15.6 8.562 0.758 76.2 87 

Swin Transformer 21.4 12.235 0.762 76.2 83 

PVT 16.5 7.562 0.745 75.1 92 

The proposed 

model 
13.8 8.326 0.823 82.6 78 
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Figure 3. Experimental results of the model in this paper 

 

From the data in Table 1, the KF-Transformer hybrid 

network-based traffic object detection model proposed in this 

paper shows superior performance across multiple key metrics. 

First, in the core indicators of F1 score and mAP, the proposed 

model achieves 0.823 and 82.6%, respectively. Compared to 

existing models, the proposed model performs excellently in 

these two metrics, far surpassing traditional models like Faster 

R-CNN (F1 score: 0.562, mAP: 52.3%) and SSD (F1 score: 

0.648, mAP: 61.2%). Additionally, advanced models like 

YOLOv5n, DETR, and Swin Transformer also perform well 

in mAP and F1 score but still fall short of the proposed model’s 

performance. Specifically, although YOLOv5n has a higher 

computational efficiency (FPS: 112), its mAP is only 74.5% 

and F1 score is 0.723, which is significantly lower than that of 

the proposed model. Although the FPS of the proposed model 
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(78) is lower than some efficient models like SSD (FPS: 162), 

its advantage in accuracy makes it more promising for 

practical applications. 

 

 
 

Figure 4. Comparison of traffic object detection results 

before and after introducing the autoencoder 

 

 
 

Figure 5. Confusion matrix 

 

Figure 4 shows a comparison of traffic object detection 

results before and after introducing the autoencoder. After 

introducing the autoencoder, the performance of the traffic 

object detection model significantly improved. By applying 

the autoencoder for denoising and feature compression of the 

input data, the model became more robust when dealing with 

noise interference in complex scenarios. Experimental results 

indicate that the detection results after processing by the 

autoencoder are more accurate compared to the unprocessed 

data, especially in terms of object localization and 

classification. 

From the confusion matrix shown in Figure 5, the KF-

Transformer hybrid network-based traffic object detection 

model demonstrates high accuracy and stability in identifying 

various types of targets. Particularly in detecting high-

frequency targets such as Car, Bus, and Person, the model 

shows a high number of True Positives (TP), indicating that it 

can accurately identify these common targets, with low False 

Positives (FP) and False Negatives (FN). For example, for the 

"Car" target, both detection precision and recall are high, with 

the diagonal values (TP) in the confusion matrix significantly 

greater than other categories, demonstrating the model's strong 

recognition accuracy for this target. For relatively smaller 

targets like "bike" and "motor," although the recognition 

performance is slightly lower, the misdetection and missed 

detection rates are still significantly reduced compared to 

traditional detection models. Additionally, the model shows 

high accuracy in identifying the background (backg) class, 

indicating that it can effectively distinguish the background 

from actual traffic objects, reducing background noise 

interference and further proving its robustness and 

generalization ability. 

 

 
(1) KITTI 

 

 
(2) Cityscapes 

 

 
(3) COCO 

 

Figure 6. The impact of epochs on loss across different 

datasets 
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In Figure 6, Reference Designs 1 and 2 correspond to 

placing the KF at the front-end and back-end of the 

Transformer network, respectively, while the network 

framework in this paper places the KF between the encoder 

and decoder. Based on the experimental data provided in 

Figure 6, the proposed network framework outperforms 

Reference Designs 1 and 2 on different datasets (KITTI, 

Cityscapes, COCO), particularly in terms of the convergence 

speed and stability of the Loss value. On the KITTI dataset, 

the Loss value of the proposed framework reached 0.2±0.05, 

significantly lower than the Loss values of Reference Design 

1 (0.5±0.05) and Reference Design 2 (0.5±0.05), indicating 

that the proposed framework can converge more quickly and 

stably to a lower loss value in the object detection task. 

Similarly, the proposed design shows similar advantages on 

the Cityscapes and COCO datasets. Particularly on the 

Cityscapes dataset, the Loss value of the proposed framework 

is 0.2±0.05, while the Loss values of Reference Design 1 and 

2 are both 0.5±0.05, demonstrating that the proposed 

framework can maintain a low loss level in complex 

environments, improving the model's learning efficiency and 

stability. Furthermore, the performance on the COCO dataset 

also shows that the proposed design effectively controls Loss 

fluctuations while improving accuracy, allowing the model to 

achieve relatively ideal convergence in diverse object 

detection tasks. 

 

 

5. CONCLUSION 

 

This paper proposed a deep learning system training 

mechanism based on intelligent learning filtering and a KF-

Transformer hybrid network for traffic object detection. By 

combining the dynamic information estimation capability of 

the KF and the advantages of the Transformer model in 

modeling long-term dependencies, the proposed framework 

significantly improved the precision, stability, and robustness 

of traffic object detection tasks. Through the filtering 

algorithm to optimize training data, the model’s learning 

efficiency and robustness were enhanced, enabling it to 

efficiently recognize various targets in complex traffic scenes, 

including cars, pedestrians, buses, motorcycles, and more. 

Furthermore, the hybrid network design that combines 

Kalman filtering and Transformer demonstrated strong 

capabilities in processing dynamic information of targets, 

effectively eliminating noise, reducing false detections and 

missed detections, and improving practical value in various 

traffic environments. Experimental results validated the 

effectiveness of the proposed method, especially in terms of 

its performance on several public datasets such as KITTI, 

Cityscapes, and COCO. The results show that the network 

framework proposed in this research outperformed traditional 

designs and existing advanced models in various object 

detection tasks, especially in terms of Loss value convergence 

speed, accuracy, and robustness. Notably, in dynamic target 

detection and complex scenarios, this model demonstrated 

high stability and can achieve low Loss values within a short 

training period, with strong adaptability and generalization 

ability. 

However, there are some limitations to this research. First, 

while the proposed method excels in object detection accuracy 

and stability, the computational resource consumption is 

relatively high when processing large-scale datasets, which 

may affect applications that require real-time performance. 

Second, although the combination of Kalman filtering and 

Transformer performs well in dynamic object detection, the 

model may still face challenges in high-density scenes or 

scenarios with multi-object occlusion. Additionally, this study 

primarily focuses on traffic object detection, and its 

generalization ability to other fields still needs further 

validation. Future research can deepen and expand in two 

directions: optimizing the network's computational efficiency 

and inference speed to reduce the demand for computational 

resources, allowing it to be better applied in real-time 

monitoring and intelligent transportation systems. Secondly, 

advanced multimodal perception technologies can be 

combined to further enhance object detection accuracy and 

robustness in complex environments such as multi-object 

occlusion and high-density scenes. 
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