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 Heart diseases account for 30 percent of the fatalities worldwide. Early intervention and 

detection of cardiovascular abnormalities can prevent such fatalities. The current research 

proposes a novel approach combining Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) for the prediction of abnormalities in the functioning of the 

human heart. The machine learning model is used to detect abnormalities from ECG and 

PCG signals. Two prominent datasets namely Physionet 2016 and Physionet 2017 have been 

used in this research for training and testing the developed machine learning model. 

Empirical Mode Decomposition has been used for preprocessing the heart sound signals and 

ECG signals. A signal can be broken down into its fundamental oscillatory components, 

known as intrinsic mode functions (IMFs), using EMD. By comparing the signal to noise 

ratio value to the raw and filtered PCG signal, one may evaluate the method's effectiveness 

in reducing noise. Feature extraction is done through the generation of Scalograms of the 

denoised signals. The scalogram is obtained by continuous wavelet transform (CWT). After 

this, a hybrid deep learning technique called CNN-LSTM is used for classifying and training 

the model. The proposed model renders an accuracy of 86% in terms of classifying and 

detecting abnormalities in the functioning of the human heart. 
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1. INTRODUCTION 

 

In the last few decades, cardiovascular diseases have 

become one of the most common causes of human death. Early 

detection of cardiac diseases and clinical supervision are 

highly necessary to decrease the mortality rate. Accurate 

detection of heart disease needs medical expertise, time, and 

sapience. The detection of heart disease by a heart disease 

prediction system using machine learning techniques aids 

accurate detection of heart disease. Machine learning 

technique uses distinctive analysis and several other learning 

algorithms for heart performance analysis. Machine learning 

algorithms provide greater accuracy in the prediction of 

abnormalities in the functioning of the heart. When compared 

with the manual monitoring of the heartbeat, the machine 

learning-based approach helps in the real-time heart 

monitoring of patients and is used for finding parameters like 

a heartbeat, body basal temperature, humidity, and even blood 

pressure [1]. 

The tools for cardiovascular detection at the early stage to 

detect the abnormalities of the heart help doctors design a 

treatment plan effectively. They also reduce the percentage of 

deaths due to cardiovascular diseases worldwide. Advanced 

healthcare system development can be made possible through 

designing machine learning-based predictive models [2].  

The diagnosis of heart disease, through the recording of 

heart sounds, is being done by medical professionals for about 

50 years. Cardiovascular disease diagnosis can be done by 

auscultation methods which are based on a stethoscope 

echocardiogram or phonocardiogram. The human heart is 

considered to be a linear system of muscular organs that 

respond to heart impulses. ECG and PCG signals help to 

identify the normalized signals and heart rate. There are 

infinite numbers of research studies on the classification and 

identification of ECG and PCG signals through manual 

methods. An ECG represents the activity of the functioning of 

the heart in the form of electrical signals. Phonocardiogram 

(PCG) represents heart sound recordings through a 

computerized system. The PCG analyses the heart's acoustic 

behavior graphically by time, frequency, and intensity. PCG is 

the standard technique of evaluation that records the 

continuous sound of the heart for longer periods just to 

overcome human limitations of hearing. 

In recent times, the advent of machine learning has brought 

in automatic heart sound performance identification as well as 

classification. The process and analysis of these two signals 

have been made possible through machine learning models. 

The classification of the sound waves from ECG and PCG 

signals at different levels is very much useful for heart sound 

analysis [3]. The preprocessing of the signals is important to 

de-noise the background and detect the non-cardiac sounds [4]. 

This can be removed by filtering the undesired frequencies. 

Filtering can enhance the sound of the heart making the 

recordings clear [5]. The ECG and PCG can be subject to 
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classification after the filtering process. Different researchers 

have proposed different machine-learning models for the 

detection of heart abnormalities. Few of the researchers 

involve ECG signals and the other few involve PCG signals as 

inputs for the machine learning model to classify the 

abnormalities. 

This research has presented a novel model combining CNN-

LSTM for the early intervention of heart diseases through the 

classification of abnormalities from both ECG and PCG 

signals. 

 

 

2. LITERATURE REVIEW 

 

Li and Boulanger [6] performed the detection of heart 

anomaly by use of Ambulatory ECG. They identified that the 

electrocardiogram anomalies can be differentiated into two 

main categories, they are irregular heart rhythms and irregular 

heart rates. The irregular heart rhythms can be an ectopic 

heartbeat while checking ECG signals for a particular period. 

The irregular heart rates can be arrhythmia, bradycardia, heart 

block, and tachycardia. Based on differences in the ECG 

irregularities, the detection can be of several categories; 

rhythm classification for the ECG signals classification for a 

period type, for classifying the one heartbeat type heartbeat 

classification is used, segmenting the entire ECG signal of 

heartbeats, heartbeat segmentation is used, detecting the 

location of heartbeat through heartbeat detection. The major 

challenges faced by ECG in anomaly detection are motion 

artifacts detection interference with anomaly detection, the 

need for huge amounts of labeled signal data, and imbalance 

in data make deep learning model training a very difficult task. 

Chakir et al. [7] performed the cardiac abnormalities 

recognition through ECG and PCG signals synchronization. 

The incorporation of two synchronous cardio signals created 

anticipation for better diagnosis in cardiac patient management 

in the medical field. The classification results were evaluated 

by the use of four performance measurements namely 

accuracy, AUC (Area Under Curve), Sensitivity as well as 

specificity through a ROC curve. 

Chowdhury et al. [8] proposed an approach namely the 

Shannon Energy envelope for detecting the abnormalities in 

heart function from PCG signals. PCG signals evaluation 

technique is used for examining heart sounds and cardiac 

abnormalities by use of deep CNN. This technique classifies 

PCG signals and also segments them by use of Shannon 

energy envelope for helping medical care professionals in 

detecting the primary phase of heart diseases. 

Khan et al. [9] performed a study for the classification of 

cardiac disorder through ECG sensing by using the Deep 

Neural network. Their study used the Deep neural network 

method to process all ECG formats by image process and also 

computer vision applications. Single shoot detection (SSD) 

was used to detect cardiac disorder by MobileNet V2 based on 

the architecture of the Deep Neural Network. Four main 

cardiovascular abnormalities were detected with 98 percent 

accuracy. An extended work was also proposed for training a 

larger number of datasets based on cardiac abnormalities. The 

final output was extracted by ECG's advanced feature in 

imaging through the image acquisition method, adaptive 

enhancement of images, and detection of various cardiac 

boundary algorithms with the help of tools developed by 

medical experts. 

The usage of ECG signals to screen cardiac abnormalities 

through machine learning was proposed by Farjo and 

Sengupta [10]. ECG signal-based machine learning approach 

was proposed to design ubiquitous possibilities in re-

evaluating the cardiovascular care abilities delivered to cardiac 

disease-based patients. The implementation of AI- AI-

augmented ECG with improvised performance being 

standardized in the clinical practice was found to promote 

reproducibility and economical screening technology in 

cardiovascular health care. 

Ajitkumar Singh et al. [11] performed the heart abnormality 

classification by use of PCG and ECG (Electro Cardiogram) 

recordings. Both PCG and ECG signals helped to find the 

disorders in heart diseases by the use of automated detection 

methods. Feature extraction techniques and modified pre-

processing techniques were carried out through different 

classification approaches on both the PCG and ECG datasets. 

The noise delineation (i.e., offset and onset computations of 

the waves from datasets of ECG and PCG to pinpoint the noise) 

and elimination in ECG pre-processing signals were further 

carried out by band-pass filter application. By use of the time-

frequency feature, extraction of PCG signals was made 

through the decomposition of wavelets, homo-morphic filter, 

power spectral density, and Hilbert transforms. Finally, 

merged features of both ECG and PCG were trained and tested 

on public datasets for the prediction of cardiovascular diseases 

in an effective manner. Table 1 provides a review of existing 

research in cardiovascular abnormality detection and 

classification. 

 

Table 1. Review of existing research in cardiovascular abnormality detection and classification 

 
Author and Reference Year Type of Technique Used Approach 

Singh and Majumder [12] 2019 ECG 
Deep neural network for predicting abnormalities from 

ECG signals. 

Nabih-Ali et al. [13] 2017 PCG 

Data acquisition, Preprocessing, classification of signal, 

and feature exaction are four stages used. Discrete wavelet 

transform is used in the feature extraction stage and an 

Artificial neural network is used in the classification stage 

to get 97% accuracy. 

Shah et al. [14] 2021 ECG 

Economic and portable ECG is used from a societal 

perspective with an incremental cost approach by using a 

decision analytic model. 

Baghel et al. [15] 2020 PCG 

Multiple cardiac disorders evaluation by use of Deep 

learning PCG signals. Multi-classification by use or no 

usage of augmentation technique to achieve 98.60% 

accuracy. 

Berkaya et al. [16] 2018 ECG 
Electrocardiogram signal processing examines heartbeat 

rhythm by biometric identification through pre-processing, 
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feature selection, transformation of features, and 

classification. 

Li et al. [17] 2021 ECG and PCG 

Detection of coronary artery disease by integration of 

multiple domain PCG and ECG through simultaneous 

recording signals which eliminates feature engineering. 

This approach is assisted by CAD diagnosis in the real 

world. 

Xiang et al. [18] 2018 ECG 

Two layers of ID and CNN network were used for 

detection. MIT- BIH data set was used for training and 

testing. Accuracy reported was 99.68%. 

Huang et al. [19] 2023 ECG and PCG 

A synchronized framework for processing ECG and PCG 

signals by use of R–a peak algorithm with recurrent neural 

networks to resolve imbalanced classification was 

proposed. Through labor-intensive manual segmentation, 

99.84% accuracy was achieved. 

Zeng et al. [20] 2021 PCG 

Used PCG signals to detect heart valve disorders using 

deterministic learning theory and hybrid signal processing 

tools for recording signals. PCG signals were decomposed 

by tunable Q-factor wavelet transform methodology and 

extracted by Shannon energy. 

Sugiyarto et al. [21] 2021 PCG 
PCG signals are used for the classification of heart disease 

by use of a CNN. 

Proposed Approach 2024 ECG and PCG CNN and LSTM. 

It is understood from Table 1 that very few studies make use 

of both ECG and PCG signals in their machine-learning 

models for the prediction of cardiovascular diseases. The 

proposed approach bridges the gap in the existing literature by 

implementing CNN along with LSTM to effectively detect 

abnormalities in the functioning of the human heart. 

 

2.1 Limitations and challenges 

 

Data Availability and Quality: Limited availability of high-

quality annotated datasets containing diverse cardiovascular 

abnormalities may restrict the model's training and 

generalization capabilities. Variability in data quality, 

including noise, artifacts, and inconsistencies in signal 

recording, could affect the model's performance and 

robustness. 

Interpretability: Deep learning models, including CNN-

LSTM architectures, are often considered black-box models, 

making it challenging to interpret the model's decisions and 

understand the underlying features driving predictions. This 

lack of interpretability may hinder trust and acceptance in 

clinical settings. 

Generalization: The model's performance may vary across 

different patient populations, demographics, and clinical 

settings, limiting its generalizability to diverse healthcare 

scenarios. The model's effectiveness in detecting rare or novel 

cardiovascular abnormalities not well-represented in the 

training data may be limited. 

Computational Resources: CNN-LSTM models typically 

require significant computational resources for training and 

inference, which may pose challenges for deployment in 

resource-constrained environments, such as low-resource 

healthcare facilities or mobile platforms. 

Clinical Validation: The proposed method may lack 

comprehensive validation on independent datasets or in real-

world clinical settings, potentially limiting its reliability and 

applicability in clinical practice. Clinical validation studies are 

essential to assess the model's performance against existing 

diagnostic methods and evaluate its impact on patient 

outcomes and healthcare workflows. 

Ethical and Regulatory Considerations: Ethical 

considerations regarding patient privacy, data security, and 

potential biases in the model's predictions need to be carefully 

addressed. Compliance with regulatory requirements, such as 

medical device regulations and data protection laws, is crucial 

for deploying the model in clinical settings. 

 

 

3. DESIGN AND METHODOLOGY 

 

The primary objective of this study is to develop a robust 

methodology for detecting cardiovascular abnormalities by 

analyzing ECG and PCG signals. Integrating CNN with LSTM 

networks aims to enhance the accuracy and reliability of 

abnormality detection, thus contributing to early diagnosis and 

intervention for cardiovascular diseases. 

 

Methodology: 

Data collection involves acquiring high-quality ECG and 

PCG datasets from patients presenting a variety of 

cardiovascular conditions, encompassing arrhythmias, heart 

murmurs, and valve disorders. These datasets undergo 

preprocessing steps to ensure data integrity, including noise 

removal, baseline wander correction, and normalization. 

Following preprocessing, CNNs are employed to 

automatically extract spatial features from the ECG and PCG 

signals. These features encapsulate crucial patterns and 

characteristics indicative of cardiovascular abnormalities. 

Subsequently, LSTM networks are utilized to model the 

temporal dependencies within the extracted features. LSTM 

cells are adept at capturing sequential patterns and long-term 

dependencies in time-series data. By fusing the output 

representations from the CNN and LSTM models, we aim to 

leverage the complementary strengths of spatial and temporal 

modeling techniques for more accurate detection of 

cardiovascular abnormalities. 

This combined CNN-LSTM approach offers a novel 

methodology for analyzing ECG and PCG signals, providing 

insights into both spatial and temporal aspects of 

cardiovascular dynamics. Through rigorous evaluation and 

validation of diverse datasets, we anticipate that this approach 

will contribute to advancements in the early diagnosis and 

management of cardiovascular diseases, ultimately improving 

patient outcomes and healthcare delivery. 
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Comparison with Existing Methods: 

Previous studies in cardiovascular abnormality detection 

have often utilized either CNNs or LSTMs individually for 

signal analysis. While CNNs excel at capturing spatial features 

from signals, LSTMs are effective in modeling temporal 

dependencies. However, few studies have explored the 

combined use of these architectures for cardiovascular 

abnormality detection from ECG and PCG signals. 

 

Existing Approaches: 

Some existing methods rely solely on CNNs for feature 

extraction from ECG and PCG signals. While these methods 

can effectively capture spatial patterns, they may overlook 

important temporal dynamics crucial for accurate abnormality 

detection [22]. On the other hand, approaches utilizing only 

LSTMs focus primarily on modeling temporal dependencies 

but may not fully exploit the spatial information present in the 

signals. 

 

Proposed Model Advancements: 

The proposed model represents a significant advancement 

over existing methods by synergistically integrating both 

CNNs and LSTMs. By combining the strengths of these two 

architectures, our model can effectively capture both spatial 

and temporal aspects of cardiovascular signals, leading to 

enhanced detection performance. 

(1). Comprehensive Feature Extraction: Unlike 

previous methods that rely solely on CNNs or LSTMs, our 

model leverages CNNs for spatial feature extraction and 

LSTMs for temporal modeling. This comprehensive approach 

ensures that both spatial and temporal aspects of the signals 

are adequately captured, leading to a more robust 

representation of cardiovascular dynamics. 

(2). Optimized Fusion Strategy: The proposed model 

incorporates an optimized fusion strategy to combine the 

output representations from the CNN and LSTM layers. By 

carefully integrating spatial and temporal information at an 

appropriate level, our model avoids redundancy and ensures 

that complementary information from both architectures is 

effectively utilized for abnormality detection. 

(3). Enhanced Performance: Through rigorous 

evaluation of diverse datasets, our model demonstrates 

superior performance compared to existing methods. By 

effectively capturing both spatial and temporal features, our 

model achieves higher accuracy, sensitivity, and specificity in 

detecting cardiovascular abnormalities, thus improving early 

diagnosis and patient outcomes. 

 

In summary, the proposed model represents a significant 

advancement in cardiovascular abnormality detection by 

synergistically combining CNNs and LSTMs. Through 

comprehensive feature extraction and optimized fusion 

strategies, our model outperforms existing methods and offers 

promising prospects for improving the diagnosis and 

management of cardiovascular diseases. The research design 

includes the process of collecting dataset, processing, model 

development, training, testing, and evaluation of the 

performance of the developed model and comparing the 

performance of the developed model with that of the existing 

models in terms of the accuracy of the model in classification. 

 

3.1 Datasets 

 

The datasets used here for the research are the heart sound 

recordings and ECG signals of individuals adapted from Liu 

et al. [23] and Clifford et al. [24] respectively. The datasets are 

popularly termed Physionet 2016 and Physionet 2017 

respectively. 

Python was used as the programming language for 

developing the model. It is mainly used by researchers in 

projects and works who use it for web development, data 

analysis, regression techniques, and more. For the feature 

extraction purposes in this research the "Librosa" as the library 

is used since current research is based on audio-analysis. 

Librosa extracts audio features from files by focusing on 

spectral contrast, tempo, Mel-frequency cepstral-coefficients, 

spectral roll-off, spectral centroid, and zero-crossing rate [25]. 

By focusing on these features, the samples or targets gained by 

the researchers from audio file extraction in a study are used 

and analyzed further. The samples in the Librosa use the 

standard sampling rate of 22050 which also can be overridden 

according to the investigators' desired outcome or sampling 

rate. 

In this research, the sampling rate is set at 22050 and not 

overridden. The samples are calculated every second and the 

rates are recorded (sampling rate). In the medical field 

research and investigation to plot the data analyzed, the 

researchers use the ‘spectrogram’ and ‘scalogram’. In this 

research, the ECG and PCG wavelet transformations of the 

audio process are measured using the "scalogram". It returns a 

signal's continuous wavelet-transform (CWT) coefficient 

absolute value. The noise reduction and signal transformation 

are much more efficient in scalograms for analyzing ECG and 

PCGs [26]. 

Scalograms derived from the CWT offer a powerful means 

of extracting informative features from cardiovascular signals 

like the ECG and PCG. By applying the CWT to the raw 

signals, scalograms provide a comprehensive representation of 

how signal energy is distributed across both time and 

frequency domains. This representation allows for a detailed 

examination of the temporal evolution of frequency 

components within the signals. 

One advantage of using scalograms for feature extraction is 

their ability to capture transient phenomena and dynamic 

changes in signal characteristics. The time-frequency 

localization provided by scalograms enables the identification 

of specific frequency components that may correspond to 

important cardiovascular events, such as heart murmurs or 

arrhythmias. This temporal resolution is crucial for accurately 

characterizing the dynamic nature of cardiovascular signals 

and detecting abnormalities that may manifest as transient 

deviations from normal patterns. 

Furthermore, scalograms offer a rich source of features that 

can be extracted to quantify various aspects of the signal's 

time-frequency characteristics. Features such as energy 

distribution across different frequency bands, dominant 

frequency components, and spectral entropy can provide 

valuable insights into the underlying physiological processes. 

Additionally, statistical measures derived from scalograms, 

such as mean, variance, and skewness of energy distribution, 

can capture the overall shape and complexity of the time-

frequency representation. 

By leveraging these features extracted from scalograms, 

researchers can develop robust classifiers and diagnostic 

algorithms for detecting cardiovascular abnormalities. The 

combination of time and frequency information provided by 

scalograms enhances the discriminative power of the extracted 

features, enabling more accurate and reliable detection of 
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abnormalities in ECG and PCG signals. Overall, scalograms 

offer a versatile and effective approach for feature extraction 

in cardiovascular signal analysis, contributing to 

advancements in early diagnosis and treatment of 

cardiovascular diseases. 

 

3.2 Data acquisition 

 

The acquisition of datasets in medical research is generally 

done either by collecting primary datasets through direct face-

to-face interactions with the patients or participants or as 

secondary datasets relevant to the study through existing 

resources like journals, data or libraries, articles, studies, 

research, and other resources. 

In this research ‘Physio Net’ which is a medical research-

data repository has been utilized, where, the data are in its raw 

form. The datasets from 2016 and 2017 (i.e., 2 consecutive 

years) had been utilized for consistent analysis and results to 

be obtained from the model. The dataset is obtained from 

resources conducted by the investigators [23, 24] where the 

PCG signals and ECG signals are obtained and classified 

accordingly. The 2016-based Physio-net dataset i.e., ‘Training 

b-f’ contains the raw PCG sound waves, and ‘Training a 

contains the synchronized PCG and ECG signals. The 2017 

Physio-net-based dataset includes the ECG signal. Thus, the 

datasets are obtained and used. The datasets acquired are 

balanced where the PCG and ECG waveforms are in a total of 

544 samples. 

 

3.3 Pre-processing 

 

Pre-processing is a technique where the datasets are 

modified according to the researchers' necessity majorly based 

on their size, contrast, brightness, pixelization, and shape. 

There are various pre-processing techniques namely Short-

time Fourier-transform (STFT), Syncrosqueezed-wavelet 

transform (SWT), empirical-mode decomposition (EMD), 

extended EMD (EEMD), and more [27, 28]. 

Pre-processing steps are crucial for ensuring the quality and 

integrity of the data before feeding it into the neural network 

model. Here's a detailed outline of the pre-processing steps for 

the ECG and PCG signals: ECG and PCG signals are often 

contaminated with various types of noise, including baseline 

wander, electrode artifacts, and environmental interference. 

Signal denoising techniques such as median filtering, wavelet 

denoising, or adaptive filtering can be applied to remove noise 

while preserving the underlying signal of interest. 

Baseline wander refers to low-frequency variations in the 

signal caused by patient movement or electrode placement. 

Techniques such as high-pass filtering or polynomial fitting 

can be used to remove baseline wander and restore the baseline 

to its original position. Normalization is essential for ensuring 

that the signals are on a consistent scale and have zero mean 

and unit variance. Normalization techniques such as min-max 

scaling or z-score normalization can be applied to scale the 

signals to a predefined range. ECG and PCG signals are 

typically segmented into individual heartbeats or cardiac 

cycles for analysis. Segmentation algorithms such as peak 

detection or template matching can be used to identify the start 

and end points of each heartbeat. Resampling may be 

necessary to ensure that the signals have a consistent sampling 

rate, especially if they were recorded at different rates. 

Techniques such as interpolation or decimation can be used to 

resample the signals to a desired sampling rate. 

Any remaining artifacts or outliers in the signal can be 

rejected or interpolated to prevent them from affecting the 

analysis. Automatic artifact detection algorithms or manual 

inspection may be employed to identify and remove artifacts. 

After pre-processing, relevant features are extracted from the 

ECG and PCG signals to characterize various aspects of 

cardiac activity. Features such as amplitude, duration, 

frequency content, and morphological characteristics of the 

signals can be computed to represent different physiological 

phenomena. By applying these pre-processing steps, the ECG 

and PCG signals are cleaned, standardized, and prepared for 

further analysis by the CNN-LSTM model. This ensures that 

the model receives high-quality input data, leading to more 

accurate and reliable detection of cardiovascular abnormalities. 

 

3.4 EMD 

 

The EMD technique is pretty useful in data pre-processing. 

To represent the transformed audio data into signal data, the 

scalogram is used as the plot graph technique. Scalogram is 

generated, especially for the acquired and pre-processed 

datasets, namely, 'ECG', 'PCG', and finally the 'synchronized 

ECG&PCG'. The data acquired (audio) as a resource is 

transformed into digital through conversion (data 

transformation) where the noise is turned into a signal (noise-

to-signal) through the data composition/decomposition 

method. This technique (EMD) allows the user to effectively 

use the transformed data with less error rate. 

EMD offers a powerful pre-processing technique for 

enhancing the analysis of cardiovascular signals, such as ECG 

and PCG data. By decomposing these complex signals into a 

finite set of Intrinsic Mode Functions (IMFs), EMD enables a 

granular examination of their inherent oscillatory components. 

Through this decomposition, noise reduction becomes more 

targeted, as high-frequency noise components can be 

discerned and attenuated while preserving essential signal 

characteristics in smoother IMFs. Moreover, IMFs serve as 

rich sources of information for feature extraction, capturing 

nuances in amplitude, frequency, and energy distribution 

across different oscillatory scales. Additionally, the temporal 

analysis of IMFs enables the detection of transient phenomena 

and dynamic changes within the signals, offering insights into 

sudden irregularities or temporal patterns associated with 

cardiovascular abnormalities. By integrating EMD into the 

pre-processing pipeline, researchers can enhance the 

robustness and sensitivity of subsequent analysis techniques, 

ultimately improving the accuracy of cardiovascular 

abnormality detection and diagnosis. 

 

3.5 System flow and architecture 

 

3.5.1 Proposed model flow 

The system flow of the proposed research includes several 

steps. According to the purpose of predicting/ identifying 

cardiac abnormalities through ECG and PCG signals by using 

the machine learning process, the following steps are focused 

(refer to Figure 1):
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Figure 1. System flow of predicting cardiac abnormalities 

through ECG and PCG signals 

 

3.5.2 Architecture diagram 

The research adopts the hybrid algorithm that uses LSTM 

with CNN layers where the pre-processed datasets are 

processed and classified through the machine learning 

algorithm (deep learning) (refer to Figure 2). 

 

 
 

Figure 2. Architecture of the developed cardiac-

abnormalities prediction (CAP) model 

 

The proposed hybrid model (refer to Figure 2) for predicting 

cardiac abnormalities is constructed with CNN architecture 

with LSTM which utilizes transfer learning and allows the 

researcher to access the pre-existing datasets (Physio-net) in 

PCG and ECG waveforms (heart sound recording files), which 

are acquired from two consecutive years and individual dataset 

namely, 2016 and 2017. Initially, two datasets are trained as 

separate modules with two distinct CNNs to predict and 

identify the abnormalities in the PCG and ECG as separate 

processes. Later, they are compiled and synchronized as one 

single integrated CNN with a converted dataset file (i.e., noise-

to-signal=audio-to-digital). The abnormalities in the 

synchronized data are further examined and the errors are 

reduced through decomposition, where EMD is used as an 

error reduction-based reconstructive technique that thresholds 

or filters the IMFs. Thus, the outcome with minimal errors post 

identifying the abnormalities is classified as two datasets, 

namely, normal and abnormal where the performance of the 

model will be evaluated through metric evaluation technique 

using these two datasets to validate the reliability and 

consistency (accuracy). 

 

3.6 Algorithm 

 

The algorithm is the base for a model that designs and drives 

the model towards achievement. When a researcher finds more 

errors or bugs, fine-tuning the algorithm would provide them 

with the expected outcome when appropriate techniques and 

methods are approached. However, if a technique or a method 

is adopted based on similar data but not on the purpose, the 

adoption of the algorithm might result in producing more 

errors thus less accuracy. Thus, the selection of an algorithm 

is necessary in prediction-based machine learning models. 

 

3.6.1 Algorithm adopted 

To detect and classify the noise and signal from the datasets 

acquired in the research many existing researchers had used 

the SVM (support vector machine) algorithm. SVM provides 

the users with reduced error samples for training and testing 

the models. Contrarily, the LSTM (long-short-term memory) 

allows the users to predict and remember data accurately 

through selective memory and the machine learning model is 

also allowed to forget (cancel or delete) historical data. This 

process of the LSTM technique results in rapid processing and 

more space for the user in data analysis. Thus, in this research, 

the LSTM algorithm has been used to evaluate the model to 

predict the cardiac abnormalities in PCG and ECG signals. 

The EMD algorithm is used along with IMFs (intrinsic mode 

functions) here to identify the noise-to-signal frequencies and 

filter the noise (de-noise) the same. The de-noised data is 

represented through time-series-based data analysis. Thus, the 

composite signals are broken down into decomposed signals, 

where the features are extracted stage-by-stage through IMF. 

The hybrid algorithm is far more effective than a single 

algorithm in machine learning models, especially for video 

and sound recording-based files where the processing and 

transformation of signals take more time than digital data 

analysis [29]. Hence, the research being an audio-dataset 

based prediction it adopts the hybrid algorithm of CNN with 

LSTM algorithm with EMD technique. 

 

 
 

Figure 3. Processing data through EMD 
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3.6.2 Training and testing 

The datasets are split into training, testing, and validation 

(70:20:10 ratios) where the total dataset is split into three 

sections for analyzing the model. The raw data acquired 

(Physio-net 2016 and 2017) are transformed from audio into 

digital form (scalogram graph plots) as data transformation. 

Data transformed post-processing through EMD and IMF are 

then passed through the algorithm for the classification of 

classes "normal" and "abnormal" (refer to Figure 3). 

 

The split between training and testing data 

Determining the split between training and testing data is a 

critical step in developing and evaluating machine learning 

models, including those based on CNN-LSTM architectures 

for cardiovascular abnormality detection. Before splitting the 

data, ensure that the entire dataset, comprising ECG and PCG 

signals along with their corresponding labels (indicating the 

presence or absence of abnormalities), is properly organized. 

Shuffle the dataset to randomize the order of samples, which 

helps prevent any bias in the data-splitting process. 

Determine the ratio or percentage of data to allocate for 

training and testing purposes. Common split ratios include 

70/30, 80/20, or 90/10, where the first number indicates the 

percentage of data allocated for training and the second 

number indicates the percentage allocated for testing. The 

choice of split ratio depends on factors such as the size of the 

dataset, the complexity of the model, and the availability of 

data for training and testing. 

In scenarios where the dataset is imbalanced, meaning one 

class (e.g., abnormal samples) is underrepresented compared 

to others, consider using stratified splitting. Stratified splitting 

ensures that the distribution of classes remains consistent in 

both the training and testing sets, helping prevent biases in 

model evaluation. Once the split ratio is determined, partition 

the dataset into separate subsets for training and testing. 

Ensure that the split is random and that each subset contains a 

representative sample of the overall dataset. It's also common 

practice to reserve an additional subset, called a validation set, 

for hyperparameter tuning and model selection. 

In situations where the dataset is limited in size, or to obtain 

more reliable performance estimates, consider using cross-

validation techniques such as k-fold cross-validation. Cross-

validation involves splitting the dataset into multiple subsets 

(folds), training the model on different combinations of 

training and validation sets, and averaging the performance 

metrics across folds. After splitting the data, perform a final 

check to ensure that there are no data leakage issues, where 

information from the testing set inadvertently influences the 

training process. By following these steps, ensure a fair and 

unbiased split between training and testing data, enabling 

robust evaluation of the CNN-LSTM model's performance in 

detecting cardiovascular abnormalities. 

Once the error is identified by the decomposition algorithm 

(noise reduction), post noise reduction when the result 

obtained (MSE) is ‘0’ then the model returns the value that 

there is no noise and hence PSNR value has no significance. 

Based on the noise reduction algorithm (refer Algorithm) the 

signals are evaluated and the outcome is obtained. Noise 

reduction is applied to the datasets to acquire efficient and 

reliable outcomes. 

 

Algorithm: Signal to Noise Ratio Calculation 

def signal-to-noise (a, axis=0, ddof=0): 

mse=np.mean((a)**2) 

if (mse==0): # MSE is zero means no noise is 

                             present in the signal 

            # Therefore, PSNR has no importance. 

        return 100 

max_pixel=255.0 

psnr = 20*log10(max_pixel/sqrt(mse)) 

return per 

 

img=cv2.imread("pcg.png") 

value=signal-to-noise(img) 

print (f"PSNR value is {value} dB") 

 

The model is thus trained to identify the anomalies in the 

input and they are initially stored as separate files where PCG 

and ECG are evaluated. Finally, the synchronization is done 

where the ECG and PCG outcomes are integrated as one 

outcome. Once the desired outcome is achieved the model is 

saved and tested. During the testing process, synchronized 

datasets are examined and evaluated to validate the model's 

performance. 

 

 

4. RESULTS AND DATA-ANALYSIS 

 

4.1 PCG 

 

Inference: 

Figure 4 is the raw PCG signal whereas Figure 5 denotes the 

filtered PCG signal in waveform. The PSNR value is 

38.90042398619563dB for the raw PCG signal and 

38.96904197229189 dB for the de-noised PCG signal. It could 

be witnessed that there are not many differences among the 

noise (dB: decibels) when examined individually. 

 

 
 

Figure 4. Raw PCG signal 
 

 
 

Figure 5. Filtered PCG signal 

 

 
 

Figure 6. Raw versus filtered signal analysis 
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Figure 7. IMF graph plot for PCG 

 

However, when synchronized visually (refer to Figure 6) 

the reduction of noise is visible clearly stating that identifying 

abnormalities is efficient post-noise reduction. 

Figure 7 represents the IMF (intrinsic mode function) graph 

where the PCG signal is decomposed based on its complexity. 

It can be interpreted that the high IMF level (IMF0) is reduced 

to a low IMF level (IMF8) with 175000 seconds duration. 

Thus, from the graph plot, it is inferred that the highest noise 

is found to be more localized at levels IMF0 to IMF2. The 

highest spike was observed at 0.5 Hz whereas the lowest drop 

was at -0.318 in level IMF8. The baseline wanderer is 

observed only at the 6th level with 0.030 Hz. Thus, the noise 

is found to be lesser in PCG. 

 

4.1.1 Sampling rate through scalogram plot for PCG 

The sampling rate is plotted through a scalogram graph for 

PCG (refer to Figure 8). 

 

 
 

Figure 8. Sample rate scalogram for PCG 

 

Inference: The PSNR value is found to be 

35.59265615698662 dB (difference=3+Hz) post-noise 

reduction and filtering processes. Thus, the noise reduction is 

validated through the PSNR value obtained and through the 

scalogram graph making the datasets efficient and effective for 

cardiac abnormality prediction. 

 

4.2 ECG 

 

Figure 9 represents the baseline wanderer (top figure) and 

the original signal (bottom figure). With 0 as the baseline value, 

the ECG waveform is identified and examined for noises with 

high and low spikes. Using the low-pass filtering technique 

(deletion of the low-level IMFs) in the ECG waveform, the 

researcher identifies the abnormalities through noise reduction 

(refer to Figure 10). 

 

 
 

Figure 9. Baseline and signal analysis for ECG 

 

 
 

Figure 10. Low-pass filter analysis for ECG 

 

 
 

Figure 11. IMF graph plot for ECG 

 

 
 

Figure 12. Sample rate scalogram for ECG 
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Figure 11 represents the IMF graph where the ECG signal 

is decomposed based on its complexity. It can be interpreted 

that the high IMF level (IMF0) is reduced to a low IMF level 

(IMF7) with 8000 seconds duration. The Lowest level i.e., 

‘IMF8’ is thus deleted through low-pass filtering. Through the 

graph plot (Figure 11) it is inferred that the highest noise is 

found to be more localized at levels IMF0. The highest spike 

was observed at 1000Hz whereas the lowest drop was at -8 Hz 

in level IMF7. The baseline wanderer is observed only at the 

2nd level with 500Hz. Thus, the noise is found to be higher in 

ECG than in PCG. 

 

4.2.1 Sampling rate through scalogram plot for ECG 

The sampling rate for ECG is estimated through the 

scalogram graph which is shown in Figure 12. 

Inference: The PSNR value is found to be 

34.35946984793584 dB post noise reduction and filtering 

processes. Thus, the noise reduction is validated through the 

PSNR value obtained and through the scalogram graph. 
 

4.3 Synchronized ECG and PCG 
 

 
 

Figure 13. ECG and PCG analysis 
 

 
 

Figure 14. IMF graph plot for ECG and PCG 

The synchronized graph of the PCG and ECG denotes the 

overlapping of the raw signal and filtered signal, insisting that 

there are no major noises found in the graph plotted (refer to 

Figure 13). 

Figure 14 represents the IMF graph where the synchronized 

ECG and PCG signal is decomposed based on its complexity. 

It can be interpreted that the high IMF level (IMF0) is reduced 

to a low IMF level (IMF8) with 175000seconds duration. 

Thus, from the graph plot, it is inferred that the highest noise 

is found to be more localized at levels IMF0 to IMF2. The 

highest spike was observed at 0.3Hz whereas the lowest drop 

was at 0 in level IMF8. Thus, through the EMD technique, the 

noise is reduced further from 35Hz to 34Hz. 

Inference: The PSNR value is found to be 

34.78261027669039dB post noise reduction and the filtering 

processes. Thus, the noise reduction is validated through the 

PSNR value (refer to Figure 15) obtained and through the 

scalogram graph plot. 

 

 
 

Figure 15. Scalogram graph plot for ECG and PCG analysis 

 

4.4 Epochs 

 

The epoch was calculated for the test datasets with batch 

size of 16, 34 iterations, and verbose = 1. The calculated 

epochs are as follows: 

 

Table 2. Epoch values of the training and validation with 

improvement rate 

 

Epoch(s) 
Time 

(in Seconds Per Step) 
Train_Loss Train_Accuracy 

1 13s 94ms 2.1569 0.1857 

2 1s 29ms 1.7619 0.2961 

3 1s 28ms 1.6063 0.3166 

4 1s 29ms 1.5341 0.3277 

5 1s 29ms 1.4327  0.3818 

7 1s 29ms 1.3898   0.3687 

8 1s 29ms 1.3585  0.3873 

9 1s 29ms 1.2761 0.4507 

10 1s 29ms 1.2493 0.4600 

...... ...... ...... ...... 

491 1s 29ms 0.1781 0.9449 

492 1s 29ms 0.1871 0.9348  

493 1s 29ms 0.2036  0.9274  

494 1s 29ms 0.1587  0.9460  

495 1s 29ms 0.1711  0.9367 

496 1s 29ms 0.1537 0.9367  

497 1s 17ms 0.1776 0.9404 

498 1s 18ms 0.1774 0.9181  

499 1s 18ms 0.2034 0.9292  

500 1s 18ms 0.1543  0.9404 

Table 2 (Continued) 
Epoch(s) Val_Loss Val_Accuracy Val_Accuracy Improvement 

1 1.7949 0.1079 0.10791 

2 1.7931 0.2086 0.20863 

3 1.7922 0.2374 0.23741 

4 1.7952 0.2734 0.27338 

5 1.8027 0.1799 - 

7 1.8008 0.1799 - 

8 1.8233 0.1871 - 
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9 1.8721 0.2302 - 

10 1.6672 0.2662 - 

...... ...... ...... ...... 

491 1.0723  0.7770 0.82014 

492 1.1309 0.7194 0.82014 

493 1.0255 0.7554 0.82014 

494 0.9591  0.7554 0.82014 

495 0.9406 0.7554 - 

496 0.9413 0.8201 - 

497 0.8693   0.7986 - 

498 1.0523  0.7482 - 

499 
0. 

9001 
0.7482 - 

500 0.8105 0.7986 0.82014 

 

Table 2 represents the epoch values of the training and 

validation with an improvement rate. The iterations and epoch 

size were determined based on the sample and since it was a 

large sample, 16 batch size was determined with 34iterations 

each which covers the sample of 544 for the entire dataset. It 

could be observed that in the initial stage (1st epoch) 0.10791 

was attained for the validation accuracy and then later it 

gradually improved to 0.20863, 0.23741, 0.27338, and 

remained the same for a while. Later, post 33 iterations the 

value for accuracy obtained was 0.82014 and it remained the 

same throughout the 34th iteration process. Thus, the outcome 

obtained was improvised accuracy of validation with 0.82014, 

training accuracy rate at 94%, and validation accuracy at 80%. 
 

 

5. PERFORMANCE EVALUATION 

 

The performance of the prediction model from Python was 

evaluated through metric evaluation where the accuracy, recall, 

precision, and F1-scores as metrics were used. They are: 
 

a) Accuracy: 

The accuracy rate of the model developed is estimated 

through the: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶𝑈)

=
𝑇𝑟𝑢𝑃𝑠 + 𝑇𝑟𝑢𝑁𝑠

𝑇𝑟𝑢𝑃𝑠 + 𝑇𝑟𝑢𝑁𝑠 + 𝐹𝑎𝑙𝑃𝑠 + 𝐹𝑎𝑙𝑁𝑠
 

(1) 

 

where, ‘TruPs’ denotes the true-positives; ‘TruNs’ denotes the 

true-negatives; ‘FalPs’ denotes false-positives and ‘FalNs’ 

denotes false-negatives. 

 

b) Precision: 

The precision score of the model developed is estimated 

through: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒) =
𝑇𝑟𝑢𝑃𝑠

𝑇𝑟𝑢𝑃𝑠 + 𝐹𝑎𝑙𝑃𝑠
 (2) 

 

c) Recall: 

The recall rate of the model developed is estimated through: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑐) =
𝑇𝑟𝑢𝑃𝑠

𝑇𝑟𝑢𝑃𝑠 + 𝐹𝑎𝑙𝑁𝑠
 (3) 

 

d) F1-score: 

The f1-score for the model developed is estimated through: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐

(𝑃𝑟𝑒 + 𝑅𝑒𝑐)
 (4) 

By using the recall rate and precision rate the F1-score is 

estimated. 

 

e) Model performance analysis: 

The performance of the developed CAP model is evaluated 

through metric evaluation (refer to Table 3). The precision, f1-

score, recall, and accuracy are estimated for the 139 responses 

(i.e., support value): 

 

Table 3. Model training metric evaluation 

 

 Precision Recall 
F1-

Score 
Support 

Abnormal_ecg 0.96 0.86 0.91 28 

Abnormal_ecg&pcg 0.77 0.74 0.76 23 

Abnormal_pcg 0.85 0.96 0.90 23 

Normal_ecg 0.88 0.96 0.92 23 

Normal_ecg&pcg 0.62 0.59 0.61 17 

Normal_pcg 1.00 1.00 1.00 25 

Accuracy   0.86 139 

Macro avg 0.85 0.85 0.85 139 

Weighted avg 0.86 0.86 0.86 139 

 

Inference: Table 3 shows that the accuracy rate for the 

developed model is 86 %. Whereas, the highest precision score 

of the model was 96% (from abnormal ECG), the highest 

recall rate was at 96% (abnormal PCG and Normal ECG) and 

the highest F1-score was at 100% for Normal PCG signals. 

 

 

6. CONCLUSIONS 

 

The cardiac abnormalities through the ECG and PCG 

signals were initially examined through de-noising (EMD) and 

filtering (IMF) processes separately. Post decomposition and 

filtering the datasets are synchronized and they are integrated 

into a single graph plot with ECG and PCG overlapping each 

other. Based on the MSE error calculation and through 

obtained outcomes (PSNR) it is observed that the model was 

effective when the noise was reduced from 38Hz to 34Hz (i.e., 

4+Hz). Hence the metric evaluation of the model performance 

was estimated by calculating precision, accuracy, F1-score, 

and recall rates. 

The findings show that: 

 

- In the abnormal predictions the precision was found 

higher with 96% in abnormal ECG, recall with 96% in 

abnormal PCG and 76% with abnormal ECG and PCG. 

- In the normal predictions the precision was found 

higher with 100% in normal PCG, recall with 62% in 

normal ECG and PCG, and 96% with normal ECG. 

- The overall accuracy of the model was found to be 86%. 

 

The current model developed has employed 544 

simultaneous waveforms of ECG and PCG signals. In the 

future, the researchers have planned to enhance the 

performance of the model, through improving the model and 

bringing novelty to the current model. 
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