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With the rapid development of globalization and intelligent manufacturing, quality control 

issues in supply chain management have become increasingly prominent. In particular, how 

to efficiently and accurately detect product defects has become a key factor in improving 

product quality and production efficiency in manufacturing. Traditional manual inspection 

methods face challenges such as low accuracy, inefficiency, and high costs. Deep learning, 

as a powerful tool for automated inspection, has gradually become an important solution due 

to its advantages in image recognition. However, existing deep learning-based image 

recognition methods still have limitations in supply chain management applications, such as 

high computational resource demands and a lack of adaptability for lightweight products. 

These issues hinder the widespread adoption and application in real-world production 

environments. This paper aims to address these problems by proposing a lightweight product 

defect detection approach for supply chain management quality control and a corresponding 

deep learning model structure. First, the defect detection approach based on deep learning 

ensures efficient defect recognition while reducing the computational resource 

requirements. Secondly, a lightweight model structure is designed to optimize algorithm 

performance, making it suitable for quality control in real-time production environments. 

This research is expected to provide an efficient and practical technological solution for 

quality control in supply chain management and promote the application of deep learning 

technology in the industrial sector. 
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1. INTRODUCTION

With the advancement of globalization and digitalization, 

supply chain management plays an increasingly important role 

in the operation of modern enterprises [1-5]. In particular, in 

the manufacturing industry, product quality control directly 

affects a company's market competitiveness and brand 

reputation. Traditional quality control methods often rely on 

manual inspection and experience-based judgment, which face 

issues such as low efficiency, poor accuracy, and high costs 

[6-9]. In recent years, with the rapid development of deep 

learning technology, the application of image recognition in 

automated quality inspection has gradually become a new 

trend. By analyzing product images through deep learning 

models, defects can be identified efficiently and accurately, 

enabling real-time monitoring, which offers great potential for 

quality control in supply chain management. 

In supply chain management, timely detection and handling 

of product defects is a key factor in ensuring quality and 

production efficiency. As production scale expands and 

product varieties increase, how to achieve precise quality 

control while ensuring efficient production has become a 

significant challenge for enterprises. Deep learning-based 

image recognition technology, as an innovative solution, can 

effectively improve the accuracy and efficiency of product 

defect detection, reduce the need for human intervention, and 

be widely applied in various production environments [10-14]. 

Therefore, researching how to combine deep learning with 

quality control in supply chain management and exploring 

new technological paths has important theoretical and 

practical significance for enhancing the competitiveness of 

enterprises. 

However, there are still some shortcomings in the 

application of existing deep learning-based image recognition 

technology in supply chain management. First, traditional 

deep learning models often require large computational 

resources, which may not be ideal under the real-time 

requirements of production sites [15-18]. Second, most 

existing models are designed for large-scale and complex 

defect detection problems and lack adaptability for lightweight 

products, resulting in detection accuracy and efficiency that 

cannot meet specific needs [19-23]. In addition, many existing 

methods are overly complex in their model design, making it 

difficult to deploy them widely in supply chain management. 

Given these issues, designing a deep learning model that is 

both efficient and lightweight is a key problem that needs to 

be solved. 

This paper mainly focuses on quality control in supply chain 

management and proposes two key research contents. First, 

the paper discusses an approach for lightweight product defect 

detection, aiming to optimize deep learning models, reduce 

computational resource requirements, and improve detection 

efficiency. Second, the paper designs a lightweight defect 

detection model structure for supply chain management 
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quality control, aiming to improve algorithms and 

architectures to make them more suitable for practical 

production applications. Through these two studies, it is 

expected to provide an efficient, practical, and sustainable 

technological solution for quality control in supply chain 

management, promote the widespread application of deep 

learning in the industrial sector, and enhance enterprise 

production efficiency and product quality. 
 

 

2. LIGHTWEIGHT PRODUCT DEFECT DETECTION 

APPROACH FOR SUPPLY CHAIN MANAGEMENT 

QUALITY CONTROL 
 

In supply chain management, especially in the 

manufacturing field, product quality control is a key link in 

ensuring product qualification rates and production efficiency. 

However, traditional manual inspection and rule-based 

automated inspection methods often face issues such as high 

costs, low efficiency, and difficulty adapting to complex 

production environments. With breakthroughs in deep 

learning technology in the field of image recognition, its 

application in defect detection has gradually become an 

efficient solution. However, existing deep learning models 

usually require large computational resources and complex 

hardware support, which is not feasible in many production 

sites, especially when high real-time and efficiency 

requirements are needed for quality control. To address this 

issue, the lightweight deep learning model proposed in this 

paper aims to reduce the computational complexity and 

resource consumption of the model while ensuring high 

accuracy, making it more widely applicable for quality control 

in supply chain management. 

Traditional deep learning models, especially deep neural 

networks for image recognition tasks, typically have high 

computational complexity and large parameter sizes. This 

often leads to slow processing speeds and high hardware 

resource consumption in large-scale production scenarios, 

thereby affecting overall production efficiency. Particularly in 

supply chain management, rapid defect detection and real-time 

feedback are crucial, as any delay can lead to production line 

stoppage or the expansion of quality problems. To meet the 

strict requirements for efficiency, real-time performance, and 

resource consumption in actual production environments, this 

paper focuses on designing a lightweight product defect 

detection model for supply chain management quality control. 

By optimizing the model structure and reducing computation 

and memory consumption, the lightweight deep learning 

model can significantly improve processing speed, reduce 

dependence on high-performance hardware, and better meet 

the practical demands of production environments. 

 

2.1 Feature extraction based on spatial pyramid pooling 

(SPP) 

 

For product defect detection tasks in supply chain 

management, especially when dealing with defects of various 

shapes and sizes, traditional convolutional neural networks 

(CNN) often struggle to fully extract features at different 

scales. To optimize the feature extraction process, reduce 

computational workload, and improve model inference speed, 

this paper employs the module in the lightweight product 

defect detection model for supply chain management quality 

control, replacing the CSP1_X in the backbone network. SPP 

allows for feature extraction from both small and large defects 

by using pooling operations at different scales, making the 

model more robust when handling various types of defects. 

Additionally, this module reduces reliance on high-level 

convolutional features, lowering the model’s computational 

complexity and thus reducing inference time, which is critical 

for real-time monitoring and rapid feedback in large-scale 

production environments. 
 

 
 

Figure 1. SPP module network structure 
 

Figure 1 shows the network structure of the SPP module. 

The basic principle of the SPP module is to extract feature 

information at different scales through multi-scale pooling 

operations, thereby improving the accuracy of defect detection 

and simplifying the network structure. Unlike traditional 

single sliding window pooling methods, the SPP uses multiple 

pooling kernels of different sizes, such as 5×5, 9×9, and 13×13, 

for max pooling operations. This multi-scale design allows for 

a more comprehensive capture of defect features at different 

sizes within the image. By pooling different scaled regions of 

the input feature map and performing corresponding padding 

operations according to the kernel size, the pooled feature map 

maintains the same size as the original input feature map, 

avoiding issues with feature map size mismatches. After the 

fusion of these intermediate feature maps with the original 

feature maps, multi-scale local and global feature information 

is retained, which helps improve the accuracy of product 

defect recognition, particularly when facing defects of varying 

shapes and sizes, effectively enhancing the model's ability to 

recognize different types of defects. 

In the lightweight product defect detection model for supply 

chain management quality control, the above-mentioned SPP 

module offers two significant advantages. On one hand, SPP 

provides multiple levels of receptive fields, which can 

effectively enhance the recognition of small targets and 

defects that are similar to the background. In product defect 

detection, defect points often resemble the surrounding 

background or lines, making detection difficult. Through 

multi-scale pooling, SPP can capture feature information at 

different scales, enabling more accurate identification of these 

subtle defects that are similar to the background. This multi-

scale feature fusion helps improve the robustness and accuracy 

of the model in complex environments. On the other hand, the 

SPP module, while maintaining detection accuracy, adopts a 

lighter network structure, significantly reducing 

computational load. In practical production environments for 

supply chain management, product defect detection models 

must not only achieve high accuracy but also meet real-time 

and efficient requirements. SPP simplifies the original 

network structure and reduces reliance on deeper feature 

extraction layers, enabling the model to perform efficient 

inference with lower computational resources, ensuring quick 
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response and low latency. These two advantages make SPP an 

ideal choice for lightweight product defect detection models 

aimed at supply chain management quality control, as it 

improves detection accuracy while optimizing the model’s 

operational efficiency, meeting the dual requirements for 

speed and accuracy in industrial production. Let the feature 

output of the SPP network layer be denoted by aOP, and the 

concatenation operation be denoted by CAT. The fusion 

process of the SPP network is given by the following equation: 

 

( )

( ) ( )
5 5

9 9 13 13

, ,

,
OP

a POOL a
a CAT

POOL a POOL a



 

 
=  

 
 

 (1) 

 

2.2 Introduction of the CBAM attention mechanism 

 

Product defects typically occupy small areas in images and 

are easily confused with the surrounding background, 

especially in complex production environments. Capturing 

these subtle defects accurately is a significant challenge. To 

enhance the model’s attention to key defect regions, this paper 

introduces the Convolutional Block Attention Module 

(CBAM) attention mechanism in the lightweight product 

defect detection model for supply chain management quality 

control. CBAM optimizes feature maps adaptively by 

introducing attention mechanisms in both the channel and 

spatial dimensions, focusing on the most distinguishable parts 

of the image. In the channel domain, CBAM assigns larger 

weights to more relevant feature channels, thereby enhancing 

the feature information related to defects. In the spatial domain, 

CBAM further emphasizes the features of the defect area and 

weakens background noise, ensuring that the model can 

accurately detect small and subtle defects. Figure 2 shows the 

structure diagram of the CBAM attention mechanism. 

 

 
 

Figure 2. CBAM attention mechanism structure 

 

The core principle of the channel attention module in the 

CBAM attention mechanism is to calculate attention weights 

for each feature channel, enhancing the channels related to 

defects while suppressing less important channel information, 

thus optimizing the feature map representation. Figure 3 shows 

the structure of the channel attention module in the CBAM 

attention mechanism. During the workflow, the channel 

attention module first applies max pooling and average 

pooling operations on the input feature map to obtain the 

maximum and average values for each channel, then computes 

the mean and standard deviation for each channel through 

normalization to generate a set of statistical information for 

each channel. These statistical details are then processed by a 

multi-layer perceptron (MLP) to further improve feature 

extraction efficiency and generate the fused feature map. 

Afterward, the module computes the attention weights for each 

channel using the sigmoid activation function. These weights 

are multiplied with the original feature map to enhance 

important channels and suppress irrelevant channels. This 

process ensures that the model can focus on the channels that 

best represent defect features, particularly when dealing with 

subtle defects that are similar to the background, improving 

detection accuracy. Additionally, CBAM reduces 

computational complexity by compressing the spatial 

dimensions of the input feature map, ensuring the efficiency 

of the channel attention module and avoiding excessive 

computational burdens during large-scale data processing. Let 

the channel attention module be represented by Lz, the input 

feature information be denoted by D, and the sigmoid function 

be denoted by δ. The MLP weights Q0 and Q1 are shared, and 

the calculation process is given by the following equation: 
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Figure 3. Structure of the channel attention module in 

CBAM attention mechanism 

 

In the model, the spatial attention module of the CBAM 

attention mechanism aims to assess the importance of various 

spatial locations in the feature map, further enhancing the 

representation of defect regions. Figure 4 illustrates the 

structure of the spatial attention module in the CBAM 

attention mechanism. In the workflow, the spatial attention 

module first performs global max pooling and average pooling 

on the input feature map, obtaining the maximum and average 

values for each spatial location, respectively, thus reducing the 
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spatial dimensions of the feature map and extracting overall 

spatial features. Then, the pooled feature maps are 

concatenated and passed through a convolution layer to 

compute the attention weights for each spatial location. These 

spatial attention weights reflect the importance of various 

locations in the feature map, particularly in distinguishing 

between defect and background regions. Using the sigmoid 

activation function, the generated spatial attention weights are 

element-wise multiplied with the original feature map, 

enhancing defect-related regions and suppressing irrelevant 

regions, allowing the model to focus on key areas of defects 

and improve detection accuracy. Let the spatial attention 

operation be represented by LT, and the calculation process for 

the spatial attention module is given by: 
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Figure 4. Structure of the spatial attention module in CBAM 

attention mechanism 

 

The spatial attention module combined with the channel 

attention module sequentially optimizes both channel and 

spatial information in the feature map, helping the model more 

effectively detect small defects in images. This combination is 

particularly useful for supply chain management, as it enables 

more precise identification of defects that are complex in 

shape and resemble the background, significantly improving 

quality control detection accuracy. 
 

2.3 Introduction of residual networks to facilitate feature 

fusion 

 

Although SPP effectively expands the receptive field and 

improves detection capability for small targets, it can weaken 

the feature extraction ability of the model, especially when 

dealing with medium to large targets. To address this issue, 

this paper introduces the idea of residual networks and adds 

weighted branches to the shallow convolution features. 

Specifically, weighted branches are added before the 38×38 

and 19×19 output layers in the Neck module, aiming to extract 

low-level features from the shallow convolution layers of the 

backbone network and fuse them with higher-level features. 

Let the weighted feature output be denoted by ADDOP, and the 

feature fusion network before the introduction of the branches 

be denoted by D(a). The fusion formula is as follows: 

 

( ) ( )1OPADD D a J a J=  +  −  (4) 

 

INQ T=  (5) 

LIQ T H =  (6) 

 

1

1 H
J

e−
=

+
 (7) 

 

By fusing shallow and deep features and reconstructing the 

features using the CSP2_1 structure, the model can still 

achieve near or even superior detection accuracy compared to 

the original network, even with weaker feature extraction 

capabilities. This feature fusion strategy effectively 

compensates for the detection deficiencies of traditional 

methods when faced with complex defect images, allowing the 

model to provide more accurate detection results for defects of 

various sizes and types. 

 

 

3. LIGHTWEIGHT PRODUCT DEFECT DETECTION 

MODEL FOR SUPPLY CHAIN MANAGEMENT 

QUALITY CONTROL 

 

The proposed lightweight product defect detection model 

builds upon the YOLOv5s model framework. The structure of 

this model mainly consists of an input layer, backbone 

network, neck network, and output layer. Considering the 

quality control requirements in the supply chain, especially 

when processing product images with small defects, this paper 

replaces the original CSP1_X module in the backbone network 

with the SPP module. This design enhances the receptive field 

through multi-scale pooling operations, enabling the model to 

better capture defects of various scales, particularly small 

defects, and extract more comprehensive features. 

Furthermore, the introduction of the SPP module not only 

strengthens feature extraction capabilities but also simplifies 

the network structure, thereby reducing computational load 

and meeting the requirements of a lightweight model. Figure 

5 shows the network structure of the lightweight product 

defect detection model for supply chain management quality 

control. 

To further enhance the detection accuracy of small target 

defects, this paper introduces the CBAM attention mechanism 

in front of the 76×76 prediction channel. By weighting the 

channel and spatial dimensions of the feature map, CBAM 

effectively strengthens the features related to defects while 

suppressing irrelevant or background noise interference. This 

is especially beneficial for product quality control, as it helps 

the model more accurately detect small and subtle defects that 

are difficult to notice. This strategy not only improves 

detection accuracy but also ensures computational efficiency, 

avoiding excessive complex calculations. Additionally, 

weighted residual branches from the backbone network are 

introduced before the 38×38 and 19×19 prediction channels, 

effectively promoting multi-level feature fusion. With the 

design of the residual structure, the model is able to establish 

deeper connections between features at different levels, 

enhancing the network's learning capability and improving 

object detection accuracy. Finally, feature fusion is carried out 

through Feature Pyramid Networks (FPN) and Path 

Aggregation Networks (PAN), followed by concatenation and 

convolution operations to obtain the final output feature map. 

This ensures that the model can effectively recognize and 

detect product defects in the supply chain management process 

at multiple levels and scales, providing more precise quality 

control results. 
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Figure 5. Lightweight product defect detection model network structure for supply chain management quality control 
 

For the loss function, this paper adopts the original 

YOLOv5s loss structure, which includes classification loss, 

bounding box regression loss, and confidence loss. The 

classification loss is computed using binary cross-entropy, 

which is effective for classification tasks. For each class in the 

product defect images, the classification loss calculates the 

difference between the predicted result and the true label using 

the binary cross-entropy function, thus helping the model learn 

to assign defects to the correct categories more accurately. As 

defect types can vary greatly, optimizing the classification loss 

helps improve classification accuracy, ensuring that different 

defects can be quickly and accurately identified in product 

quality control. Let the weighting coefficients be denoted by x, 

y, and z. The overall YOLOv5s loss is defined as: 

 

FL HG ZXLOSS x LOSS y LOSS z LOSS=  +  +   (8) 

 

Assume that the number of categories in the dataset is 

represented by V, the probability of the predicted category 

after activation is denoted by eu, and the true value of the 

predicted category is represented by e*
u. The classification loss 

is defined as follows: 

 

( ) ( ) ( )
1

log 1 * log 1
V

FL u u u

v

LOSS e e e e

=

= − + − −  (9) 

 

The bounding box regression loss uses the Generalized 

Intersection over Union (GIoU) loss. Compared to traditional 

Intersection over Union (IoU) loss, GIoU loss is more robust. 

In product defect detection within supply chain management, 

the targets may appear in various shapes and sizes, and 

particularly when the defects are small or in complex 

backgrounds, traditional IoU loss might not accurately reflect 

the distance between the predicted and true bounding boxes. 

GIoU loss addresses this by introducing an external box to 

complement the IoU. It not only solves the issue of non-

intersecting boxes but also provides a valid loss value even 

when the predicted box is inside the true box. This makes 

GIoU loss more effective for regression training in more 

complex images, providing more precise localization 

information, especially for small target defects such as 

component surface flaws. Let the ground truth box be denoted 

by A, the predicted box by B, and the IoU calculation process 

is given by: 

 

A B
IoU

A B


=


 (10) 

 

The external box range is denoted by Z, and the area formed 

by concatenating the true and predicted boxes is T. The GIoU 

calculation process is: 

 

Z T
GIoU IoU

Z

−
= −  (11) 

 

The confidence loss is also calculated using binary cross-

entropy, similar to the classification loss. The primary task of 

confidence loss is to assess whether the predicted bounding 

box contains an object and quantify the probability of the 

object's presence. In product defect detection, especially in 

production lines, some defects may be difficult to detect or 

mistakenly identified as background noise. Therefore, precise 
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confidence estimation is critical. By optimizing confidence 

loss, the model can better identify regions with defects and 

effectively distinguish between the background and the objects, 

thereby avoiding false positives or missed detections. Overall 

speaking, by combining YOLOv5s’s classification loss, GIoU 

regression loss, and confidence loss, the lightweight product 

defect detection model proposed in this paper achieves higher 

precision while ensuring the stability and convergence speed 

of the training process. This model meets the real-time 

detection, rapid feedback, and high-precision demands of 

supply chain management, ultimately improving the 

efficiency and reliability of quality control. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From Table 1, it can be seen that there are certain 

differences in the Average Precision (AP) results of various 

detection models for different types of defects. For traditional 

deep learning models, Faster RCNN's AP results are stable 

across different defect types, with a maximum of 91.2%, but it 

slightly lags in some specific defect types (e.g., welding or 

connection defects with 88.9%). The SSD model performs 

better in surface defects, shape and size deviations, and 

material defects, achieving 92.5%. YOLO series models 

(including YOLOv3, YOLOv4, YOLOv5, etc.) show 

fluctuations in performance across different defect types. 

YOLOv4 and YOLOv5s demonstrate better detection 

accuracy, with 92.6% and 97.8%, respectively. The YOLOX 

model performs excellently with an overall AP of 98.9%, and 

performs well across various defect types, particularly 

reaching 99.9% for surface defects and assembly defects. The 

proposed model in this paper achieves an overall AP value of 

98.8%, comparable to YOLOX, and demonstrates balanced 

and excellent performance across various defects, especially 

for shape and size deviations, functional defects, and assembly 

defects, which are close to or above 97%, further improving 

detection efficiency and accuracy. 

 

Table 1. Average precision results of different product defect detection models 

 

Model 

AP/% 

Surface 

Defects 

Shape and Size 

Deviations 

Material 

Defects 

Welding or 

Connection Defects 

Functional 

Defects 

Assembly 

Defects 

Faster RCNN 91.2 91.2 91.2 88.9 91.2 91.2 

SSD 88.9 92.5 92.5 89.8 92.5 88.9 

YOLOv3 91.5 88.9 88.9 88.9 88.9 85.6 

YOLOv4 92.6 92.3 92.3 91.5 92.5 88.5 

YOLOv5s 97.8 97.8 97.8 98.9 98.9 97.8 

YOLOv5m 97.5 98.9 97.8 98.4 98.7 97.8 

YOLOX 98.9 98.9 99.9 98.5 98.5 99.9 

The proposed model 98.8 98.9 98.9 98.7 98.9 98.5 

Table 2. Precision results of different product defect 

detection models 

 

Model mAP0.5(%) mAP0.75(%) mAP0.5-0.95(%) 

Faster RCNN 91.5 73.2 55.65 

SSD 92.5 62.6 46.25 

YOLOv3 87.9 41.2 38.95 

YOLOv4 91.5 46.5 41.26 

YOLOv5s 97.8 82.3 62.32 

YOLOv5m 97.9 84.5 62.61 

YOLOX 98.9 87.9 62.58 

The proposed model 98.5 85.4 62.88 

 

From the precision results in Table 2, it can be observed that 

the proposed model in this paper demonstrates superior 

performance across multiple evaluation metrics (mAP@0.5, 

mAP@0.75, mAP@0.5-0.95), especially at mAP@0.5 (lower 

threshold) and mAP@0.75 (higher threshold). Specifically, 

the proposed model achieves 98.5% in mAP@0.5, close to 

YOLOX (98.9%), and higher than YOLOv5s (97.8%) and 

YOLOv5m (97.9%). At mAP@0.75, the proposed model’s 

precision is 85.4%, slightly lower than YOLOX (87.9%), but 

still higher than YOLOv5s (82.3%) and YOLOv5m (84.5%), 

indicating that it remains competitive under higher precision 

requirements. Finally, in the mAP@0.5-0.95 composite metric, 

the proposed model scores 62.88%, surpassing most other 

models (e.g., YOLOv4's 41.26%, YOLOv3's 38.95%) and is 

on par with YOLOX (62.58%). This demonstrates that the 

proposed model achieves very balanced and stable precision 

in the overall defect detection task, maintaining high detection 

performance across various precision requirements. 

 

Table 3. Comparison of lightweight performance of different 

product defect detection models 

 

Model Params(M) FLOPs(G) Inference(ms/img) 

Faster RCNN 42.52 92.51 35.62 

SSD 24.69 136.25 38.94 

YOLOv3 62.38 78.95 32.61 

YOLOv4 53.21 53.21 28.56 

YOLOv5s 7.26 15.69 2.2 

YOLOv5m 21.26 37.56 12.5 

YOLOX 8.89 21.23 14.5 

The proposed model 1.56 3.6 1.8 

 

From Table 3, it can be seen that the model proposed in this 

paper shows excellent lightweight performance, significantly 

outperforming traditional deep learning models. Specifically, 

the proposed model has only 1.56M parameters, 3.6G FLOPs, 

and an inference speed of 1.8ms/image. These values are much 

lower than Faster RCNN (42.52M parameters, 92.51G FLOPs, 

35.62ms inference time), SSD (24.69M parameters, 136.25G 

FLOPs, 38.94ms inference time), and other versions of YOLO 

(such as YOLOv5s with 7.26M parameters and YOLOX with 

8.89M parameters, although YOLOv5s has an inference speed 

of 2.2ms, its parameters and FLOPs are still significantly 

higher than those of the proposed model). In particular, the 

proposed model achieves the shortest inference time of 

1.8ms/image, demonstrating its advantage in real-time 

performance. Furthermore, the low FLOPs and parameter 

count indicate that the model not only competes with existing 

advanced models in terms of accuracy but also has a 

significant advantage in computational resource demand and 

inference efficiency. 
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Table 4. Experimental results of attention mechanism detector 

 

Model 

AP/% 

mAP0.5(%) Surface 

Flaws 

Shape and Size 

Deviations 

Material 

Defects 

Welding or 

Connection Defects 

Functional 

Defects 

Assembly 

Defects 

76×76 98.9 98.9 98.5 98.2 98.8 97.8 98.6 

38×38 97.8 99.5 97.6 98.9 98.5 97.6 97.5 

19×19 97.9 97.8 97.8 99.3 98.3 97.2 98.6 

From Table 4, the experimental results show that the 

detector with the attention mechanism exhibits relatively high 

detection accuracy and stability with different input sizes. First, 

with different input resolutions, both the AP values and 

mAP@0.5 values remain at a high level. Specifically, for the 

76×76 input size, the overall AP reaches 98.9%, and the AP 

values for all defect types are relatively balanced (Surface 

Flaws 98.9%, Welding or Connection Defects 97.8%, etc.). 

For smaller input sizes (38×38 and 19×19), although the 

overall AP and mAP@0.5 values slightly decrease, the 

detection accuracy for specific defect types remains high. 

Particularly, for welding or connection defects (98.9% for 

38×38 input, 99.3% for 19×19 input) and shape and size 

deviations (99.5% for 38×38 input, 97.8% for 19×19 input), 

very stable performance is maintained. This suggests that the 

attention mechanism has good adaptability to different input 

sizes and can effectively improve the model's local feature 

learning and detection accuracy. 

 

 
 

Figure 6. Learning rate comparison of the proposed model in 

product defect detection 

 

Based on the learning rate comparison data in Figure 6, it 

can be observed that the learning rate of the proposed model 

changes over different iterations. Overall, as the number of 

iterations increases, the learning rate gradually stabilizes and 

flattens. In the initial iterations (e.g., after 17, 34, and 67 

iterations), the learning rate is low (0.72, 0.75, and 0.84, 

respectively), indicating the model's gradual adaptation during 

the early stages of training. After more than 100 iterations, the 

rate of increase in the learning rate starts to slow down, and it 

stabilizes at around 0.875 after 500 iterations. Subsequent 

iterations (e.g., after 900 iterations) keep the learning rate at 

nearly 0.89, with minimal fluctuations or decay. Specifically, 

between the 100th and 1000th iterations, the learning rate 

changes stabilize and remain at a high level without significant 

fluctuations or reductions. This indicates that the model has 

gradually optimized during the training process and entered a 

more stable phase of training. 

 

 
 

Figure 7. Product defect detection effect examples 

 

From the experimental results shown in Figure 7, the 

lightweight defect detection model proposed in this paper 

demonstrates excellent results in detecting multiple defect 

types. Particularly, in quality control tasks within supply chain 

management, the model exhibits high detection accuracy and 

efficiency. Moreover, the mAP@0.5 value of the proposed 

model remains stable, consistently maintaining a high level at 

different stages of iteration, indicating that the model has good 

overall performance in multi-class defect detection. Especially 

in environments with limited computational resources, the 

model can maintain high accuracy and detection efficiency 

through optimization algorithms, meeting the requirements for 

lightweight and real-time detection. 

 

 

5. CONCLUSION 

 

This paper proposed a lightweight deep learning product 

defect detection method targeting quality control in supply 

chain management and designed a corresponding model 

architecture to optimize computational resource consumption 

and improve detection efficiency. By optimizing the deep 

learning model, this paper effectively reduced the 

computational resource demands while maintaining high 

detection accuracy, thus enhancing model operational 

efficiency, especially in resource-constrained real-world 

production environments. The experimental results show that 

the proposed lightweight defect detection model excels in 

detecting various defect categories, such as surface flaws, 

shape and size deviations, and welding defects, and can 

achieve efficient and accurate product defect detection. This 

provides a practical solution for quality control in supply chain 

management. Through rational architecture design and 

training strategies, the model is stable in various practical 

application scenarios, demonstrating excellent performance, 

meeting both the accuracy and speed requirements of 

industrial production. Overall, this research provides a new 
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approach and practical method for quality control in supply 

chain management, particularly in the field of lightweight 

defect detection, with significant research value. Through 

continuous algorithm optimization and practical application 

validation, future research is expected to achieve greater 

breakthroughs in accuracy, efficiency, and applicability, 

advancing the development of intelligent quality detection 

technology in the industrial field. 

However, this research also has certain limitations. First, 

although the proposed model demonstrates good performance 

in the experiments, its stability and real-time performance in 

extreme environments (such as large-scale data processing, 

multi-task parallelism, etc.) need further verification. Second, 

while the model performs well in detecting multiple defect 

types, there may still be limitations in recognizing certain 

special types of defects (such as microscopic defects or 

complex textures). Future research can focus on the following 

directions: on one hand, further optimizing the model 

architecture and algorithms to enhance its ability to detect 

complex and small defects; on the other hand, exploring more 

lightweight deep learning techniques, such as neural network 

quantization and knowledge distillation, to further reduce 

computational resource consumption and improve the model's 

applicability on different hardware platforms. Additionally, 

conducting larger-scale and longer-duration tests and 

validations with real production environment data will help 

further improve the model's robustness and practicality. 
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