
A Novel Real-Time Text-to-Speech System Using Raspberry Pi for Assisting the Visually

Impaired

Ahmed Ben Atitallah1* , Manel Kammoun2 , Mohamed Amin Ben Atitallah2,3 , Mohammed Albekairi1 ,

Yahia Said4,5 , Anis Boudabous6 , Khaled Kaaniche1 , Mohamed Atri7

1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
2 LETI, ENIS, University of Sfax, Sfax 3029, Tunisia
3 Laboratory of Informatics, Gaspard-Monge, A3SI, ESIEE Paris, CNRS, Gustave Eiffel University, Noisy-le-Grand BP 99

93162 Cedex, France
4 Remote Sensing Unit, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
5 Laboratory of Electronics and Microelectronics (LR99ES30), University of Monastir, Monastir 5019, Tunisia
6 Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka

72388, Saudi Arabia
7 College of Computer Sciences, King Khalid University, Abha 11614, Saudi Arabia

Corresponding Author Email: abenatitallah@ju.edu.sa

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410634 ABSTRACT

Received: 5 January 2024

Revised: 15 September 2024

Accepted: 20 November 2024

Available online: 31 December 2024

Visual impairment is one of the most significant challenges facing humanity, especially in

an era where information is frequently conveyed through text rather than voice. To address

this, the proposed system is designed to assist individuals with visual impairments. This

paper presents the development of a real-time Text-to-Speech (TTS) embedded system

based on the Raspberry Pi 4. Our system incorporates a novel approach to enhance the

accuracy of text recognition using Optical Character Recognition (OCR) from images.

Specifically, a series of preprocessing steps are employed, selected dynamically by a

decision-making process based on the content of the image. The image processing is handled

using OpenCV2, while the conversion of text to speech is achieved through the pyttsx3

Python library. The entire system is implemented and tested on a Raspberry Pi 4, connected

to a USB Full HD camera for high-resolution image acquisition, and controlled via the

Traffic HAT-LED module. Experimental results demonstrate that our system achieves a

minimum accuracy of 88.33% in text recognition from images.

Keywords:

image preprocessing, visual impairment,

Raspberry Pi 4, text-to-speech, optical

character recognition, real-time processing

1. INTRODUCTION

People with visual impairments, also referred to as visually

impaired or visually disabled individuals, have varying

degrees of vision loss that can range from mild to complete

blindness. Visual impairments can be caused by a variety of

factors, including congenital conditions, acquired diseases,

injuries, or age-related changes. Visual impairments can pose

significant challenges to individuals in their daily lives,

especially when it comes to accessing printed text. In this

context, text recognition in real-time scenarios, such as

capturing text from live video streams or on-the-fly

recognition from mobile devices, can be challenging. In fact,

the algorithm requests to process the video frames quickly

while maintaining accuracy. Fortunately, advancements in

technology have opened up new avenues for overcoming these

challenges. In fact, Zaman et al. [1] proposed a portable virtual

text reader based on the Raspberry Pi 3. This reader captures

the image from the camera through the graphical user

interface. Then the captured image is passed to the Optical

Character Recognition (OCR) for text detection and

recognition. In the end, the eSpeak software is used to convert

the text to audio format. Sarkar et al. [2] presented a smart

reader for the visually impaired using the Raspberry Pi B+. In

this work, the authors used MATLAB to recognize the text

from the captured image and converted it into speech using the

Text-to-Speech (TTS) synthesizer. In study [3], a text reader

system for blind people using the Raspberry Pi 3B and camera

module was presented. The proposed system used the OCR

and the convolutional recurrent neural network to detect,

localize, and extract the text, and pyttsx3 for the text to speech

conversion. The proposed system lacked real-time operation.

The Tesseract OCR engine, Google Speech API, and

Microsoft Translator concepts were used to design the device

by Rithika and Santhoshi [4]. The system failed with high

accuracy. Velmurugan et al. [5] used the image processing

toolbox to simulate their system in MATLAB and discovered

that the algorithm successfully processed the image and

clearly interpreted it. Gurav et al. [6] modeled an OCR-based

system utilizing computer software and a photoelectric device.

Despite being a successful assistive device for visually

impaired people, the model turned out to be quite noisy, which

is a major drawback. Chavan et al. [7] utilized Tesseract OCR

and OpenCV2 to extract text from scanned images, which was

Traitement du Signal
Vol. 41, No. 6, December, 2024, pp. 3183-3192

Journal homepage: http://iieta.org/journals/ts

3183

https://orcid.org/0000-0002-2121-4417
https://orcid.org/0000-0002-9464-0003
https://orcid.org/0000-0002-2121-4417
https://orcid.org/0000-0002-5165-5950
https://orcid.org/0000-0003-0613-4037
https://orcid.org/0000-0002-5488-2382
https://orcid.org/0000-0003-0625-6245
https://orcid.org/0000-0001-8528-5647
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410634&domain=pdf

then converted into voice using Google Text to Voice. This

enabled individuals with visual impairments to read the text.

This work presents a novel approach for real-time

conversion of text contained in images and videos into speech.

We specifically designed the method to aid individuals with

visual impairments. In fact, our methodology relies on several

preprocessing steps, including image resizing, noise reduction,

and binarization. In addition, we integrate a decision-making

procedure to choose the most efficient preprocessing methods

for enhancing the precision of text detection, extraction, and

recognition using the Tesseract OCR. For converting the Text-

to-Speech (TTS), the pyttsx3 Python library is used. Further,

our approach is implemented and evaluated on the Raspberry

Pi 4 board, which is connected to the USB Full HD camera for

capturing image and video and to the Traffic HAT-LED card

for controlling the system. Our innovation lies in the

development of a highly accurate and real-time TTS

embedded system utilizing a Raspberry Pi 4 and a Full HD

camera. What sets our system apart is its integration of a

decision-based preprocessing step, which dynamically selects

the most appropriate techniques—such as rescaling, noise

removal, and binarization—based on the content of the image.

This approach significantly improves OCR accuracy

compared to existing methods. Moreover, the real-time

performance, facilitated by the Raspberry Pi 4 and the Full HD

camera, offers a more responsive and user-friendly experience

for visually impaired individuals, distinguishing our system

from current solutions.

The rest of paper is organized as follows: Section 2 provides

an overview of the Tesseract OCR. Section 3 describes our

proposed approach for text detection, extraction, and

recognition. Section 4 illustrates the development of our TTS

embedded system based on the Raspberry Pi 4. The evaluation

of our system is presented in section 5. The paper is concluded

by Section 6.

2. TESSERACT OCR OVERVIEW

In the recent years, there has been an increased focus on

finding solutions for the challenges associated with finding

and understanding text embedded in images and videos.

Indeed, factors like complex backgrounds, diverse text layouts

and fonts, uneven lighting, low resolution, and the presence of

multilingual content make the task significantly more

challenging compared to working with clean and well-

structured documents. Addressing these issues requires the

utilization of advanced computer vision and pattern

recognition techniques [8-11]. Various methods, including the

widely used Tesseract OCR, have been proposed to tackle the

problem of text detection and recognition in scene imagery.

The Tesseract OCR [12, 13], originally developed by

Google, is an open-source software library that has gained

substantial popularity. Its primary purpose is to extract text

from images, making it a widely utilized tool for various tasks,

including document scanning, automated data entry, and text

recognition in numerous applications. To achieve accurate

results, the Tesseract OCR employs a multi-step process, as

shown in Figure 1, that enables it to recognize and extract text

effectively from an input image. However, adaptive

thresholding is the first step in Tesseract OCR. It involves

converting the input image into binary images. The purpose of

this step is to create a clear distinction between the foreground

(text) and background in the image. The next step is connected

component analysis. This analysis is employed to extract the

outlines of individual characters. Once the outlines are

obtained, they are converted into blobs. These blobs are then

organized into text lines, where the text elements are grouped

together based on their spatial arrangement. After that, each

text line is chopped into words by dividing the text based on

definite spaces and fuzzy spaces. This process helps segment

the text into meaningful units for recognition. The recognition

of text is performed as a two-pass process, as illustrated in

Figure 1. In the first pass, Tesseract OCR attempts to

recognize each word in the segmented text. Words that are

recognized with a satisfactory level of confidence on the first

pass are considered successful recognitions. However, if a

word is not recognized accurately in the first pass, it moves on

to Pass 2 for further processing. The purpose of the second

pass is to improve the recognition accuracy for the words that

were initially challenging for Tesseract OCR. Finally, the

recognized text is presented in the output.

Adaptive threshold

Connected component

analysis

Find lines and words

Word recognition

(Pass1)

Word recognition

(Pass2)

Input image

Recognized text

from image

Figure 1. Block diagram of the Tesseract OCR

Tesseract's performance can be significantly impacted by

some input picture characteristics (such as blurring, color

contrasts, etc.) despite the numerous improvements. In fact, as

shown in reference [14], even little salt-and-pepper noise can

make Tesseract OCR less effective to the point that text from

perfect samples is not recognized at all or results in

segmentation mistakes. For that, we propose in next section to

enhance the performance of Tesseract OCR.

3. TESSERACT OCR ENHANCEMENT

3.1 Proposed approach

In this section, we propose a new approach to improve the

accuracy of the Tesseract OCR engine by implementing a

3184

series of preprocessing steps on the input image, as depicted

on Figure 2, before it undergoes text recognition. These

preprocessing steps are carefully selected to address common

challenges in OCR, such as poor resolution, noise, and contrast

issues. Each step contributes to improving the clarity and

quality of the input image, which in turn enhances the OCR’s

ability to accurately recognize text. In the following

subsection, we will provide a comprehensive explanation of

each preprocessing step, including the reasoning for their

selection and their impact on the overall performance of the

system.

Decision based

OCR accuracy

Start

Resize the

image (x2)

Text recognition

End

Image size>

640x480 pixels

Convert into

grayscale

Closing morphological

operation

MedianBlur

(3x3)

GaussianBlur

(3x3)

Binarisation Binarisation

No

Yes

Figure 2. Block diagram of the suggested approach

3.1.1 Rescaling of image

Our approach begins by increasing the size of the images by

two when its dimensions is equal to 640×480 pixels or less. In

fact, the smaller images frequently contain text that is too

small to be accurately detected and recognized by the OCR

engine. However, by enlarging the image, we increase the text

size, making it easier to read and lowering the risk of losing

text detail during OCR processing. Consequently, this stage is

especially important for images captured with low-resolution

cameras, as text may appear pixelated or blurry at its original

size. As a result, rescaling improves OCR accuracy by making

the text clearer and more legible.

3.1.2 Conversion to grayscale

After rescaling, the image is converted to grayscale. Indeed,

this step simplifies the image by removing color information,

which reduces the complexity that the OCR engine needs to

process. Nevertheless, grayscale images provide better

contrast between the text and the background compared to

color images, especially when the background is complex or

multicolored. By focusing only on the luminance of the pixels,

the OCR engine can more easily distinguish text from its

surroundings, which enhances text detection and recognition

accuracy.

3.1.3 Closing morphological operation

The next preprocessing step is the application of the closing

morphological operation [15]. Indeed, this technique is a

combination of dilation followed by erosion, using a 3×3

kernel. However, the aim of this operation is to close small

gaps and fill in holes within the text regions of the image. In

fact, dilation expands the boundaries of objects in the image,

which helps to connect broken parts of the text. Then, the

erosion contracts these boundaries to remove any excess

expansion caused by dilation. Thereby, this step is particularly

effective in cleaning up the text regions by removing small

imperfections and making the text more uniform allowing to

improve the OCR’s ability to segment and recognize

individual characters accurately.

3.1.4 Noise reduction via median and gaussian blurring

To further enhance image quality, we apply two noise

reduction techniques—median blurring and gaussian

blurring—each followed by a binarization step [16, 17].

Nevertheless, the median blurring is a non-linear filtering

technique that is effective in removing salt-and-pepper noise

while preserving the sharpness of edges. This is achieved by

replacing each pixel value with the median value of its

neighboring pixels, which helps to remove isolated noise

points without significantly blurring the text edges. In contrast,

the gaussian blurring is a linear filtering technique that reduces

high-frequency noise by averaging the pixel values in the

neighborhood of each pixel. This weighted averaging process

smooths out the image while preserving the overall structure

and details, making it particularly useful for reducing noise in

areas with gradual intensity variations.

3.1.5 Binarization using Otsu's method

The final step in our approach is the binarization, which

converts the grayscale image into a binary image where the

text appears as black pixels on a white background. In fact, we

use Otsu’s method [18, 19] for this step, which automatically

determines the optimal threshold value that minimizes the

intra-class variance (the variance within the text and

background regions) while maximizing the inter-class

variance (the difference between the text and background).

This method is particularly effective in ensuring that the text

is clearly separated from the background, even in images with

varying lighting conditions or complex backgrounds.

Therefore, binarization simplifies the image for the OCR

engine, allowing it to focus on the text without being distracted

by background noise or color variations.

3.1.6 Dynamic decision-making process

Our approach includes a decision-making process to

dynamically select the most appropriate preprocessing

techniques based on the content of the image. For instance, the

system may choose between median and gaussian blurring

depending on which technique yields higher OCR accuracy for

a given image. This adaptability ensures that our approach is

tailored to the specific characteristics of each image, thereby

3185

maximizing the OCR performance.

By combining these preprocessing techniques, our proposed

approach optimizes the input image for Tesseract OCR,

leading to significant improvements in text recognition

accuracy. The experimental results, discussed in the next

subsection, demonstrate the effectiveness of our approach in

various test scenarios.

3.2 Experimental results

In order to evaluate the performance of our proposed

approach for text detection and recognition from complex

color images, several images from the International

Conference on Document Analysis and Recognition (ICDAR)

database [20, 21] are utilized, as depicted in Figure 3. This

dataset includes a variety of texts with differing levels of

complexity (e.g., different scenes, light, orientation, and pixel

sizes). The performance evaluation of our proposed approach

is realized in terms of the Tesseract OCR accuracy and the

execution time, which are provided on the Intel i7-

1165G7@2.80 GHz processor.

In our experiment, the preprocessing techniques (e.g.,

rescale image, closing morphological operation, median

blurring, and gaussian blurring) are incrementally added to our

flow to study their impact on the accuracy of recognizing text

from complex images through Tesseract OCR. The results of

our experiment are recorded in Tables 1 and 2 for the

comparison of Tesseract OCR accuracy and execution time,

respectively, and Figure 4 for showing the recognized text.

Figure 3. ICDAR dataset test image

Table 1. Comparison of the Tesseract OCR accuracy

Tesseract OCR

Engine

Rescale Image

by 2

Closing Morphological

Operation

Median

Blurring

Gaussian

Blurring

Proposed

Approach

Image 1 60.83% 60.83% 89.67% 90.5% 95.17% 95.17%

Image 2 23.85% 23.85% 55.5% 88.33% 87.8% 88.33%

Image 3 0% 64% 32% 87.67% 95.67% 95.67%

Image 4 63% 29% 95.33% 95.67% 95.67% 95.67%

Image 5 31.66% 31.66% 87.67% 94.67% 91.333 94.67%

Image 6 0% 96% 89.500 88.5% 91% 91%

Image 7 48% 0% 0% 96% 48% 96%

Table 2. Comparison of the execution time in seconds

Tesseract

OCR

Rescale Image by

2

Closing

Morphological

Operation

Median

Blurring

Gaussian

Blurring

Proposed

Approach

Image 1 0.384282 0.384394 0.318900 0.206311 0.205457 0.336051

Image 2 0.491994 0.490532 0.436517 0.238606 0.294120 0.408177

Image 3 0.178613 0.319863 0.336656 0.223150 0.235849 0.365757

Image 4 0.230687 0.483995 0.365979 0.206493 0.198623 0.339695

Image 5 0.334723 0.304162 0.249007 0.165266 0.172932 0.268753

Image 6 0.201328 0.433023 0.392255 0.224419 0.232477 0.424364

Image 7 0.200486 0.378631 0.350625 0.266602 0.223872 0.420371

3.2.1 OCR performance

Without any preprocessing, we applied the Tesseract OCR

engine directly to the images. The results, presented in Table

1, demonstrate that the OCR accuracy is significantly lower

when no preprocessing is applied, with many images showing

poor text recognition, particularly in cases of low resolution,

noise, or complex backgrounds as depicted in Figure 4(a).

3.2.2 Impact of preprocessing techniques

To determine the impact of each preprocessing step, in our

3186

experiment, we incrementally applied the techniques

described in Section 3.1 and measured their effect on OCR

accuracy and execution time:

-Rescaling enhanced the OCR accuracy in image 3 from 0%

to 64%, as shown in Table 1 and Figure 4(b), and similarly

improved performance in other low-resolution images. This

demonstrates that increasing the image size allows Tesseract

OCR to recognize smaller text more effectively by making the

characters clearer. However, this improvement comes with the

drawback of doubling the execution time.

-While grayscale conversion alone did not significantly

change the accuracy and the execution time, it set the stage for

further preprocessing steps by simplifying the image and

improving contrast, which indirectly contributed to higher

accuracy when combined with subsequent steps.

-The closing morphological operation significantly

improved text recognition, especially in images with gaps or

broken characters. For example, in Image 5, accuracy

increased from 31.66% to 87.67% after applying the operation,

as shown in Table 1 and Figure 4(c). This demonstrates the

effectiveness of morphological techniques in enhancing text

continuity by filling small gaps that hinder character

recognition. Additionally, Table 2 indicates that this step

reduces the Tesseract OCR execution time by an average of

18%.

-The median blurring step was highly effective in

eliminating salt-and-pepper noise, which often occurs in

scanned documents or low-light images. In image 7, where

noise was a major problem, median blurring raised OCR

accuracy from 0% to 96%, as shown in Table 1. This method

is vital for preserving edge sharpness while reducing noise, as

illustrated in Figure 4(d). Additionally, it reduced the time

required for Tesseract OCR to recognize the text by an average

of 35%.

-Gaussian blurring proved more effective than median

blurring in handling images with gradual intensity variations,

such as shadows or uneven lighting. For instance, in image 3,

Gaussian blurring boosted OCR accuracy from 32% to

95.67%, as displayed in Table 1. This technique smooths the

image, making the text more distinct against inconsistent

backgrounds, as shown in Figure 4(e). Additionally, it reduced

the execution time required for Tesseract OCR to recognize

the text by an average of 35%.

Figure 4. Text recognition accuracy by (a) Tesseract OCR engine only, (b) adding image rescale, (c) adding closing

morphological operation, (d) adding median blurring, (e) using gaussian instead of median blurring and (f) proposed approach

3187

3.2.3 Proposed approach performance

After evaluating each preprocessing step, we applied the

complete preprocessing steps, which includes rescaling,

grayscale conversion, closing morphological operation,

median/gaussian blurring, and binarization. The results, as

shown in Table 1, indicate that the combined approach

significantly outperforms the individual OCR step. Thus, in

the worst case, our proposed approach can enhance the OCR

accuracy by 34% relative to the Tesseract OCR engine with a

small increase in execution time by 21%. In light of the above

findings, the image preprocessing techniques proposed in our

approach lead to high reliability and accuracy in the

recognized text.

3.2.4 Case studies

We conducted in-depth analyses of specific images that

posed particular challenges to Tesseract OCR, such as:

-Image 3 (Low-Resolution Text): This image initially had

0% accuracy without preprocessing. After applying the

complete preprocessing steps, accuracy improved from 0% to

95.67%, demonstrating the effectiveness of the preprocessing

steps in enhancing text visibility and recognition.

-Image 7 (Noisy Background): Median blurring proved to

be the most effective for this image, boosting accuracy from

48% to 96%, thereby showcasing the importance of noise

reduction techniques in OCR preprocessing.

4. TEXT-TO-SPEECH EMBEDDED SYSTEM

Figure 5 presents the block diagram of the proposed Text-

to-Speech (TTS) embedded system.

Controller

Raspberry Pi 4Camera

Screen

Speaker

Figure 5. Block diagram of the TTS embedded system

The heart of our proposed system is the Raspberry Pi 4

board. This board receives the video stream from the USB

camera, processes the video frame to detect and recognize the

text that is displayed on the screen, and then translates it into

speech for hearing it through the speaker. The controller

allows to synchronize the operation of our system.

4.1 TTS system based raspberry Pi

The Raspberry Pi 4 board [22] (Figure 6) is a versatile and

affordable single-board computer that is widely used for

prototyping, home automation, media centers, and various

other IoT applications. In fact, it offers significant

improvements in terms of performance, connectivity, and

features compared to its predecessors. The Raspberry Pi 4

board is powered by a Broadcom BCM2711 quad-core

Cortex-A72 (ARMv8) 64-bit System-on-Chip (SoC) running

at 1.5 GHz. This processor provides a substantial performance

boost over the previous models. It is available in three RAM

variants: 2 GB, 4 GB, and 8 GB LPDDR4-3200 SDRAM. The

increased memory capacity allows for more demanding

applications and multitasking.

Figure 6. Raspberry Pi 4 board

3188

Figure 7. Logitech C922 Stream Full HD camera

Figure 8. Traffic HAT - LED module for Raspberry Pi

The Raspberry Pi 4 board uses a microSD card slot for

primary storage. It also features two USB 3.0 ports and two

USB 2.0 ports, which can be used for external storage devices.

Further, this board retains the 40-pin GPIO header, as depicted

in Figure 6, which allows for interfacing with a wide range of

electronic components and expansion boards, making it

suitable for prototyping. Moreover, the Raspberry Pi 4 is

compatible with various Operating Systems (OS), including

the official Raspberry Pi OS, Ubuntu, and many OS

distributions.

The Logitech C922 camera (Figure 7) provides the video

feed to the TTS embedded system. For maximum video

throughput, this camera is attached to the Raspberry Pi 4

through a USB connection. In addition, the Traffic HAT board

is used to control the whole system. In fact, as shown in Figure

8, this board contains Red, Orange and Green LEDs and one

button. The LEDs provides the status (ready or busy) of TTS

embedded system. But, the button allows to go from step to

other step. Figure 9 depicts TTS controller block diagram.

However, at the beginning, our TTS system initiates the

video stream and detects the blur in the video frame, as

illustrated by Figure 9.

Indeed, the blur decreases the quality of the frame, which

has a negative impact on the detection and recognition of the

text. For this, the fast Fourier transform blur detector [23] is

applied to the video frame to detect whether the image is

blurred or not. So, if the frame is blurred, the TTS system gets

another frame from the video stream; if not, it will go to the

next step. In this step, the button on the Traffic HAT board

should be pushed to capture the frame, which is processed by

the steps indicated in Figure 2 to detect and recognize the text.

Then, this text is converted to speech using the pyttsx3 Python

library. In the end, the button on the Traffic HAT board should

be pushed again to restart the TTS system and capture another

frame.

Starting video

streaming

Video streaming

Verify that the HAT

button is depressed

Start

Preprocessing

Detect and recognize

the text

Text-to-Speech

conversion

Verify that the HAT

button is depressed

No

No

Yes

Take an image using

the camera

 Blur Detection in

Video Streams

No

Yes

End

Yes

Figure 9. TTS controller block diagram

4.2 System evaluation

Figure 10 presents our prototype of the TTS embedded

system. Our prototype contains the touch screen, Logitech

C922 Stream Full HD camera, the Traffic HAT board and a

speaker which are connected to the Raspberry Pi 4 board

through the Input/Output connectors. The Raspberry Pi 4

board is the heart of our prototype and used to execute the

Python software code in order to control the whole system.

3189

Figure 10. Prototype of the TTS embedded system

The performance evaluation of our prototype is realized by

using several test images from the ICDAR database as

depicted by Figure 11. However, Figures11(a and b) present

the detection of the blurry and not blurry images, respectively.

But, Figure 11(c) illustrates the detection and the recognition

of the text from the not burry image. In fact, as shown in Figure

11(c) all word in the test images is detected correctly without

any error. In other side, no words are detected from blurry

image. These results prove the reliability and the efficiency of

our prototype to detect and recognize the text from video

frame and transform it into the speech.

Our text-to-speech system built on the Raspberry Pi 4 can

greatly improve quality of life for the visually impaired by

increasing access to information. This affordable, energy-

efficient system bridges the divide between print and digital

material. By enabling independence and inclusion, it promotes

equity. The Raspberry Pi 4 provides a familiar development

platform to create accessible assistive technologies for this

community. Overall, this TTS system has the potential to

empower people with visual disabilities.

Figure 11. Performance evaluation of the TTS system for (a) blurry image, (b) not blurry image and (c) the detected and

recognized text from video frame

4.3 Practical aspects of deploying our TTS embedded

system in real-world scenarios

To successfully deploy our TTS embedded system in real-

world environments, several practical considerations must be

addressed:

4.3.1 Usability for end-users

As the system is designed for visually impaired users,

ensuring ease of interaction is crucial. Intuitive, non-visual

interfaces such as voice commands will greatly enhance user

accessibility. This will allow users to seamlessly interact with

the system without requiring visual input, making it suitable

for daily use.

4.3.2 Energy efficiency and portability

For mobile and outdoor use, energy efficiency becomes a

vital factor. While the Raspberry Pi 4 is an energy-efficient

platform, the system's battery life must be optimized for

continuous operation. Utilizing low-power components like

cameras can extend the system’s usability in portable settings.

3190

4.3.3 Durability and maintenance

In real-world applications, especially outdoor or mobile

deployments, hardware durability is crucial. Protective

enclosures for the Raspberry Pi and camera should be used to

safeguard against environmental factors like dust, moisture,

and accidental drops. This will ensure the system’s longevity

and reduce maintenance needs.

4.3.4 Connectivity and data management

Depending on the deployment scenario, the system may

need to support data storage, transmission, or updates.

Incorporating wireless capabilities (e.g., Wi-Fi, Bluetooth)

would allow for remote updates, integration with other

assistive technologies, and cloud-based data management.

5. CONCLUSIONS

In this paper, a real-time TTS embedded system is designed

and evaluated to assist people with visual impairments. Our

embedded system is based on the Raspberry Pi 4 and a Full

HD camera. It integrates a new approach that is based on

preprocessing and decision steps in order to increase the

accuracy for detection, extraction, and recognition of the text

by the OCR from an image or video. In addition, it uses the

pyttsx3 Python library to convert the text to speech. The

validation of our prototype has shown that our system allows

users to listen to the recognized text in a natural voice. This

auditory feedback enhances the reading experience for the

visually impaired. In the end, we can conclude that our real-

time text recognition system based on the Raspberry Pi 4 is a

remarkable technological advancement that holds great

promise for the visually impaired community. Its portability

and real-time capabilities make it a valuable tool for enhancing

accessibility and independence and empowering individuals

with visual impairments to thrive in a sighted world.

ACKNOWLEDGMENTS

This work was funded by the Deanship of Graduate Studies

and Scientific Research at Jouf University under (Grant No.:

DGSSR-2024-02-02141).

REFERENCES

[1] Zaman, H.U., Mahmood, S., Hossain, S., Shovon, I.I.

(2018). Python based portable virtual text reader. In 2018

Fourth International Conference on Advances in

Computing, Communication & Automation (ICACCA),

Subang Jaya, Malaysia, pp. 1-6.

https://doi.org/10.1109/ICACCAF.2018.8776778

[2] Sarkar, S., Pansare, G., Patel, B., Gupta, A., Chauhan, A.,

Yadav, R. (2021). Smart reader for visually impaired

using raspberry Pi. IOP Conference Series: Materials

Science and Engineering, 1132: 012032.

https://doi.org/10.1088/1757-899X/1132/1/012032

[3] Shah, T., Parshionikar, S. (2019). Efficient portable

camera based text to speech converter for blind person.

In 2019 International Conference on Intelligent

Sustainable Systems (ICISS), Palladam, India, pp. 353-

358. https://doi.org/10.1109/ISS1.2019.8907995

[4] Rithika, H., Santhoshi, B.N. (2016). Image text to speech

conversion in the desired language by translating with

Raspberry Pi. In 2016 IEEE International Conference on

Computational Intelligence and Computing Research

(ICCIC), Chennai, India, pp. 1-4.

https://doi.org/10.1109/ICCIC.2016.7919526

[5] Velmurugan, D., Srilakshmi, Umamaheswari, S.,

Parthsarathy, S., Arun, K.R. (2016). Hardware

implementation of smart reader for visually impaired

people using Raspberry PI. International Journal of

Advanced Research in Electrical, Electronics and

Instrumentation Engineering, 5(3): 2055-2063.

https://doi.org/10.15662/IJAREEIE.2015.0503132

[6] Gurav, M.D., Salimath, S.S., Hatti, S.B., Byakod, V.I.,

Kanade, S. (2017). B-LIGHT: A reading aid for the blind

people using OCR and OpenCV. International Journal of

Scientific Research Engineering & Technology, 6(5):

546-548.

[7] Chavan, S., Wandhekar, R., Tole, S., Chaukate, A.,

Chaukate, A. (2023). Text reader for visually impaired

person using image processing/Open-CV. International

Journal of Advanced Research in Science,

Communication and Technology, 3(1): 193-199.

https://doi.org/10.48175/IJARSCT-11233

[8] Long, S., He, X., Yao, C. (2021). Scene text detection

and recognition: The deep learning era. International

Journal of Computer Vision, 129(1): 161-184.

https://doi.org/10.1007/s11263-020-01369-0

[9] Mithila, T., Arunprakash, R., Ramachandran, A. (2022).

CNN and fuzzy rules based text detection and

recognition from natural scenes. Computer Systems

Science & Engineering, 42(3): 1165-1179.

https://doi.org/10.32604/csse.2022.023308

[10] Xing, L., Liu, W., Liu, X., Li, X., Wang, H. (2022). Use

of deep learning in nano image processing through the

CNN model. Advances in Nano Research, 12(2): 185-

195., https://doi.org/10.12989/anr.2022.12.2.185

[11] Zhong, Y., Liang, X. (2022). Using CNN-VGG 16 to

detect the tennis motion tracking by information entropy

and unascertained measurement theory. Advances in

Nano Research, 12(2): 223-239.

https://doi.org/10.12989/anr.2022.12.2.223

[12] Smith, R. (2007). An overview of the Tesseract OCR

engine. In Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007), Curitiba,

Brazil, pp. 629-633.

https://doi.org/10.1109/ICDAR.2007.4376991

[13] Patel, C., Patel, A., Patel, D. (2012). Optical character

recognition by open source OCR tool tesseract: A case

study. International journal of computer applications,

55(10): 50-56. https://doi.org/10.5120/8794-2784

[14] Sporici, D., Chiroiu, M., Ciocîrlan, D. (2019). An

evaluation of OCR systems against adversarial machine

learning. In Innovative Security Solutions for

Information Technology and Communications: 11th

International Conference, SecITC 2018, Bucharest,

Romania, pp. 126-141. https://doi.org/10.1007/978-3-

030-12942-2_11

[15] Wu, J.C., Hsieh, J.W., Chen, Y.S. (2008). Morphology-

based text line extraction. Machine Vision and

Applications, 19: 195-207.

https://doi.org/10.1007/s00138-007-0092-0

[16] Baskar, A. (2023), Digital Image Processing. Chapman

& Hall/CRC.

[17] Burger, W., Burge, M.J. (2022). Digital Image

3191

Processing: An Algorithmic Introduction. Springer

Nature.

[18] Otsu, N. (1979), A threshold selection method from gray-

level histograms. IEEE Transactions on Systems, Man,

and Cybernetics, 9(1): 62-66.

https://doi.org/10.1109/tsmc.1979.4310076

[19] Atitallah, M.A.B., Kachouri, R., Atitallah, A.B., Mnif, H.

(2022). An efficient HW/SW design for text extraction

from complex color image. CMC-Computers, Materials

& Continua, 71(3): 5963-5977.

https://doi.org/10.32604/cmc.2022.024345

[20] 2013 ICDAR Dataset.

https://paperswithcode.com/dataset/icdar-2013.

[21] Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., et al.

(2013). ICDAR 2013 robust reading competition. In 12th

International Conference on Document Analysis and

Recognition, Washington, DC, USA, pp. 1484-1493.

https://doi.org/10.1109/ICDAR.2013.221

[22] Fathy, A., Atitallah, A.B., Yousri, D., Rezk, H., Al-

Dhaifallah, M. (2022). A new implementation of the

MPPT based raspberry Pi embedded board for partially

shaded photovoltaic system. Energy Reports, 8: 5603-

5619. https://doi.org/10.1016/j.egyr.2022.04.035

[23] Liu, R., Li, Z., Jia, J. (2008). Image partial blur detection

and classification. In 2008 IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage,

AK, pp. 1-8.

https://doi.org/10.1109/CVPR.2008.4587465

3192

