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Visual impairment is one of the most significant challenges facing humanity, especially in 

an era where information is frequently conveyed through text rather than voice. To address 

this, the proposed system is designed to assist individuals with visual impairments. This 

paper presents the development of a real-time Text-to-Speech (TTS) embedded system 

based on the Raspberry Pi 4. Our system incorporates a novel approach to enhance the 

accuracy of text recognition using Optical Character Recognition (OCR) from images. 

Specifically, a series of preprocessing steps are employed, selected dynamically by a 

decision-making process based on the content of the image. The image processing is handled 

using OpenCV2, while the conversion of text to speech is achieved through the pyttsx3 

Python library. The entire system is implemented and tested on a Raspberry Pi 4, connected 

to a USB Full HD camera for high-resolution image acquisition, and controlled via the 

Traffic HAT-LED module. Experimental results demonstrate that our system achieves a 

minimum accuracy of 88.33% in text recognition from images. 
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1. INTRODUCTION

People with visual impairments, also referred to as visually 

impaired or visually disabled individuals, have varying 

degrees of vision loss that can range from mild to complete 

blindness. Visual impairments can be caused by a variety of 

factors, including congenital conditions, acquired diseases, 

injuries, or age-related changes. Visual impairments can pose 

significant challenges to individuals in their daily lives, 

especially when it comes to accessing printed text. In this 

context, text recognition in real-time scenarios, such as 

capturing text from live video streams or on-the-fly 

recognition from mobile devices, can be challenging. In fact, 

the algorithm requests to process the video frames quickly 

while maintaining accuracy. Fortunately, advancements in 

technology have opened up new avenues for overcoming these 

challenges. In fact, Zaman et al. [1] proposed a portable virtual 

text reader based on the Raspberry Pi 3. This reader captures 

the image from the camera through the graphical user 

interface. Then the captured image is passed to the Optical 

Character Recognition (OCR) for text detection and 

recognition. In the end, the eSpeak software is used to convert 

the text to audio format. Sarkar et al. [2] presented a smart 

reader for the visually impaired using the Raspberry Pi B+. In 

this work, the authors used MATLAB to recognize the text 

from the captured image and converted it into speech using the 

Text-to-Speech (TTS) synthesizer. In study [3], a text reader 

system for blind people using the Raspberry Pi 3B and camera 

module was presented. The proposed system used the OCR 

and the convolutional recurrent neural network to detect, 

localize, and extract the text, and pyttsx3 for the text to speech 

conversion. The proposed system lacked real-time operation. 

The Tesseract OCR engine, Google Speech API, and 

Microsoft Translator concepts were used to design the device 

by Rithika and Santhoshi [4]. The system failed with high 

accuracy. Velmurugan et al. [5] used the image processing 

toolbox to simulate their system in MATLAB and discovered 

that the algorithm successfully processed the image and 

clearly interpreted it. Gurav et al. [6] modeled an OCR-based 

system utilizing computer software and a photoelectric device. 

Despite being a successful assistive device for visually 

impaired people, the model turned out to be quite noisy, which 

is a major drawback. Chavan et al. [7] utilized Tesseract OCR 

and OpenCV2 to extract text from scanned images, which was 
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then converted into voice using Google Text to Voice. This 

enabled individuals with visual impairments to read the text. 

This work presents a novel approach for real-time 

conversion of text contained in images and videos into speech. 

We specifically designed the method to aid individuals with 

visual impairments. In fact, our methodology relies on several 

preprocessing steps, including image resizing, noise reduction, 

and binarization. In addition, we integrate a decision-making 

procedure to choose the most efficient preprocessing methods 

for enhancing the precision of text detection, extraction, and 

recognition using the Tesseract OCR. For converting the Text-

to-Speech (TTS), the pyttsx3 Python library is used. Further, 

our approach is implemented and evaluated on the Raspberry 

Pi 4 board, which is connected to the USB Full HD camera for 

capturing image and video and to the Traffic HAT-LED card 

for controlling the system. Our innovation lies in the 

development of a highly accurate and real-time TTS 

embedded system utilizing a Raspberry Pi 4 and a Full HD 

camera. What sets our system apart is its integration of a 

decision-based preprocessing step, which dynamically selects 

the most appropriate techniques—such as rescaling, noise 

removal, and binarization—based on the content of the image. 

This approach significantly improves OCR accuracy 

compared to existing methods. Moreover, the real-time 

performance, facilitated by the Raspberry Pi 4 and the Full HD 

camera, offers a more responsive and user-friendly experience 

for visually impaired individuals, distinguishing our system 

from current solutions. 

The rest of paper is organized as follows: Section 2 provides 

an overview of the Tesseract OCR. Section 3 describes our 

proposed approach for text detection, extraction, and 

recognition. Section 4 illustrates the development of our TTS 

embedded system based on the Raspberry Pi 4. The evaluation 

of our system is presented in section 5. The paper is concluded 

by Section 6. 

 

 

2. TESSERACT OCR OVERVIEW 

 

In the recent years, there has been an increased focus on 

finding solutions for the challenges associated with finding 

and understanding text embedded in images and videos. 

Indeed, factors like complex backgrounds, diverse text layouts 

and fonts, uneven lighting, low resolution, and the presence of 

multilingual content make the task significantly more 

challenging compared to working with clean and well-

structured documents. Addressing these issues requires the 

utilization of advanced computer vision and pattern 

recognition techniques [8-11]. Various methods, including the 

widely used Tesseract OCR, have been proposed to tackle the 

problem of text detection and recognition in scene imagery.  

The Tesseract OCR [12, 13], originally developed by 

Google, is an open-source software library that has gained 

substantial popularity. Its primary purpose is to extract text 

from images, making it a widely utilized tool for various tasks, 

including document scanning, automated data entry, and text 

recognition in numerous applications. To achieve accurate 

results, the Tesseract OCR employs a multi-step process, as 

shown in Figure 1, that enables it to recognize and extract text 

effectively from an input image. However, adaptive 

thresholding is the first step in Tesseract OCR. It involves 

converting the input image into binary images. The purpose of 

this step is to create a clear distinction between the foreground 

(text) and background in the image. The next step is connected 

component analysis. This analysis is employed to extract the 

outlines of individual characters. Once the outlines are 

obtained, they are converted into blobs. These blobs are then 

organized into text lines, where the text elements are grouped 

together based on their spatial arrangement. After that, each 

text line is chopped into words by dividing the text based on 

definite spaces and fuzzy spaces. This process helps segment 

the text into meaningful units for recognition. The recognition 

of text is performed as a two-pass process, as illustrated in 

Figure 1. In the first pass, Tesseract OCR attempts to 

recognize each word in the segmented text. Words that are 

recognized with a satisfactory level of confidence on the first 

pass are considered successful recognitions. However, if a 

word is not recognized accurately in the first pass, it moves on 

to Pass 2 for further processing. The purpose of the second 

pass is to improve the recognition accuracy for the words that 

were initially challenging for Tesseract OCR. Finally, the 

recognized text is presented in the output.  

 

Adaptive threshold

Connected component 

analysis

Find lines and words

Word recognition 

(Pass1)

Word recognition 

(Pass2)

Input image

Recognized text 

from image  
 

Figure 1. Block diagram of the Tesseract OCR 

 

Tesseract's performance can be significantly impacted by 

some input picture characteristics (such as blurring, color 

contrasts, etc.) despite the numerous improvements. In fact, as 

shown in reference [14], even little salt-and-pepper noise can 

make Tesseract OCR less effective to the point that text from 

perfect samples is not recognized at all or results in 

segmentation mistakes. For that, we propose in next section to 

enhance the performance of Tesseract OCR. 

 

 

3. TESSERACT OCR ENHANCEMENT 

 

3.1 Proposed approach 

 

In this section, we propose a new approach to improve the 

accuracy of the Tesseract OCR engine by implementing a 
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series of preprocessing steps on the input image, as depicted 

on Figure 2, before it undergoes text recognition. These 

preprocessing steps are carefully selected to address common 

challenges in OCR, such as poor resolution, noise, and contrast 

issues. Each step contributes to improving the clarity and 

quality of the input image, which in turn enhances the OCR’s 

ability to accurately recognize text. In the following 

subsection, we will provide a comprehensive explanation of 

each preprocessing step, including the reasoning for their 

selection and their impact on the overall performance of the 

system. 

 

Decision based     

OCR accuracy

Start

Resize the 

image (x2)

Text recognition

End

Image size>               

640x480 pixels

Convert into 

grayscale

Closing morphological 

operation 

MedianBlur 

(3x3)

GaussianBlur 

(3x3)

Binarisation Binarisation

No

Yes

 
 

Figure 2. Block diagram of the suggested approach 

 

3.1.1 Rescaling of image 

Our approach begins by increasing the size of the images by 

two when its dimensions is equal to 640×480 pixels or less. In 

fact, the smaller images frequently contain text that is too 

small to be accurately detected and recognized by the OCR 

engine. However, by enlarging the image, we increase the text 

size, making it easier to read and lowering the risk of losing 

text detail during OCR processing. Consequently, this stage is 

especially important for images captured with low-resolution 

cameras, as text may appear pixelated or blurry at its original 

size. As a result, rescaling improves OCR accuracy by making 

the text clearer and more legible. 

 

3.1.2 Conversion to grayscale 

After rescaling, the image is converted to grayscale. Indeed, 

this step simplifies the image by removing color information, 

which reduces the complexity that the OCR engine needs to 

process. Nevertheless, grayscale images provide better 

contrast between the text and the background compared to 

color images, especially when the background is complex or 

multicolored. By focusing only on the luminance of the pixels, 

the OCR engine can more easily distinguish text from its 

surroundings, which enhances text detection and recognition 

accuracy. 

 

3.1.3 Closing morphological operation  

The next preprocessing step is the application of the closing 

morphological operation [15]. Indeed, this technique is a 

combination of dilation followed by erosion, using a 3×3 

kernel. However, the aim of this operation is to close small 

gaps and fill in holes within the text regions of the image. In 

fact, dilation expands the boundaries of objects in the image, 

which helps to connect broken parts of the text. Then, the 

erosion contracts these boundaries to remove any excess 

expansion caused by dilation. Thereby, this step is particularly 

effective in cleaning up the text regions by removing small 

imperfections and making the text more uniform allowing to 

improve the OCR’s ability to segment and recognize 

individual characters accurately. 

 

3.1.4 Noise reduction via median and gaussian blurring  

To further enhance image quality, we apply two noise 

reduction techniques—median blurring and gaussian 

blurring—each followed by a binarization step [16, 17]. 

Nevertheless, the median blurring is a non-linear filtering 

technique that is effective in removing salt-and-pepper noise 

while preserving the sharpness of edges. This is achieved by 

replacing each pixel value with the median value of its 

neighboring pixels, which helps to remove isolated noise 

points without significantly blurring the text edges. In contrast, 

the gaussian blurring is a linear filtering technique that reduces 

high-frequency noise by averaging the pixel values in the 

neighborhood of each pixel. This weighted averaging process 

smooths out the image while preserving the overall structure 

and details, making it particularly useful for reducing noise in 

areas with gradual intensity variations. 

 

3.1.5 Binarization using Otsu's method  

The final step in our approach is the binarization, which 

converts the grayscale image into a binary image where the 

text appears as black pixels on a white background. In fact, we 

use Otsu’s method [18, 19] for this step, which automatically 

determines the optimal threshold value that minimizes the 

intra-class variance (the variance within the text and 

background regions) while maximizing the inter-class 

variance (the difference between the text and background). 

This method is particularly effective in ensuring that the text 

is clearly separated from the background, even in images with 

varying lighting conditions or complex backgrounds. 

Therefore, binarization simplifies the image for the OCR 

engine, allowing it to focus on the text without being distracted 

by background noise or color variations. 

 

3.1.6 Dynamic decision-making process 

Our approach includes a decision-making process to 

dynamically select the most appropriate preprocessing 

techniques based on the content of the image. For instance, the 

system may choose between median and gaussian blurring 

depending on which technique yields higher OCR accuracy for 

a given image. This adaptability ensures that our approach is 

tailored to the specific characteristics of each image, thereby 
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maximizing the OCR performance.  

By combining these preprocessing techniques, our proposed 

approach optimizes the input image for Tesseract OCR, 

leading to significant improvements in text recognition 

accuracy. The experimental results, discussed in the next 

subsection, demonstrate the effectiveness of our approach in 

various test scenarios. 

 

3.2 Experimental results 

 

In order to evaluate the performance of our proposed 

approach for text detection and recognition from complex 

color images, several images from the International 

Conference on Document Analysis and Recognition (ICDAR) 

database [20, 21] are utilized, as depicted in Figure 3. This 

dataset includes a variety of texts with differing levels of 

complexity (e.g., different scenes, light, orientation, and pixel 

sizes). The performance evaluation of our proposed approach 

is realized in terms of the Tesseract OCR accuracy and the 

execution time, which are provided on the Intel i7-

1165G7@2.80 GHz processor. 

In our experiment, the preprocessing techniques (e.g., 

rescale image, closing morphological operation, median 

blurring, and gaussian blurring) are incrementally added to our 

flow to study their impact on the accuracy of recognizing text 

from complex images through Tesseract OCR. The results of 

our experiment are recorded in Tables 1 and 2 for the 

comparison of Tesseract OCR accuracy and execution time, 

respectively, and Figure 4 for showing the recognized text.  

 

 

 
 

Figure 3. ICDAR dataset test image 

 

Table 1. Comparison of the Tesseract OCR accuracy 

 

 
Tesseract OCR 

Engine 

Rescale Image 

by 2 

Closing Morphological 

Operation 

Median 

Blurring 

Gaussian 

Blurring 

Proposed 

Approach 

Image 1 60.83% 60.83% 89.67% 90.5% 95.17% 95.17% 

Image 2 23.85% 23.85% 55.5% 88.33% 87.8% 88.33% 

Image 3 0% 64% 32% 87.67% 95.67% 95.67% 

Image 4 63% 29% 95.33% 95.67% 95.67% 95.67% 

Image 5 31.66% 31.66% 87.67% 94.67% 91.333 94.67% 

Image 6 0% 96% 89.500 88.5% 91% 91% 

Image 7 48% 0% 0% 96% 48% 96% 

 

Table 2. Comparison of the execution time in seconds 

 
 

Tesseract 

OCR 

Rescale Image by 

2 

Closing 

Morphological 

Operation 

Median 

Blurring 

Gaussian 

Blurring 

Proposed 

Approach 

Image 1 0.384282 0.384394 0.318900 0.206311 0.205457 0.336051 

Image 2 0.491994 0.490532 0.436517 0.238606 0.294120 0.408177 

Image 3 0.178613 0.319863 0.336656 0.223150 0.235849 0.365757 

Image 4 0.230687 0.483995 0.365979 0.206493 0.198623 0.339695 

Image 5 0.334723 0.304162 0.249007 0.165266 0.172932 0.268753 

Image 6 0.201328 0.433023 0.392255 0.224419 0.232477 0.424364 

Image 7 0.200486 0.378631 0.350625 0.266602 0.223872 0.420371 

 

3.2.1 OCR performance 

Without any preprocessing, we applied the Tesseract OCR 

engine directly to the images. The results, presented in Table 

1, demonstrate that the OCR accuracy is significantly lower 

when no preprocessing is applied, with many images showing 

poor text recognition, particularly in cases of low resolution, 

noise, or complex backgrounds as depicted in Figure 4(a). 

 

3.2.2 Impact of preprocessing techniques 

To determine the impact of each preprocessing step, in our 
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experiment, we incrementally applied the techniques 

described in Section 3.1 and measured their effect on OCR 

accuracy and execution time: 

-Rescaling enhanced the OCR accuracy in image 3 from 0% 

to 64%, as shown in Table 1 and Figure 4(b), and similarly 

improved performance in other low-resolution images. This 

demonstrates that increasing the image size allows Tesseract 

OCR to recognize smaller text more effectively by making the 

characters clearer. However, this improvement comes with the 

drawback of doubling the execution time. 

-While grayscale conversion alone did not significantly 

change the accuracy and the execution time, it set the stage for 

further preprocessing steps by simplifying the image and 

improving contrast, which indirectly contributed to higher 

accuracy when combined with subsequent steps. 

-The closing morphological operation significantly 

improved text recognition, especially in images with gaps or 

broken characters. For example, in Image 5, accuracy 

increased from 31.66% to 87.67% after applying the operation, 

as shown in Table 1 and Figure 4(c). This demonstrates the 

effectiveness of morphological techniques in enhancing text 

continuity by filling small gaps that hinder character 

recognition. Additionally, Table 2 indicates that this step 

reduces the Tesseract OCR execution time by an average of 

18%. 

-The median blurring step was highly effective in 

eliminating salt-and-pepper noise, which often occurs in 

scanned documents or low-light images. In image 7, where 

noise was a major problem, median blurring raised OCR 

accuracy from 0% to 96%, as shown in Table 1. This method 

is vital for preserving edge sharpness while reducing noise, as 

illustrated in Figure 4(d). Additionally, it reduced the time 

required for Tesseract OCR to recognize the text by an average 

of 35%. 

-Gaussian blurring proved more effective than median 

blurring in handling images with gradual intensity variations, 

such as shadows or uneven lighting. For instance, in image 3, 

Gaussian blurring boosted OCR accuracy from 32% to 

95.67%, as displayed in Table 1. This technique smooths the 

image, making the text more distinct against inconsistent 

backgrounds, as shown in Figure 4(e). Additionally, it reduced 

the execution time required for Tesseract OCR to recognize 

the text by an average of 35%. 

 

 
 

Figure 4. Text recognition accuracy by (a) Tesseract OCR engine only, (b) adding image rescale, (c) adding closing 

morphological operation, (d) adding median blurring, (e) using gaussian instead of median blurring and (f) proposed approach 
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3.2.3 Proposed approach performance 

After evaluating each preprocessing step, we applied the 

complete preprocessing steps, which includes rescaling, 

grayscale conversion, closing morphological operation, 

median/gaussian blurring, and binarization. The results, as 

shown in Table 1, indicate that the combined approach 

significantly outperforms the individual OCR step. Thus, in 

the worst case, our proposed approach can enhance the OCR 

accuracy by 34% relative to the Tesseract OCR engine with a 

small increase in execution time by 21%. In light of the above 

findings, the image preprocessing techniques proposed in our 

approach lead to high reliability and accuracy in the 

recognized text. 

 

3.2.4 Case studies 

We conducted in-depth analyses of specific images that 

posed particular challenges to Tesseract OCR, such as: 

-Image 3 (Low-Resolution Text): This image initially had 

0% accuracy without preprocessing. After applying the 

complete preprocessing steps, accuracy improved from 0% to 

95.67%, demonstrating the effectiveness of the preprocessing 

steps in enhancing text visibility and recognition. 

-Image 7 (Noisy Background): Median blurring proved to 

be the most effective for this image, boosting accuracy from 

48% to 96%, thereby showcasing the importance of noise 

reduction techniques in OCR preprocessing. 

 

 

4. TEXT-TO-SPEECH EMBEDDED SYSTEM 

 

Figure 5 presents the block diagram of the proposed Text-

to-Speech (TTS) embedded system.  

 

Controller

Raspberry Pi 4Camera

Screen

Speaker
 

 

Figure 5. Block diagram of the TTS embedded system 

 

The heart of our proposed system is the Raspberry Pi 4 

board. This board receives the video stream from the USB 

camera, processes the video frame to detect and recognize the 

text that is displayed on the screen, and then translates it into 

speech for hearing it through the speaker. The controller 

allows to synchronize the operation of our system. 

 

4.1 TTS system based raspberry Pi 

 

The Raspberry Pi 4 board [22] (Figure 6) is a versatile and 

affordable single-board computer that is widely used for 

prototyping, home automation, media centers, and various 

other IoT applications. In fact, it offers significant 

improvements in terms of performance, connectivity, and 

features compared to its predecessors. The Raspberry Pi 4 

board is powered by a Broadcom BCM2711 quad-core 

Cortex-A72 (ARMv8) 64-bit System-on-Chip (SoC) running 

at 1.5 GHz. This processor provides a substantial performance 

boost over the previous models. It is available in three RAM 

variants: 2 GB, 4 GB, and 8 GB LPDDR4-3200 SDRAM. The 

increased memory capacity allows for more demanding 

applications and multitasking.  

 

 
 

Figure 6. Raspberry Pi 4 board 
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Figure 7. Logitech C922 Stream Full HD camera 

 

 
 

Figure 8. Traffic HAT - LED module for Raspberry Pi 

 

The Raspberry Pi 4 board uses a microSD card slot for 

primary storage. It also features two USB 3.0 ports and two 

USB 2.0 ports, which can be used for external storage devices. 

Further, this board retains the 40-pin GPIO header, as depicted 

in Figure 6, which allows for interfacing with a wide range of 

electronic components and expansion boards, making it 

suitable for prototyping. Moreover, the Raspberry Pi 4 is 

compatible with various Operating Systems (OS), including 

the official Raspberry Pi OS, Ubuntu, and many OS 

distributions. 

The Logitech C922 camera (Figure 7) provides the video 

feed to the TTS embedded system. For maximum video 

throughput, this camera is attached to the Raspberry Pi 4 

through a USB connection. In addition, the Traffic HAT board 

is used to control the whole system. In fact, as shown in Figure 

8, this board contains Red, Orange and Green LEDs and one 

button. The LEDs provides the status (ready or busy) of TTS 

embedded system. But, the button allows to go from step to 

other step. Figure 9 depicts TTS controller block diagram. 

However, at the beginning, our TTS system initiates the 

video stream and detects the blur in the video frame, as 

illustrated by Figure 9.  

Indeed, the blur decreases the quality of the frame, which 

has a negative impact on the detection and recognition of the 

text. For this, the fast Fourier transform blur detector [23] is 

applied to the video frame to detect whether the image is 

blurred or not. So, if the frame is blurred, the TTS system gets 

another frame from the video stream; if not, it will go to the 

next step. In this step, the button on the Traffic HAT board 

should be pushed to capture the frame, which is processed by 

the steps indicated in Figure 2 to detect and recognize the text. 

Then, this text is converted to speech using the pyttsx3 Python 

library. In the end, the button on the Traffic HAT board should 

be pushed again to restart the TTS system and capture another 

frame. 

Starting video 

streaming

Video streaming

Verify that the HAT 

button is depressed

Start

Preprocessing

Detect and recognize 

the text

Text-to-Speech 

conversion

Verify that the HAT 

button is depressed

No

No

Yes

Take an image using 

the camera

 Blur Detection in 

Video Streams

No

Yes

End

Yes

 
 

Figure 9. TTS controller block diagram 

 

4.2 System evaluation 

 

Figure 10 presents our prototype of the TTS embedded 

system. Our prototype contains the touch screen, Logitech 

C922 Stream Full HD camera, the Traffic HAT board and a 

speaker which are connected to the Raspberry Pi 4 board 

through the Input/Output connectors. The Raspberry Pi 4 

board is the heart of our prototype and used to execute the 

Python software code in order to control the whole system. 
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Figure 10. Prototype of the TTS embedded system 

 

The performance evaluation of our prototype is realized by 

using several test images from the ICDAR database as 

depicted by Figure 11. However, Figures11(a and b) present 

the detection of the blurry and not blurry images, respectively. 

But, Figure 11(c) illustrates the detection and the recognition 

of the text from the not burry image. In fact, as shown in Figure 

11(c) all word in the test images is detected correctly without 

any error. In other side, no words are detected from blurry 

image. These results prove the reliability and the efficiency of 

our prototype to detect and recognize the text from video 

frame and transform it into the speech.  

Our text-to-speech system built on the Raspberry Pi 4 can 

greatly improve quality of life for the visually impaired by 

increasing access to information. This affordable, energy-

efficient system bridges the divide between print and digital 

material. By enabling independence and inclusion, it promotes 

equity. The Raspberry Pi 4 provides a familiar development 

platform to create accessible assistive technologies for this 

community. Overall, this TTS system has the potential to 

empower people with visual disabilities. 

 

 

 
 

Figure 11. Performance evaluation of the TTS system for (a) blurry image, (b) not blurry image and (c) the detected and 

recognized text from video frame 

 

4.3 Practical aspects of deploying our TTS embedded 

system in real-world scenarios 

 

To successfully deploy our TTS embedded system in real-

world environments, several practical considerations must be 

addressed: 

 

4.3.1 Usability for end-users 

As the system is designed for visually impaired users, 

ensuring ease of interaction is crucial. Intuitive, non-visual 

interfaces such as voice commands will greatly enhance user 

accessibility. This will allow users to seamlessly interact with 

the system without requiring visual input, making it suitable 

for daily use. 

 

4.3.2 Energy efficiency and portability 

For mobile and outdoor use, energy efficiency becomes a 

vital factor. While the Raspberry Pi 4 is an energy-efficient 

platform, the system's battery life must be optimized for 

continuous operation. Utilizing low-power components like 

cameras can extend the system’s usability in portable settings. 
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4.3.3 Durability and maintenance 

In real-world applications, especially outdoor or mobile 

deployments, hardware durability is crucial. Protective 

enclosures for the Raspberry Pi and camera should be used to 

safeguard against environmental factors like dust, moisture, 

and accidental drops. This will ensure the system’s longevity 

and reduce maintenance needs. 

 

4.3.4 Connectivity and data management 

Depending on the deployment scenario, the system may 

need to support data storage, transmission, or updates. 

Incorporating wireless capabilities (e.g., Wi-Fi, Bluetooth) 

would allow for remote updates, integration with other 

assistive technologies, and cloud-based data management. 

 

  

5. CONCLUSIONS 

 

In this paper, a real-time TTS embedded system is designed 

and evaluated to assist people with visual impairments. Our 

embedded system is based on the Raspberry Pi 4 and a Full 

HD camera. It integrates a new approach that is based on 

preprocessing and decision steps in order to increase the 

accuracy for detection, extraction, and recognition of the text 

by the OCR from an image or video. In addition, it uses the 

pyttsx3 Python library to convert the text to speech. The 

validation of our prototype has shown that our system allows 

users to listen to the recognized text in a natural voice. This 

auditory feedback enhances the reading experience for the 

visually impaired. In the end, we can conclude that our real-

time text recognition system based on the Raspberry Pi 4 is a 

remarkable technological advancement that holds great 

promise for the visually impaired community. Its portability 

and real-time capabilities make it a valuable tool for enhancing 

accessibility and independence and empowering individuals 

with visual impairments to thrive in a sighted world. 
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