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 One of the frequent cardiac conditions brought on by persistent myocardial ischemic is 

myocardial infarction (MI), generally referred as a heart attack. The clinical standard for 

treating individuals with this disease is made possible by the electrocardiogram (ECG), 

which allows for the earlier and precise diagnosis of MI. It is significant for patients with 

MI to automatically detect using ECG signals. De-noising is a critical step in signal 

processing. In this work, Empirical Mode Decomposition (EMD) uses a repetitive process 

known as sifted to calculate the basic functions that represent the signal as an extension of 

signal-dependent basic functions. Sifting process, a deconstruction procedure, is used to 

dynamically divide noisy data into inherent oscillatory parts understood as Intrinsic Mode 

Functions (IMFs). EMD, The IMFs are optimized using the Fuzzy Weight Particle Swarm 

Optimization (FWPSO) algorithm. Furthermore, we have acquired morphological features 

from the P-QRS-T waveforms and extracted characteristics of ECG segments using 

Principal Component Analysis (PCA) from the preferred ECG area. Finally, Convolution 

Kernel Weight Based CNN (CKWCNN) classifier is used to improve the functionality and 

outcomes of automated diagnostics. We obtained the ECG data from the Physikalisch-

Technische Bundesanstalt's (PTB) database. We then evaluate the detection techniques 

using metrics such as accuracy, F-measure, sensitivity, and precision. We tested the MI 

detection and classification methods using the PTB dataset. Fivefold cross validation is 

applied to the PTB dataset to separate training sets and testing sets. 
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1. INTRODUCTION 

 

Globally, cardiovascular disease (CVD) is the primary 

cause of mortality, accounting for 31% of all fatalities each 

year. The number of reported CVD deaths is increasing, with 

17.9 million deaths occurring annually [1, 2]. By 2030, it is 

anticipated that there will be more than 23.6 million CVD 

deaths annually because of the rapidly rising prevalence of 

diabetes, obesity, and other cardiovascular-related risk factors. 

(Acute) Myocardial infarctions account for the largest 

proportion of mortality among CVD in the United States and 

other nations. In the US, an MI affects one person every 40 

years on average. Methods that use electrocardiogram (ECG) 

readings in conjunction with machine learning to identify 

abnormalities in the signal and, by extension, abnormalities 

associated with certain illnesses are included here [3]. 

By monitoring the potential bioelectric fluctuation of the 

human heart, an electrocardiogram (ECG) signal may identify 

abnormal states and malfunctions [4]. ECG signals present a 

difficult challenge when it comes to making an accurate 

diagnosis of the clinical state that they represent. Human MI 

diagnosis and identification take time and are not accurate. 

Therefore, before proposing a specific course of therapy, 

cardiologists must precisely forecast and identify the 

appropriate form of irregular cardiac ECG waves [5, 6]. For 

this, hour-long ECG recordings that need to be watched and 

analyzed may be necessary. 

Because it is inexpensive and noninvasive, ECG is often 

used for clinical diagnosis. The absence of several 

comprehensive, publicly accessible datasets with a lengthy 

history of real-world ECG readings, as well as machine 

learning techniques with high precision (>89%) and a wide 

range of options, have presented difficulties [7]. Over the 

course of the most recent few years, a great number of different 

algorithms for detecting myocardial infarction (MI) have been 

presented. The four main steps in the implementation of these 

algorithms were denoising, segmentation, feature extraction, 

and MI classification. However, the heartbeat segmentation 

detector is essential for MI classification because mistakes 

made during ECG heartbeat identification might affect the 

final classification findings. The identification of the P-QRS-

T waves is the primary component of the heartbeat 

segmentation process. However, the majority of methods 

include a preprocessing stage to obtain the signal ready. There 

are multiple noise levels in this form of the signal. When an 

ECG signal is acquired and transmitted, the noise is polluted. 

This makes manual and automated ECG signal analysis very 

difficult, and noise may be mistaken for abnormal cardiac 
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problems [8]. Therefore, noise-free ECG readings are required 

for accurate cardiac diagnosis. 

Manual ECG performance requires domain knowledge and 

is subject to interobserver fluctuations. In some cases, medical 

expertise such as emergency paramedics in remote locations 

may not be physically available. This has prompted more 

research into the use of ECG signals in computer-assisted 

myocardial infarction diagnosis using artificial intelligence 

(AI). Deep learning (DL) and feature extraction are two types 

of AI algorithms. On the other hand, the latter is fully 

automated and has gained popularity because of its 

convenience, reliable performance, and ability to train on large 

data sets. 

The Empirical Mode Decomposition (EMD) is 

decomposing non-stationary signals into a series of Intrinsic 

Mode Functions (IMFs) [9]. Convolutional neural networks 

(CNNs), in particular, have recently received much attention 

for their use in forecasting MI and atrial fibrillation, which has 

limited the potential of alternative algorithms to perform better 

on deadlier acute myocardial infarction. 

Existing research has presented several methods for 

autonomous detection and localization of MI. These methods 

include wavelet transform techniques, time-domain 

approaches, polynomial fitting methods, and supervised 

machine learning algorithms. Although these strategies have 

shown promise, they still face significant challenges in clinical 

applications. For instance, segmenting the heart to assess 

strain is a complex and labor-intensive process. In addition, 

the intricate spatiotemporal motion of the heart can lead to 

difficulties in its implementation. DL models have made rapid 

progress in recent years across a wide range of research fields, 

particularly in cardiac segmentation. Numerous studies have 

focused on detecting myocardial infarction (MI) using DL 

approaches; however, they still face significant challenges. 

One major issue is inadequate image preprocessing, which is 

required for DL models to accurately extract features. Another 

significant limitation is the scarcity of large high-quality 

datasets. 

This study proposes the development of an automated 

detection approach for acute myocardial infarction with 

CKWCNN to address the limitations of previous research. 

This model presents notable advantages for predicting MI 

compared with other DL approaches. The CKWCNN is 

distinguished by its ability to autonomously learn intricate 

patterns and characteristics from ECG signals, which are 

essential for the early detection of myocardial infarction. Its 

convolutional layers effectively capture both local and global 

dependencies in ECG data. In contrast to conventional ML 

methods that depend on manual feature extraction, CKWCNN 

independently learns representations from the raw data. This 

reduces the necessity for specialized knowledge and increases 

adaptability to different datasets and conditions. Additionally, 

the CKWCNN's efficient parameter utilization and 

regularization methods enhance the model's generalization, 

ensuring consistent performance across various patient groups 

and healthcare environments. Overall, CKWCNN 

distinguishes itself in predicting myocardial infarction by 

utilizing its strengths in feature learning, spatial representation, 

and performance optimization, positioning it as a valuable tool 

for improving clinical decision-making and patient outcomes 

in cardiology. 

Accurate denoising, identification, and categorization of 

cardiac arrhythmias has been suggested using a unique 

approach. The first approach for signal denoising is called 

Empirical Mode Decomposition with Fuzzy Weight Particle 

Swarm Optimization (EMD-FWPSO). The ECG waveform is 

then divided into P-QRS-T waves. The characteristics and 

outcomes of the automated diagnostics were then used for the 

Convolution Kernel Weight-Based CNN (CKWCNN) 

classifier. This method combines classification and feature 

extraction processes, automatically classifies single-lead 

myocardial infarction ECGs, and performs an extensive 

analysis. 

The primary objective of the research work is listed as 

follows: 

➢ The PTB dataset is a well-known benchmark dataset

that has been used to analyze the efficiency of the

CKWCNN approach and compare it with other

existing classical models.

➢ In the preprocessing stage, Empirical Mode

Decomposition with Fuzzy Weight Particle Swarm

Optimization (EMD-FWPSO) is presented. The

IMFs are optimized using the Fuzzy Weight Particle

Swarm Optimization (FWPSO) algorithm. This

simplifies the model, reduces the impact of noise on

the electrocardiogram signal, and allows for faster

diagnosis in clinical practice.

➢ In the segmentation stage, electrocardiogram

segment characteristics are derived from the chosen

electrocardiogram section using PCA, and

morphological features are extracted from P-QRS-T

waves.

➢ In the classification stage, a Convolution Kernel

Weight-Based CNN (CKWCNN) classifier was

utilized to classify the electrocardiogram signal to

identify the myocardial infarction.

➢ MATLAB was used to implement the proposed

CKWCNN. Compared with existing algorithms, the

proposed CKWCNN algorithm has the highest

precision, recall, specificity, accuracy, and F1

scoring performance.

The remainder of this study is structured as follows. Section 

II offers a concise summary of the relevant literature. Section 

III presents the major contents of the proposed algorithm. 

Section IV delineates the experimental outcomes and 

discussion. Finally, Section V concludes the study. 

2. LITERATURE SURVEY

Sraitih et al. [10] evaluated an automated ECG MI detection 

system's resilience and endurance across diverse noise sources. 

The proposed method seeks to categorize myocardial 

infarction (MI) and normal (NOR) states by using authentic 

electrocardiogram (ECG) recordings from the PTB database. 

This procedure encompasses data preparation and 

segmentation and employs an innovative framework to 

differentiate between patient data and noise using the MIT-BI 

Noise Stress Testing Database (NSTDB). The methodology 

encompasses three supervised machine-learning models: 

Support Vector Machine (SVM), Random Forest (RF), and k-

nearest neighbors (KNN). Performance indicators, including 

the accuracy, precision, recall, and F1 score, were used to 

evaluate the effectiveness of the models. 

Tripathy et al. [11] presented multi resolution ECG research 

was used to identify MI pathophysiology. The FBSE-EWT 

method was utilized to deconstruct the 12-lead ECG data 
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across many timescales. This technique produces nine sub-

band ECG signals for each lead, and is subsequently examined 

for kurtosis, skewness, and entropy. The proposed algorithm 

yielded 99.74% reliability, 99.87% sensitivity, and 99.60% 

precision for detecting MI. The proposed strategy improves 

the MI identification efficiency by 3% over wavelet-based 

characteristics. 

Baloglu et al. [12] suggested a DL model for the diagnosis 

of MI, and it had an end-to-end structure. The model was 

applied to conventional 12-lead ECG data. When applied to all 

ECG lead signals, the CNN algorithm combined with the 

suggested framework produced an amazing recall and 

accuracy performance of over 99.00%. 

Sridhar et al. [13] implemented an analysis on the ECGs of 

two hundred different participants (52 normal and 148 MI). 

The suggested approach begins with the pre-processing of 

signals and then continues with the identification of R peaks 

using the Pan-Tompkins algorithm. The focus has been on 

extracting nonlinear characteristics. The extracted features 

were arranged using t-test, and the rankings were used as 

inputs for the Probabilistic Neural Network (PNN), SVM, 

Decision Tree (DT), and KNN classifiers. These classifiers 

were used to differentiate between healthy and abnormal 

classes. Using the SVM classifier, this approach produced the 

highest accuracy (97.96%) for MI and specificity (98.89%). 

Jahmunah et al. [14] suggested automatic categorization of 

ECG data into regular, CAD, MI, and CHF groups utilizing 

CNN and GaborCNN models. The unbalanced database is then 

weighed. The CNN and aborCNN models had a categorization 

accuracy rate of over 98.5% for usual, CVD and MI. The 

utilizing of the aboabor CNN to automatically classify ECG 

signals. Our approach may be verified with a larger dataset and 

can help physicians screen for CVDs using electrocardiogram 

signals. 

Fatimah et al. [15] devised two automated MI diagnosis 

systems utilizing a single-channel ECG data. The basic 

approach detects MI using ECG beats, whereas the updated 

technique uses 4096 samples. The Fourier decomposition 

technique (FDM) removes the power line interference from 

ECG beats/frames (FIBFs). The main algorithms that use the 

kNN classifier have the greatest accuracy, sensitivity, and 

selectivity. The new method avoids beat extraction and utilizes 

FDM only once for noise reduction and FIBF extraction. It 

exhibits 99% accuracy, 99.61% sensitivity, and 99.73% 

selectivity. 

Kapfo et al. [16] described a technique called variation 

mode decomposition as a means of extracting prediction 

information about MI from the signal of an ECG. Features 

were discerned, and principal components were obtained from 

multiscale covariance matrices. The effectiveness of the 

collected characteristics for the identification and 

categorization of MI and regular is evaluated with the help of 

the k-nearest neighbor and support vector machine classifiers. 

The suggested approach was successful in achieving an 

efficiency of 99.88%, with a precision of 99.90% and a 

sensitivity of 99.88%. 

Cho et al. [17] created an AI program based on DL was and 

proven to diagnose MI using a 6-lead ECG. A variation 

autoencoder (VAE) was created using 412,461 ECGs, and a 

limb 6-lead ECG was employed to reconstruct the ECG. We 

used data from 9,536, 1,301, and 1,768 electrocardiograms of 

adult patients. The proposed method has an area under the 

transmitter operating characteristic curves of 0.880 for 

evaluation and 0.854 after external testing. 

Kayikcioglu et al. [18] suggested a technique for classifying 

ST segments depending on characteristics derived from multi-

lead ECG data utilizing time-frequency distributions 

information. The suggested technique, in contrast to most 

other research in the existing body of research, is built on a 

four-class categorization system and is evaluated on a large 

dataset comprising three distinct datasets: MIT-BIH 

Arrhythmia information, Long-Term ST data, and the 

European ST-T database system. Employing Choi-Williams 

time-frequency distribution characteristics, the weighted k-

NN method had the best average efficiency amongst the 

categorization algorithms, with correctness of 94.23%, 

sensitive of 95.72%, and precision of 98.15%. This was 

accomplished using Choi and Williams. 

Zhao et al. [19] developed 667 STEMI ECGs and 7571 

control electrocardiograms were utilized for AI-based STEMI 

auto diagnostic method. The system is a 12-lead standard ECG 

diagnostic system that uses artificial intelligence. It could 

provide useful information for future improvements in ECGs, 

especially for conditions that require multilead ECG 

evaluation, such as ischemic heart disease and premature beats. 

Ventricular pathology and hypertrophy. The algorithm's 

sensitivity (recall), selectivity, correctness, and clarity in a 

comparison test with cardiologists were 90%, 98%, 94%, 

97.82%, and 0.9375, respectively. It also had an AUC of 

0.9740 (95% CI, 0.9419–and a score of F1. 

Hammad et al. [20] suggested a new ML-based DL 

approach for diagnosing MI and CD in PTB-XL ECG data, the 

CD and MI signals were assigned to a DL algorithm to obtain 

deep features. Furthermore, a novel activation function that 

can quickly converge to a normal activation function was 

suggested. When CNN and SVM classifiers were used to 

extract features, the overall accuracy of the method improved 

to 99.20%. 

Rai and Chatterjee [21] introduced an automated system, 

incorporating convolutional neural networks (CNN), a hybrid 

CNN-Long Short-Term Memory (LSTM) network, to identify 

the most effective model. The method is used in two steps: (i) 

the original unbalanced dataset is used and (ii) the Synthetic 

Minority Oversampling Technique (SMOTE) data sampling 

algorithm is used to create a balanced dataset. 

Han et al. [22] proposed a comprehensible approach for MI 

localization and seriousness forecasts based on 12 leads. First, 

the ontology structure of the intelligent MI diagnosis 

knowledge graph was established. The entity metric values, 

such as the QRS complex, T wave, and ST segment pulsation 

morphology, were then obtained using a DenseNet network-

based method and diagnostic rules. Production rules are also 

used to explain MI diagnoses. Finally, all pertinent 

experiments are conducted and validated using high-quality 

ECG databases. The sensitivity, accuracy, specificity, and 

mean F1 value for forecasting the severity period of patients 

with MI were 94.86%, 93.65%, 97.76%, and 94.27%, 

respectively. 

Muraki et al. [23] proposed an automatic prediction model 

for acute MI in ECG using CNN and LSTM. The cardiac cycle 

of the left ventricle was fed into CNN and VGG16 for feature 

extraction. Subsequently, LSTM classifies instances as 

healthy or acute MI. The long-axis left ventricle image had 

85.1% classification accuracy, while the short-axis view had 

83.2% classification accuracy. 

Mirza et al. [24] presented a framework for predicting MI 

using 15-lead ECG signals. This study helps to improve the 

effectiveness of classifying ten MI classes and standard classes. 
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The suggested 1D-CNN architecture produced average 

sensitivity, accuracy, precision, specificity, and F1-scores of 

99.91%, 99.98%, 99.91%, 99.99%, and 99.91%, respectively, 

on the PTB dataset. According to the evaluation results, the 

suggested 1D-CNN structure will offer greater efficiency in 

identifying MI attacks. Table 1 presents a summary of the 

existing MI detection techniques. 
 

2.1 Problem statement 
 

The main disadvantage of the existing models is their 

inability to be interpreted. The internal processes and functions 

of the models are incomprehensible, as is the logic behind 

predictions. Recent studies using deep learning algorithms to 

diagnose myocardial infarction (MI) have rarely described 

prediction methods. This lack of transparency makes doctors 

wary of adopting these models in clinical decision-making. To 

fill this gap, we created and compared deep-learning 

algorithms for MI classification to increase comprehension 

and application. Despite extensive research on the diagnosis of 

myocardial infarction, some details need to be considered. 

Most studies typically focus on a single ECG lead; however, it 

is important to consider all available leads. Utilizing a 12-lead 

ECG recording is aligned with the true principles of MI 

diagnosis. Additionally, there has been limited research 

evaluating and weighing the significance of each lead in the 

diagnosis of myocardial infarction. Some authors evaluate all 

12 leads simultaneously; however, each lead contains unique 

and complementary information that requires separate 

processing. Finally, a few PTB dataset researchers examined 

interpatient scenarios. Given the variations among individual 

patients, the inter-patient protocol is closely tied to real-world 

clinical practice and application. Intra-patient protocols, 

conversely, need to demonstrate the model's feasibility and 

suitability and may even result in an overly optimistic 

detection. To address these gaps, we propose a novel and 

practical framework for medical-grade MI detection and 

localization. 
 

Table 1. Summary of the existing MI detection techniques 
 

Reference Algorithm Advantages Disadvantages 

[10] 
SVM, KNN, and random 

forest (RF) 
ECG tools for MI detection. 

Large dataset training necessitates a 

substantial amount of computational 

resources. 

[11] SVM 
Compared to wavelet characteristics, the suggested 

method improves accuracy by over 3%. 

It necessitates significant computational 

resources and expertise. 

[12] CNN 

The proposed model can detect MI with excellent 

performance, making it suitable for use in wearable 

devices and intensive care units. 

It may be difficult to ensure consistent 

performance of the proposed model across 

different MI datasets of varying sizes and 

characteristics. 

[13] 
K-NN, DT, SVM, and 

PNN 

The system can be used in real-time to detect 

anomalies related to MIs. 

This method is restricted to a small dataset. 

Additionally, manually extracting and 

selecting features can be time-consuming. 

[14] 

convolutional neural 

network (CNN) and 

unique GaborCNN 

The GaborCNN model is capable of classifying 

additional ECG classes with optimal classification 

performance. 

Few CAD and CHF patients were included 

in the intended study. GaborCNN training 

and testing require a larger dataset. 

[17] VAE 12-lead ECG and a portable 6-lead ECG device. 

Its reliance on the assumption of Gaussian 

distribution in latent space may not always 

be appropriate for complex medical data 

such as ECG signals. 

[18] weighted k-NN The method as two-class approaches. 

In the proposed study, the large data size, 

and dimensionality of the feature space can 

lead to longer processing times and higher 

resource requirements for classification 

tasks. 

[19] AI-based STEMI 
The proposed algorithm could significantly 

enhance the existing STEMI systems globally. 

The proposed method depends on specific 

ECG changes that may not be observed in 

all patients, potentially resulting in 

misdiagnosis. 

[20] CNN, SVM 

When using CNN and SVM classifiers for feature 

extraction, the overall accuracy of the method 

increases to 99.20%. 

A significant drawback of the proposed 

algorithm is its reliance on large labelled 

datasets, which can be challenging to 

acquire in clinical environments, increasing 

the risk of overfitting. 

[21] CNN-LSTM 

The unique data balancing technique resolves 

imbalanced data and significantly increases 

minority class accuracy. 

A limitation of the proposed algorithm is its 

inability to assess the severity of myocardial 

infarction and identify the affected region, 

which restricts its diagnostic effectiveness. 

[22] DenseNet 

The accuracy, sensitivity, specificity, and average 

F1 score for predicting the severity period of MI 

patients were 93.65%, 94.86%, 97.76%, and 

94.27%, respectively. 

A limitation of the proposed method is its 

significant computational demands, which 

may result in longer training times and 

higher resource requirements. 

[23] CNN and LSTM 
This suggests that echocardiography can identify 

myocardial infarction. 

It was prone to overfitting because of the 

model's complexity, especially when trained 

on small datasets. 

[24] 1D-CNN 
Based on evaluation results, the 1D-CNN design 

should increase MI event detection efficiency. 

Its limited capacity to capture spatial 

dependencies. 
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3. PROPOSED METHODOLOGY 

 

Initially, the input ECG data are acquired from the PTB 

database. Next, the image was preprocessed and filtered. The 

approach for signal noise removal used in this study is called 

Empirical Mode Decomposition with Fuzzy Weight Particle 

Swarm Optimization (EMD-FWPSO). IMFs' energy of the 

IMFs and Eigen period are used to produce EMD, Intrinsic 

Mode Functions (IMFs), which are performed using FWPSO. 

The clustering approach can identify the borders between 

IMFs with reduced sounds, high-frequency noise, and 

meaningful data. In addition, segmentation is performed with 

QRS complex detection, which improves segmentation 

accuracy. 

Next, the features were mined using PCA. The QRS 

complex and P and T waves were detected to execute the 

heartbeat separation detectors. Third, ECG segmentation 

characteristics were obtained from the chosen ECG segment 

utilizing PCA. Finally, this selected feature is given to the 

CKWCNN classifier for classification, which gives the 

severity of the myocardial infarction. Finally, the results were 

evaluated using the performance evaluation metrics. Figure 1 

shows the flowchart of the proposed MI categorization 

approach. Preprocessing, signal segmentation, feature 

extraction, categorization, and effectiveness assessment are 

the five processes that constitute this procedure. 

 

 
 

Figure 1. Flowchart diagram of proposed system for MI 

classification 

 

3.1 Dataset 

 

Electrocardiogram data were sourced from the Physikalisch 

Technische Bundesanstalt (PTB-ECG) database. The dataset 

includes between one to five recordings per subject, with each 

record containing 15 leads-12 standard ECG leads and three 

Frank leads. The number of recordings per subject varies. The 

signals, sampled at a rate of 1000 Hz with a resolution of 

0.5µV, have different durations depending on the individual. 

Tables 2 and 3 provide a detailed summary of the PTB dataset 

[25]. 

 

Table 2. Summary of PTB dataset 

 

Class 
Number of 

Subjects 

Number of 

Records 

Number of 12-

Lead Records 

Healthy control 

(HC) 
52 80 6945 

Myocardial 

infarction (MI) 
113 312 17212 

Total 165 392 24157 

 

Table 3. Types of MI 

 

Class 
Number of 

Subjects 

Number of 

Records 

Number of 12-

Lead Records 

Anterior MI 

(AMI) 
17 47 2287 

Inferior MI (IMI) 30 89 4452 

anteroseptal MI 

(ASMI) 
27 77 4312 

Inferolateral MI 

(ILMI) 
23 56 3586 

Anterolateral MI 

(ALMI) 
16 43 2575 

Total 113 312 17212 

 

3.2 Preprocessing 

 

3.2.1 Signal denoising using EMD-FWPSO 

EMD, or Empirical Mode Decomposition, is an adaptive 

signal-analysis technique developed by Huang et al. [26]. 

Unlike traditional signal-analysis methods, they do not rely on 

predefined basis functions. Instead, EMD divides the original 

signal into sub-signals of varying frequencies by analyzing its 

trends over characteristic timescales. This approach is 

adaptable and can be used for various signal analysis 

applications. The EMD process begins with smoothing the 

signal, which is then broken down into trends at various 

timescales. The resulting sequences, which correspond to 

these different time scales, are known as intrinsic mode 

functions (IMF). 

Empirical Mode Decomposition (EMD) is a signal-

processing technique that decomposes a complex signal into a 

finite set of Intrinsic Mode Functions (IMFs). Each IMF 

corresponds to an oscillatory mode within the signal arranged 

from high to low frequencies. This technique is especially 

useful for analyzing nonstationary and nonlinear signals, such 

as those found in heart disease datasets, by breaking them 

down into more manageable components. The FWPSO is an 

optimization technique that combines PSO and fuzzy logic. 

PSO is a stochastic optimization algorithm that mimics the 

social behavior of bird flocks and fish schools. It iteratively 

refines candidate solutions (particles) towards the optimal 

solution, considering their historical best performance as well 

as the best solutions identified by nearby particles. FWPSO 

improves this approach by incorporating fuzzy logic to address 

uncertainties and ambiguities in data or optimization 

parameters, thereby increasing the robustness and adaptability 

of the optimization process. 

EMD-FWPSO employs EMD to decompose noisy heart 

signals into IMFs, effectively isolating noise and streamlining 

the data. Subsequently, FWPSO is used to automatically 
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identify the optimal IMFs or establish the best parameters for 

denoising and feature extraction, ensuring that only the 

pertinent components of the signal are preserved for further 

analysis. In predicting heart disease, selecting the correct 

features (such as shape parameters) from the signal is vital for 

achieving an accurate classification or prediction. The EMD-

FWPSO assists in identifying and selecting these shape 

parameters by optimizing their weights or contributions based 

on their relevance in differentiating between healthy and 

diseased states. 

The signal being entered was used as the starting point for 

the signal-noise removal process. EMD is a method used to 

deconstruct non-linear and non-stationary time series into a 

group of IMFs and a residue. This method is adaptable. The 

IMF in EMD is designed to meet two requirements in the EMD 

algorithm [27, 28]: (a) for the entire period, the number of zero 

crossings and greater levels varies by no more than one; and 

(b) at any moment. 

(1) Find all the local extremes of the ECG signal that is 

currently being examined, and then use a cubic spline 

approximation to link the local maximum and minimum 

values to build the upper and lower enclosures of the signal. 

(2) Calculate the mean 𝑚11 as the difference between the 

ECG signal x(t) and the upper and lower envelopes, and label 

this difference as the upper envelope 𝑚11(𝑡) as new series 

ℎ11(𝑡). An equation may be used to explain it (1): 

 

𝑥(𝑡) − 𝑚11(𝑡) = ℎ11(𝑡) (1) 

 

If ℎ11(𝑡)  meets the two requirements, then you should 

consider using it as the initial IMF. If not, you should take 

ℎ11(𝑡) since the initial signal and the procedures described 

previously are performed repeatedly until the ℎ1𝑘(𝑡) is an IMF 

and set the ℎ1𝑘(𝑡)  as 𝑐1(𝑡) . An equation may be used to 

explain it (2): 

 

𝑐1(𝑡) = ℎ1𝑘(𝑡) (2) 

 

In most cases, the Standard Deviation (SD) is used to 

analyze repetitiveness. When the Standard Deviation (SD) 

number is lower than a predetermined threshold, typically in 

the range of 0.2 and 0.3, the process of repeatedly subtracting 

will end. It is characterized by an Eq. (3): 

 

𝑆𝐷 = ∑ (
|ℎ1(𝑘−1)(𝑡) − ℎ1𝑘(𝑡)|

2

(ℎ1(𝑘−1)(𝑡))
2 )

𝑇

𝑡=0

 (3) 

 

(3) The remaining substance following the separation 

𝑐1(𝑡)𝑥(𝑡) is used in the equation that is derived from it (4): 

 

𝑥(𝑡) − 𝑐1(𝑡) = 𝑟1(𝑡) (4) 

 

(4) Treat the residual 𝑟1(𝑡) as the primary ECG signal, and 

further iterations of the aforementioned procedure, which will 

result in the acquisition of additional IMF s𝑐𝑖(𝑡), 𝑖 = 2, … , 𝑛. 

When the residual is reached, the EMD decomposition will be 

finished 𝑟𝑛(𝑡) transforms into a function that is monotone. The 

first ECG signal ever recorded 𝑥(𝑡)  may be ultimately 

articulated in the form of an Eq. (5): 

 

𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)

𝑁

𝑖=1

 (5) 

Therefore, the original ECG signal is broken down into N 

different intrinsic magnetic fields as well as a residual 𝑟𝑛(𝑡). 

By virtue of the repetitive filtration process, the envelope error 

propagates throughout the local mean and the entire signal, 

leading to inaccurate and inaccurate deconstruction. 

The cubic spline lacks sufficient flexibility when fitting the 

local extreme values, which is the cause of overshoot and 

undershoot issues that often arise in the cubic spline. When up-

sampling the maxima and minima envelopes during the EMD 

filtering process, cubic Hermit interpolation is often employed 

in lieu of cubic splines because it is just first-order smoothness, 

whereas cubic spline interpolation is of second-order 

smoothness. The method for cubic Hermit approximation was 

discovered to sometimes be overly flexible, and this might 

even result in blatant break points. 

The rational Hermit interpolation features a shape 

determining parameter in contrast to the conventional cubic 

Hermit interpolation 𝜆. Due to the parameter 𝜆, by altering the 

parameter's value, it is possible to modify the way the rational 

Hermite constructs its spline curves 𝜆. As a result, rational 

Hermit interpolation may be seen as an advancement over 

cubic Hermit interpolation, and its formulation of the basis 

function is shown below. 

Given a series of discrete data (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖)(𝑖 =  1, 2, … , 𝑁), 

the 𝑦𝑖  is the time-dependent local maximum and minimum𝑥𝑖 

and the 𝑑𝑖  wherever possible, is the first iteration 𝑥𝑖  (𝑑𝑖 =
𝑑𝑦(𝑡)/𝑑𝑥(𝑡)). The goal was to interpolate the segments by 

fitting the two spots. Each of these may be used to generate the 

reasonable Hermite approximation [𝑥𝑘 , 𝑥𝑘+1] (𝑘 =
 0, 1, … , 𝑁 − 1) by Eq. (6): 

 

𝑠𝑘(𝑥) = 𝐹𝑖(𝑡)𝑦𝑖 + 𝐹𝑖+1(𝑡)𝑦𝑖+1 + 𝐺𝑖(𝑡)ℎ𝑖𝑑𝑖

+ 𝐺(𝑖+1)ℎ𝑖𝑑𝑖+1 
(6) 

 

where, ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 , 𝑡 =
(𝑥−𝑥𝑖)

ℎ𝑖
, 𝜆  is the parameter that 

determines the form that the spline will take. 

𝐹𝑖(𝑡), 𝐹𝑖+1(𝑡), 𝐺𝑖(𝑡)  and 𝐺𝑖+1(𝑡) consist of the fundamental 

operations of the logical Hermite interpolation. In order to 

show how well the constant variable works 𝜆, a portion of the 

synthetic ECG signal is subjected to the rational Hermite 

extrapolation. There is a parameter in the rational Hermite 

approximation equation 𝜆 that allows filtering process users to 

choose the interpolation's form. Figure 2 illustrates the 

parameter-selection processes. 

 

 
 

Figure 2. Input signal process 
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Figure 3. Flow chart of the shape parameter selection procedure with FWPSO algorithm 

 

The upper and lower envelopes' parameters should be 

independently and labeled as because the waveform and 

fluctuation trend of the maximum and minimum could be 

significantly distinct 𝜆𝑖  and 𝜆𝑗 , respectively [29]. It is 

necessary for the parameter in the sifting process to be 

adjustable, because the waveform and fluctuating trend of the 

maxima and minima of the newly created time series. 

Consequently, the parameter of the logical Hermit is self-

adaptively chosen for each sifting phase. In this work, 

parameter determinant criteria are established and considered 

as the fitness function to achieve the shape-regulating 

parameter automated selection using the FWPSO algorithm in 

each sifting process. The implementation criteria are a linear 

combination of the relative skewness of the estimated local 

mean and two indices, the first of which is the minimum range 

between the midpoint and local mean. The following is an 

expression for the shape-regulating parameter determinant 

criteria: Figure 3 shows the flowchart of the selection 

procedure with the FWPSO algorithm. 

In PSO, the search space is scanned by a swarm of Np 

particles to determine the best solution [30]. The velocity and 

efficiency ratings are shared by all components. Depending on 

its own prior best placement and the prior best position of the 

swarm, each particle (i.e., a possible solution) advances in the 

search space at a certain speed. To obtain a better search region, 

the particles fly across the D-dimensional problem space 

throughout the search process. Two characteristics, namely the 

particle's present location (𝑋𝑖,𝑘)  and velocity (𝑉𝑖,𝑘)  on the 

search space, define particle I (I=1, 2,...,Np) [31]. The iteration 

counter may be found at the index k. The following relations 

determine how the particles in the initial population (k=0) 

move and place themselves first: 

 

𝑋𝑖,0
𝑗

=𝑋𝑀𝑖𝑛+Random (𝑋𝑀𝑎𝑥-𝑋𝑀𝑖𝑛) (7) 

 

𝑉𝑖,0
𝑗

=𝑉𝑀𝑖𝑛+Random (𝑉𝑀𝑎𝑥-𝑉𝑀𝑖𝑛) (8) 

 

where, 𝑋𝑖,0
𝑗

 and 𝑉𝑖,0
𝑗

 are, in relation to the jth (j=1,2,...,D) 

dimension, the ith (i=1,2,....Np) particle's location and velocity 

values, respectively. 𝑋𝑀𝑖𝑛 , 𝑋𝑀𝑎𝑥 , 𝑉𝑀𝑖𝑛and 𝑉𝑀𝑎𝑥  are the user-

defined boundaries, and Random is an evenly distributed 

random integer generated in (0,1). The following equations 

update the location and speed of each particle for the 

subsequent populations (k>0) for i=1, i=2, i=3, i=4,5, i=6, and 

i=Np: 

 

𝑉𝑖,𝑘+1=𝑐1𝑟1(𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

-𝑋𝑖,𝑘)+𝑐2𝑟2(𝑋𝑖,𝑘
𝑔𝑏𝑒𝑠𝑡

-𝑋𝑖,𝑘)+𝑊𝑘𝑉𝑖,𝑘 (9) 

 

𝑋𝑖,𝑘+1=𝑋𝑖,𝑘+𝑉𝑖,𝑘+1 (10) 

 

where, Xi,k is the situation of the ith particle at the kth iteration, 

𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

 is the role of the ith particle at the finest prior 

installment, 𝑉𝑖,𝑘  is the velocity, 𝑐1  and 𝑐2  are referred to as 

perceptual and social correlations, 𝑟1  and 𝑟2  are unified 

random numbers in (0,1), and 𝑋𝑖,𝑘
𝑔𝑏𝑒𝑠𝑡

 is the keep in mind that 

𝑐1  and 𝑐2  are the positive constants that, correspondingly, 

indicate the attraction toward 𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

, and 𝑋𝑖,𝑘
𝑔𝑏𝑒𝑠𝑡

 [32]. Wk is 

the inertial weight that influences the new velocity by acting 

on the previous velocity. 

The linear decreasing approach of fuzzy inertia weighting, 

in which 𝑊𝑘 is updated using the following formula, is one of 

the most often used techniques: 

 

𝑊𝑖=𝑊𝑀𝑎𝑥-
𝑊𝑀𝑎𝑥−𝑊𝑀𝑖𝑛

𝐼𝑡𝑒𝑟𝑀𝑎𝑥
×k (11) 

 

where, 𝐼𝑡𝑒𝑟𝑀𝑎𝑥  is the maximum number of iterations and 

𝑊𝑀𝑎𝑥  and 𝑊𝑀𝑖𝑛  are the weighting coefficient's starting and 

ultimate levels, correspondingly. The fundamental PSO 

structure is as follows: 

Step 1: Create the particle's starting population location and 

speed using Eqs. (7) and (8). 

Step 2: Utilize relation (9) and update the location and speed 

of each particle (11). 

Step 3: Calculate the relevant fitness values in accordance 

with the fitness function of the optimization problem after 

mapping the particle location to the solution space. 

Step 4: Update 𝑋𝑖,𝑘
𝑝𝑏𝑒𝑠𝑡

and 𝑋𝑖,𝑘
𝑔𝑏𝑒𝑠𝑡

. 

Step 5: Proceed to Step 2 if the requirements for halting are 

not satisfied; otherwise, terminate the algorithm. 
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The following is an explanation of the proposed FWPSO 

approach: 

1) Perform the calculations necessary to determine the 

local maxima and minima of the IMF. 

2) When compared with the adaptable thresholds, the 

actual numbers of the local maximum and minimum 

were examined by λ distinct determinations made 

using the FWPSO algorithm. Produce a partially 

analyzed IMF by setting the maxima with values 

lower than the threshold to zero. 

3) Perform the calculations necessary to determine all 

the local maxima and minima of the IMF that were 

obtained in Step 2. 

4) Step 3 involves performing a comparison between the 

actual numbers of the local maximum and minimum 

using the same threshold λ, zero out the extremes 

whose absolute values are lower than the threshold, 

and obtaining another IMF that has been partially 

analyzed. 

5) Repeat Steps 3 and 4 as many times as necessary until 

there are no more local maxima and minima that need 

to be reset to zero. 

 

The proposed approach can save all QRS information. This 

is accomplished by continually filtering peaks that are lower 

than the threshold. The Signal-to-Noise Ratio (SNR) is a 

quantitative evaluation of the performance of the approach. 

The SNR is the ratio of the amount of usable energy to the 

amount of noise energy. The equation below describes the 

definition of signal-to-noise ratio (12): 

 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 (
∑ 𝑠2(𝑛)𝑁

𝑛=1

∑ 𝑛2(𝑛)𝑁
𝑛=1

) (12) 

 

where, s(n) denotes the signal that existed before the 

introduction of any noise and n(n) refers to the noise that has 

been incorporated into the signal. Their connections are 

represented by the equation in the following phrase (13): 

 

𝑥(𝑛) = 𝑠(𝑛) + 𝑛(𝑛) (13) 

 

where, x(n) represents the erratic signal. The effectiveness of 

the denoising algorithms was evaluated by examining the 

increase in the SNR. This equation describes how the SNR 

improvement is defined (14): 

 

𝑆𝑁𝑅𝑖𝑚𝑝 = 𝑆𝑁𝑅𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 − 𝑆𝑁𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  (14) 

 

A metric for assessing the efficiency considering the energy 

perspective is the SNR increase. The EMD signal is shown in 

Figure 4. 

 

3.3 Segmentation 

 

The three components of the heartbeat segmentation 

process are the detection of P and T waves and the QRS 

complex. 

QRS complex detection: The Pan Tompkins approach 

identifies the QRS complex on denoised ECG data. The 

method can be broken down into four steps: derivation, 

quadratic distinctions, shifting integral, and threshold 

operations. 

Finding a steep slope is one of the steps in the separation 

process, which is utilized to isolate the QRS complex from 

other electrocardiogram waveforms. Subsequently, point-to-

point squaring of the slope is performed, which is an essential 

step because it highlights the higher values that mostly arise as 

a result of the QRS complex. Subsequently, moving-window 

integration will disclose other information, including the QRS 

onset, offset, and breadth. Additionally, amplitude thresholds 

were used to locate the R peaks. 

 

 
 

Figure 4. Empirical mode decomposition 

 

 
 

Figure 5. QRS signal 

 

P-and T Waves delineation: Following the identification 

of the QRS complex, the QRS complex serves as a guide for 

establishing the boundaries of two search windows that are 

utilized to simultaneously detect P- and T-waves. The average 

integral nucleus was located at the P-wave peak. The local 

minimum and maximum were compared to the corresponding 

thresholds in the search window, and the T-waves were then 

calculated [33]. Figure 5 shows the QRS signal. 

 

3.4 Feature extraction 

 

The extracted ECG segments were analyzed using PCA. 

PCA is to isolate unimportant factors from a large set of 

important elements. The retrieved ECG segment was 
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subjected to PCA, and the first five columns of the Y variables 

were considered the five characteristics for further 

categorization [34]. 

Reducing the ECG dataset dimensionality with PCA 

improved the performance of the CKWCNN classifier. PCA 

effectively reduces noise and emphasizes the most informative 

features by converting the original high-dimensional data into 

lower-dimensional space. This results in enhanced 

computational efficiency and faster training times, while 

preserving the key characteristics of the ECG signals. 

Additionally, morphological features offer valuable insights 

into the structural aspects of ECG signals, including the shapes, 

peaks, and intervals that are indicative of myocardial 

infarction. Incorporating these features enables the CKWCNN 

classifier to detect subtle patterns in the data that are crucial 

for an accurate classification. This added layer of information 

strengthens the robustness of the model and enhances its 

overall accuracy in identifying myocardial infarction. The 

combination of PCA and morphological features created a 

more effective feature set, which significantly improved the 

classification accuracy of the CKWCNN. By integrating these 

techniques, the model achieved better performance metrics 

than when using raw ECG data alone, resulting in improved 

detection rates and fewer false positives. When relying solely 

on raw ECG data, the model may find it challenging to identify 

relevant patterns owing to the high dimensionality and noise. 

In contrast, the integration of PCA and morphological features 

facilitates a more targeted analysis, leading to increased 

classification accuracy and a lower false-positive rate. 

The issue of low-dimensional feature modeling is outlined 

below. 

Let X=(𝑥1, 𝑥2, … , 𝑥𝑛) each xi is an ECG feature vector of 

size n, and represents the n by N data matrix. 

 

3.4.1 Computing the scatter matrix 

The scatter matrix is computed as follows: 

 

S=∑ (𝑥𝑘 − 𝑚)(𝑥𝑘 − 𝑚)𝑇𝑛
𝑘=1  (15) 

 

where, m represents the mean vector. 

The recommended approach calculates the mean values for 

increasing the dimension reduction probability. 

 

m=𝑛𝑝 (16) 

 

where, the beats observed are indicated by the number n. p is 

the probability of success. 

 

3.4.2 Computing eigenvectors and corresponding eigenvalues 

When we extracted the component using covariance, the 

eigenvectors were multiplied by it. Let us verify that the 

equation is satisfied and that the eigenvector-eigenvalue 

computation is accurate. 

 
∑ 𝑣=𝛌v (17) 

 

where, ∑ −𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑎𝑡𝑟𝑖𝑥, v-Eigen vector and 𝛌-Eigen 

value. 

It is recommended to eliminate the eigenvalues with the 

lowest eigenvalues because they reveal the least information 

regarding the data distribution [35]. The usual method is to 

choose the top k eigenvectors by ranking the eigenvectors 

according to their associated eigenvalues from highest to 

lowest. Creating our dk-dimensional eigenvector matrix in this 

case requires merging the two eigenvectors with the highest 

eigenvalues 𝑊𝑇. 

The samples are transformed onto the new subspace using 

the equation in the last step using the 23-dimensional matrix 

W that the system just generated y=𝑊𝑇×x. Following are the 

steps: 

1) Consider the entire collection of information 

composed of examples with d dimensions. 

2) Calculate the mean vector across all the dimensions. 

3) The overall correlation matrix of the information set 

is created. 

4) Compute eigenvectors (𝑒1 ,𝑒2 , ..., 𝑒𝑑 ) eigenvalues 

that relate to the various variables (𝛌1, 𝜆2, … , 𝜆𝑑). 

5) To create a matrix with dimensions d×k, the 

eigenvectors are arranged in descending order of 

their eigenvalues, and then choose the k 

eigenvectors that have the highest eigenvalues W. 

6) To convert the samples into a new subspace, the dk 

eigenvector matrix may be used. The mathematical 

equation may be used to provide a concise summary 

of this: y=𝑊𝑇×x (where x is ad×1-One sample is 

represented by a one-dimensional vector, and the 

converted k-by-one-dimensional sample in the new 

subspace is represented by y. 

 

3.5 Classification 

 

3.5.1 Convolution weight based CNN (CWCNN) classifier 

This research aimed to categorize myocardial infarction via 

a Convolution Kernel Weight-Based Convolutional Neural 

Network (CWCNN). This network primarily comprises 

convolutional, subsampling or pooling, and fully linked layers 

[36]. This network architecture has an input layer that receives 

the selected characteristics, an output layer that produces the 

trained results, and several intermediary layers referred to as 

hidden layers as shown in Figure 6. 

 

Convolution Layer 

A convolutional neural network (CNN) commences with a 

convolutional layer as its initial component. This layer 

executes convolution by utilizing a kernel (or filter) for the 

input characteristics. 

To provide the output [37], each characteristic of the input 

matrix underwent convolution with the kernel. The output is 

represented as n and is obtained by convolutionating the input 

and the kernel. The kernel of a convolution matrix is 

commonly termed a filter, and the output generated from 

applying this filter to the input is referred to as a feature map, 

which possesses dimensions i*i. 

In the subsequent convolutional layers of the network, the 

inputs and outputs consist of feature vectors. Each 

convolutional layer utilized a collection of n filters. The input 

undergoes convolution with these filters and the depth of the 

resultant feature maps (n) correlates with the number of filters 

employed. Each filter map denotes a distinct feature that is 

derived from a specific input area. 

The output of the lth convolution layer is denoted by the 

symbol𝐶𝑖
(𝑙)

 is derived as follows: 

 

𝐶𝑖
(𝑙)

=𝐵𝑖
(𝑙)

+ ∑ 𝐾𝑖,𝑗
(𝑙−1)

∗
𝑎𝑖

(𝑙−1)

𝑗=1
𝐶𝑗

(𝑙)
 (18) 

 

where, 𝐵𝑖
(𝑙)

 represents the bias matrix 𝐾𝑖,𝑗
(𝑙−1)

 through a 

convolution filter from the preceding layer (l - 1) incorporating 
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the ith feature map alongside the others. The results of the 

work 𝐶𝑖
(𝑙)

 constitutes the feature maps of the layer in question. 

In (18), the intial layer of CNN network 𝐶𝑖
(𝑙−1)

 is a place for 

input, which is 𝐶𝑖
(0)

= 𝑋𝑖. 

The kernel then generates a feature map. After applying the 

convolution layer: 

 

𝑌𝑖
(𝑙)

= 𝑌(𝐶𝑖
(𝑙)

) (19) 

 

where, 𝑌𝑖
(𝑙)

 represents the activating factor and 𝐶𝑖
(𝑙)

denotes the 

data that is inputted into it. 

The three most commonly adopted activation functions are 

sigmoid, tanh, and rectified linear units (ReLUs). The research 

occasionally refers to weighted ReLUs is Yi
(l)

=

w. max (0, Yi
(l)). The activation function is frequently used in 

deep learning models because of its efficacy in mitigating the 

detrimental impacts of interactions and nonlinearity and is 

essential for improving model performance. In this case, we 

employ a Rectified Linear Unit (ReLU) activation function 

[38]. For negative inputs, the ReLU outputs 0 and maintains 

the input value for positive inputs. This function is helpful 

because it accelerates learning by fixing the vanishing gradient 

problem. In the saturation zones, the gradient becomes much 

smaller, which means that the training weights do not change 

significantly. 

We integrated the feature weights to enhance the 

performance. We calculate the convolution kernel weights 

based on the significance of the features instead of assigning 

them randomly. The primary benefit of using these 

convolution weights is that they reduce classification mistakes 

by considering the significance of the features derived from 

the data. Thus, the kernel recognizes the features to obtain 

weights (Figure 7). 
 

Pooling Layer 

Following the convolutional layer, the subsampling layer 

aims to reduce the spatial dimensions of the map features from 

the previous convolutional layer [39]. We accomplished this 

reduction by partitioning the feature maps into 2×2 blocks and 

calculating the average value for each block. The subsampling 

layer maintains the relative information among the features 

instead of their precise relationships. Incorporating a 

subsampling layer improves the resilience of the convolutional 

layer to translation and rotation in the input data. 

 

 
 

Figure 6. Convolutional neural network (CNN) 

 

 
 

Figure 7. Convolution Kernel Weight Based CNN (CKWCNN) classifier 
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Fully Connected Layer 

The output layer uses softmax activation: 

 

𝑌𝑖
(𝑙)

= 𝑓(𝑧𝑖
(𝑙)

), (20) 

 

where, 𝑧𝑖
(𝑙)

= ∑ 𝑤𝑖,𝑗
(𝑙)

𝑦𝑖
(𝑙−1)𝑚𝑖

(𝑙−1)

𝑖=1
. 

where, 𝑤𝑖,𝑗
(𝑙)

 denotes the completely linked layer must alter 

weight values to reflect each class, and f represents the transfer 

function, which denotes nonlinearity. 

 

Pseudo code algorithm: Convolutional Kernel Weight 

based CNN classifier 

Input: Selected features x1, x2, x3....xn, target label T 

(y1....yT), Number of convolutional masks size, Number of 

epochs for Forward Propagation and Backward Propagation 

Output: Predicted Labels 

Steps: 

1: Start 

2: sf(Xi) ← Get selected features 

3: Normalize the feature data 

4: regularization feature data 

5: Repeat every epoch 

6: Perform forward propagation until epochs 

7: cd ← Convolution (sf sf(Xi)) 

8: mp ← pooling (cd) 

9: fc ← fully _connected (mp) 

10: calculate weight wi using Convolution kernel till 

convergence completed 

11: class label ← Soft_max (fc) 

12: Do Backward Propagation till R 

13: Conduct backward propagation 

14: Obtain the output predicted labels Yi 

15: End. 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, the outcomes of the suggested approach and 

previously suggested methods for MI identification are 

compared. The proposed method was discussed and 

implemented using MATLAB. This innovative effort 

demonstrates encouraging outcomes in the medical field, 

which inspires confidence that such patients may be accurately 

and quickly identified. 

We used the PTB dataset to identify myocardial infarctions 

and test how well the proposed CKWCNN algorithm worked 

in both inter-patient and intra-patient settings. The evaluation 

focused on measures such as accuracy, sensitivity, specificity, 

precision, and F-measure. We utilized a 5-fold cross-

validation method to mitigate the impact of initialization on 

networks. 

The beats were randomly allocated into five approximately 

equal pieces using the intra-patient method. We employed 

three segments for model training during each cycle: one 

segment served as the validation set for parameter 

optimization, while the remaining segment served as the 

testing set to evaluate the final performance. For training, 

validation, and testing, the inter-patient method randomly 

assigned patients in a 3:1:1 ratio, designating the respective 

beats for each set. 

We averaged performance indicators, such as accuracy, 

sensitivity, specificity, precision, and F-measure, after 

concluding all five iterations to provide a comprehensive 

evaluation of the model's efficacy. Employing many methods 

guarantees that the evaluation accurately represents the 

model's performance across various data distributions, thus 

enhancing the dependability of the results. The 5-fold cross-

validation facilitates the generalization of the model to novel 

data, thereby diminishing the probability of overfitting to a 

particular training set. This approach ensures a comprehensive 

assessment of the performance of the model by training it on 

diverse data segments and undergoing distinct testing with 

each iteration. 

This section discusses the performance of MI detection and 

localization based on a 5-fold cross-validation. Mainly, 24,157 

data points containing HC with different MI were separated 

into five equal sections, with the same number in each of the 

two MI detection categories and the same number in each of 

the six MI localization categories. During the training phase, 

19,326 HC and MI records were used. Instead, 4,831 records 

were used during the testing stage. Thus, all 24157 records 

were used based on cross-validation. 

Precision is defined as the ratio of accurately identified 

positive discoveries to total predicted positive results. 

 

TP / TP FPPrecision = +  (21) 

 

Recall is defined as the ratio of accurately identified positive 

data to total data within an appropriate classification. 

 

TP / TP FNRecall == +  (22) 

 

The F1 score is the weighted average of the precision and 

recall. Thus, they may produce false positives and negatives. 

 

                        F1 Score=

2 *( Recall * Precision ) /( Recall + Precision )
 (23) 

 

Specificity measures the percentage of correct negatives 

observed. 

 

N / FP TNSpecificity = +  (24) 

 

Accuracy is the overall accuracy of the model, and is 

determined by dividing the total number of real classification 

parameters by the total number of classification parameters. 

The accuracy is calculated as 

 

TP TN / (TP FP TN FN)Accuracy = + + + +  (25) 

 

The error rate calculation is performed as follows, 

 

Error=100-Accuracy  (26) 

 

The terms "True Positive," "True Negative," "False 

Positive" and "False Negative," are abbreviated as "TP," "TN," 

"FP," and "FN," respectively. 

 

4.1 Performance evaluation using the intra-patient 

approach 

 

Table 4 and Figure 8 show the overall performance based 

on MI detection using the intra-patient scheme in conjunction 

with the CKWCNN model. Table 4 shows that the overall 

performance, which includes accuracy, recall, specificity, 

precision, and F1, was 99.9%, 99.99%, 99.73%, 99.87%, and 
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99.88%, respectively. Only 0.19% of the ECG recordings were 

misidentified in the fifth run of the experiment, thereby 

demonstrating the superiority of the proposed approach. 

Figure 9 shows that only two MI and 11 HC records were 

misclassified. In addition, 17,210 IM data points were 

successfully detected out of 17,212 records, indicating a very 

low false-negative rate. 

 

 
 

Figure 8. Comparison outcomes for MI detection using the 

intra-patient approach 

 

However, myocardial infarction localization is more 

complicated than myocardial infarction detection, which is 

characterized by dynamic changes in different ECG leads. The 

CKWCNN model correctly identified data in the ASMI, AMI, 

ALMI, ILMI, IML, and HC categories, as shown in Table 5, 

achieving a superior average performance of 5folds. The 

precision, sensitivity, specificity, and F1 values were 99.82%, 

99.73%, 99.82%, and 99.78%, respectively. 

Figure 10 shows the confusion matrix and MI localization 

performance of the intra-patient 5-fold cross-validation 

scheme. It is easy to see that 12 AMI data and 12 ALMI data 

points are considered ASMI. In fact, all the above data are 

from previous MI, making it difficult to differentiate between 

these groups. As shown in Figure 11, almost no IMI data were 

witnessed as HC or AMI data. In contrast to the intra-patient 

experiments mentioned earlier, the inter-patient scheme has 

considerable clinical importance for demonstrating the 

model's generalization capabilities. For the PTB database, the 

training phase involved 55 healthy controls (HC) and 209 

myocardial infarction (MI) patients, while the test phase 

included the remaining 25HC and 103 MI patients. A total of 

4,740HC and 10,721 MI 12-lead ECG recordings were utilized 

for training, and after preprocessing, 2,205HC and 6,491 MI 

recordings were used to assess the protocol performance 

across patients. 

 

 
 

Figure 9. Confusion matrix and performance for MI 

detection using the intra-patient approach 

 

 
 

Figure 10. Comparison outcomes of MI localization using 

the intra-patient approach 

 

 
 

Figure 11. Confusion matrix and performance for MI 

localization using the intra-patient approach 

 

Table 4. 5-fold cross-validation outcomes for MI detection using the intra-patient approach 

 

Fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%) 

1 99.83 99.97 100 100 99.85 

2 99.77 100 99.41 99.71 99.81 

3 99.98 100 100 100 100 

4 99.99 100 100 100 100 

5 99.72 100 99.27 99.65 99.78 

Average 99.9 99.99 99.73 99.87 99.88 
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Table 5. 5-fold cross-validation outcomes for MI localization using the intra-patient approach 

 
Fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%) 

1 99.72 99.58 99.71 99.67 99.62 

2 99.84 99.79 99.84 99.79 99.79 

3 99.92 99.89 99.92 99.89 99.89 

4 99.92 99.86 99.92 99.92 99.89 

5 99.74 99.57 99.73 99.63 99.65 

Average 99.82 99.73 99.82 99.78 99.76 

 

4.2 Performance evaluation using the inter-patient 

approach 

 

Combining the results in Table 6 and Figure 12, it is clear 

that our algorithm achieves good overall performance based 

on MI detection using the interpatient approach in conjunction 

with the CKWCNN algorithm. Table 6 shows that the overall 

performance, which includes the accuracy, recall, specificity, 

precision, and F1, was 98.74%, 97.91%, 98.75%, 99.57%, and 

98.22%, respectively. As shown in Figure 13, only 329 MI and 

55 HC records were misclassified. 

In addition, 6162 MI data were successfully detected from 

the 6491 records, indicating a very low false-negative rate. 

However, myocardial infarction localization is more 

complicated than myocardial infarction detection, which is 

characterized by dynamic changes in different ECG leads. 

Figure 14 indicates that the accuracy and other performance 

metrics for MI localization are inferior relative to those of all 

prior tests. The HC class achieved an optimal sensitivity of 

96.53%, indicating accurate identification of the majority of 

HC records. 

Table 7 presents a comparison of the classification results. 

The performance of the precision, recall, and f-measure 

comparison results of the proposed CKWCNN for MI 

detection are shown in Figure 15. Therefore, the findings 

demonstrate that the use of FWPSO for feature selection may 

be efficient for predicting psychological disorder detection. 

This is an appealing property because it does not require 

tuning the overfitting problem in the classifier. The proposed 

FWPSO is highly effective for solving classification problems. 

The results show that the proposed method has a recall rate of 

89.68%, whereas the state-of-the-art method has a lower recall 

rate, 66.25% for the SVM method measurement and 67% and 

68.54% for the RF and KNN method measurements, 

respectively. 

 

 
 

Figure 12. Comparison results of MI detection using inter-

patient scheme 

 

 
 

Figure 13. Confusion matrix and performance for MI 

detection using the inter-patient approach 

 

Table 6. 5-fold cross-validation outcomes for MI detection using the inter-patient approach 

 
Fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%) 

1 98.72 97.86 98.19 99.05 97.74 

2 98.66 97.89 98.30 99.60 97.70 

3 98.87 97.90 98.56 99.65 98.12 

4 98.88 97.95 99.16 99.77 98.67 

5 98.61 97.99 99.54 99.79 98.89 

Average 98.74 97.91 98.75 99.57 98.22 

 

Table 7. Classification results comparison of the proposed CKWCNN classifiers on MI detection 

 

METHODS 
METRICS (%) 

Precision Recall F-Measure Accuracy Specificity ERROR 

KNN 68.50 70.00 69.24 70.00 73.12 30.00 

RF 70.00 69.90 70.00 70.00 78.56 30.00 

SVM 75.60 75.10 75.84 75.00 80.78 25.00 

BBNN 80.95 89.32 87.00 90.05 92.12 18 

CNN 96.00 96.60 96.29 95.00 95.02 12.00 

CKWCNN 98.22 99.82 98.38 98.46 98.13 5.00 
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Table 8. Classification results comparison of the introduced CKWCNN classifiers on MI localization 

 

METHODS 
METRICS (%) 

Precision Recall F-Measure Accuracy Specificity ERROR 

KNN 57.20 50.00 58.13 65.00 68.23 45.00 

RF 60.11 58.81 61.33 71.00 70.45 38.00 

SVM 66.71 64.21 64.72 72.19 75.67 29.00 

BBNN 70.84 68.43 78.11 80.05 85.23 15 

CNN 74.05 70.71 84.18 85.10 90.11 10.00 

CKWCNN 90.33 89.93 90.49 89.45 92.24 7.00 

 

 
 

Figure 14. Confusion matrix and performance for MI 

localization using the inter-patient approach 

 

 
 

Figure 15. Performance comparison results of the introduced 

CKWCNN classifier in terms of precision, recall and f-

measure on MI detection 

 

Figure 16 illustrates the performance results of the proposed 

CKWCNN technique. The suggested CKWCNN classifier 

obtains phenomenal efficiency in terms of the illness detection 

rates. This can be seen in the graph. The findings of the 

subjective study, which made use of several machine learning 

methodologies, and the results of the statistical study, which 

measured everything in terms of the f-measure in accordance. 

The accuracy of the proposed CKWCNN was evaluated in 

comparison to that of conventional categorization algorithms 

using the MI dataset. The findings indicate that the proposed 

approach produces a highly specific result of 95%. In contrast, 

the state-of-the-art method produced poor recall results, such 

as 80.78% for the SVM method metric and 78.56 and 73.14% 

for the RF and KNN method parameters, respectively. The 

proposed CKWCNN-based classifiers provide a lower error 

rate than the existing classifiers, and Table 8 compares the 

classification results the performance of the precision, recall, 

and f-measure comparison results of the proposed CKWCNN 

for MI localization are shown in Figure 17. Therefore, the 

findings demonstrate that the use of FWPSO for feature 

selection may be efficient for predicting psychological 

disorder detection. This is an appealing property because it 

does not require tuning the overfitting problem in the classifier. 

The proposed FWPSO is highly effective for solving 

classification problems. The results show that the proposed 

method has a recall rate of 89.93%, whereas the state-of-the-

art method has a lower recall rate, that is, 50.00% for the SVM 

method measurement and 58.81% and 6421% for the RF and 

KNN method measurements, respectively. 

Figure 18 illustrates the performance results of the proposed 

CKWCNN technique in terms of the accuracy, specificity, and 

error. The suggested CKWCNN classifier obtains phenomenal 

efficiency in terms of the illness detection rates, which is 

significantly better than that of the KNN, RF, SVM, BBNN, 

and CNN classifiers. This can be seen in the graph. The 

accuracy of the proposed CKWCNN was evaluated in 

comparison to that of conventional categorization algorithms 

using the MI dataset. The findings indicated that the proposed 

approach produced a highly specific result of 92.24%. 

In contrast, the state-of-the-art method produced poor recall 

results, such as 68.23% for the SVM method metric and 70.45 

and 75.67% for the RF and KNN method parameters, 

respectively. The proposed CKWCNN-based classifiers 

provide a lower error rate than existing classifiers. Figure 19 

shows the proposed confusion matrix and Figure 20 shows the 

training and validation. Therefore, the performance of the 

classifications will be greater when compared to other 

classifications constructed on already developed models and 

fresh information that is comparable to the entire dataset. 

 

 
 

Figure 16. Performance comparison results of the introduced 

CKWCNN classifier in terms of accuracy, specificity and 

error on MI detection 
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Figure 17. Performance comparison results of the CKWCNN 

classifier in terms of precision, recall and f-measure on MI 

localization 

 

 
 

Figure 18. Performance comparison results of the CKWCNN 

classifier in terms of accuracy, specificity and error on MI 

localization 

 

 
 

Figure 19. Confusion matrix of the proposed CKWCNN 

technique 

 

4.3 Results comparing raw data with proposed PCA 

 

PCA was utilized to decrease the dimensionality of the ECG 

data, improve computational efficiency, and emphasize 

important variations within the dataset. Morphological 

features provide essential insights into the shape and 

characteristics of ECG signals, which are critical for MI 

detection. In this section, we will compare the optimal results 

of the raw data with those obtained using auto-encoder (AE), 

factor analysis (FA). 

 

 
 

Figure 20. Training and validation of the CKWCNN 

classifier 

 

Figures 21 and 22 illustrate the performance analysis of both 

the proposed and existing algorithms for the raw ECG dataset, 

AE, FA, and PCA-processed datasets using accuracy and F-

measure as metrics. The findings indicate that the integration 

of PCA and morphological features substantially boosts the 

classification accuracy, with the combined method showing a 

significant improvement over the use of raw ECG data alone. 

 

 
 

Figure 21. Comparison of results using accuracy 

 

 
 

Figure 22. Comparison of results using F1 score 
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Table 9. State-of-the-art algorithm based ECG MI detection and localization 

 

Reference Year Algorithm MI Detection MI Localization 
Inter-/Intra 

Patient Analysis 

[40] 2018 Google’s Inception V3 

Accuracy=89.5% 

F-measure=89.1% 

Specificity=84.8% 

Sensitivity=84.3% 

- - 

[41] 2018 
Multiple-Feature Branch CNN 

(MFB-CNN) 

Intra-: 

Accuracy=99.9% 

Specificity=99.9% 

Sensitivity=99.9% 

Inter-: 

Accuracy=98.6% 

Spec=99.4% 

Sensitivity=98.7% 

Intra-: 

Accuracy=99.8% 

Inter-: 

Accuracy=93.7% 

Inter- and intra-

patient analysis 

[34] 2019 PCANet 

Intra-: 

Accuracy=99.5% 

Specificity=98.1%  

Sensitivity=99.8% 

Inter-: 

Accuracy=93.2% 

Specificity=89% 

Sensitivity=94% 

- 
Inter- and intra-

patient analysis 

[42] 2020 CNN 

Accuracy=94.8% 

F-measure=94% 

Specificity=95.9% 

Sensitivity=96.4% 

- - 

[43] 2021 
CNN with fully connected feed 

forward network 

Accuracy=77% 

Specificity=84% 

Sensitivity=70% 

- 
Intra- and inter-

patient analysis 

[44] 2020 DenseNet 

Intra-: 

Accuracy=99.7% 

Specificity=99.8% 

Sensitivity=98.7% 

Inter-: 

Accuracy=96.9% 

Sensitivity=89.2% 

Specificity=97.8% 

- 
Intra- and inter-

patient analysis 

[45] 2021 deep CNN 

Specificity=99.7% 

Accuracy=99.8% 

Sensitivity=99.9% 

 - 

[46] 2021 ConvNetQuake 

Intra-: 

Accuracy=99.3% 

Sensitivity=99.4% 

Specificity=99.5% 

PPV=99.5% 

Inter-: 

Accuracy=97.8% 

- 
Intra- and inter-

patient analysis 

[47] 2021 ML-CNN 

Accuracy=99.5% 

Sensitivity=99.7% 

Specificity=99.4% 

PPV=99.3% 

Sensitivity=99.1% 

F1-score=99% 

- 

Proposed  CKWCNN 

intra-patient 

Accuracy=99.9% 

Specificity=99.73% 

Sensitivity=99.9% 

inter-patient 

Accuracy98.74% Sensitivity=97.91% 

Specificity=98.75% 

intra-patient 

Accuracy:99.82% 

Specificity=99.82% 

Sensitivity=99.73% 

inter-patient 

Accuracy=98.65% 

Specificity=98.56% 

Sensitivity=98.83% 

Intra- and inter-

patient analysis 

 

Table 9 depicts the state-of-the-art algorithm-based ECG 

MI detection and localization. From the table, the proposed 

method surpasses existing models such as CNN, Deep CNN, 

Google’s Inception V3, ML-CNN, and DenseNet in both intra-

patient and inter-patient schemes for myocardial infarction 

detection and localization. To fully harness CKWCNN's 

potential for enhancing patient care and outcomes in 

cardiology, it is crucial to tackle these challenges through 

thorough validation, regulatory compliance, clinician training, 

and stakeholder involvement. 

 

4.4 State-of-the-art comparison 

 

The integration of the CKWCNN classifier for MI detection 

has significant clinical implications, contributing to 

improvements in the diagnostic accuracy and patient care 

pathways. CKWCNN's capability of CKWCNN to analyze 

ECG signals for MI detection can enhance its accuracy beyond 
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traditional methods. By autonomously learning and extracting 

intricate patterns from ECG data, the CKWCNN may identify 

subtle changes indicative of MI earlier than conventional 

techniques. This early detection can facilitate timely 

intervention, potentially lowering mortality and morbidity 

rates related to myocardial infarction. Integrating the 

CKWCNN into clinical workflows can serve as a valuable 

decision-support tool for healthcare professionals. By offering 

rapid and objective assessments of myocardial infarction risk 

through ECG analysis, the CKWCNN can aid clinicians in 

making timely and informed decisions regarding patient 

management, including initiating appropriate treatments or 

referrals to specialized care. The proposed CKWCNN for MI 

detection has the potential to transform clinical practice by 

improving diagnostic accuracy, enhancing clinical decision 

support, and reducing mortality and morbidity rates among 

patients. However, implementation challenges, such as 

variations in ECG signal quality, patient demographics, and 

clinical contexts, can affect CKWCNN's performance and 

generalizability of CKWCNNs across diverse populations and 

healthcare settings. To fully harness the CKWCNN's potential 

for enhancing patient care and outcomes in cardiology, we will 

address these barriers in the future through comprehensive 

validation, regulatory compliance, clinician education, and 

active stakeholder engagement. 

 

 

5. CONCLUSION 

 

This work concentrates on the early detection of myocardial 

infarction (MI), which, when performed using the suggested 

CKWCNN Algorithm, has the potential to save lives 

worldwide. It is the delayed identification of an illness that is 

to blame for the decline in the sufferer's quality of life, as well 

as the value of life of those connected to the afflicted. It is of 

utmost importance to perform precise and prompt 

identification. The extraction and selection of features is an 

important step in the process of constructing a model. This is 

helpful in eliminating features that provide the least influence. 

The EMD-FWPSO and PCA solutions suggest this essential 

goal, each of which achieves global optimization to a 

commendable degree and represents a fresh method inside this 

industry. This method has been used to attain an accuracy that 

is very close to the ideal at every stage of life. The suggested 

effort will enhance categorization. Finally, the CKWCNN 

performance was compared to KNN, RF, and SVM in terms 

of recall, precision, F-measure, and accuracy. This study also 

reduced the classifier time complexity by employing deep-

learning classifiers. 
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