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With the rapid development of artificial intelligence technology, methods for classroom 

interaction behavior analysis based on computer vision and deep learning have gradually 

become an important direction in educational research. Classroom interaction behavior is a 

crucial indicator of teaching effectiveness and student learning progress. Traditional 

classroom observation methods fail to meet the demands of real-time monitoring, accuracy, 

and comprehensiveness. Image-based interaction behavior analysis can improve the 

precision and efficiency of classroom assessments through automation. Existing research 

mainly focuses on the recognition and analysis of interaction behaviors, but challenges such 

as insufficient detection accuracy, a lack of dynamic spatiotemporal information integration 

in behavior recognition, and poor algorithm real-time performance still exist. Therefore, 

improving target detection accuracy and behavior recognition, especially in complex 

classroom environments, remains a critical research challenge. This paper proposes an 

improved YOLOv5-based classroom interaction object detection algorithm to address 

accuracy and real-time issues in recognizing interaction objects in complex classroom 

settings. Additionally, the paper presents an interaction behavior recognition method based 

on dynamic spatiotemporal information fusion, which enhances behavior recognition 

accuracy and robustness by integrating spatiotemporal features. The improved algorithm 

framework effectively enhances the precision and efficiency of interaction behavior 

analysis, providing technical support for intelligent evaluation of teaching processes and 

personalized education. 
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1. INTRODUCTION

With the rapid development of information technology, the 

application of artificial intelligence in the field of education 

has been making continuous progress, especially in the 

analysis of classroom interaction behavior [1-4]. Classroom 

interaction, as an important means of information transfer and 

knowledge sharing between students and teachers during the 

teaching process, directly affects teaching effectiveness and 

students’ interest in learning [5, 6]. Traditional classroom 

observation and assessment methods often rely on manual 

recording and subjective judgment, making it difficult to 

achieve real-time, comprehensive, and accurate interaction 

behavior analysis [7-10]. Therefore, classroom interaction 

behavior analysis based on image processing and artificial 

intelligence technology has become one of the current hot 

topics in educational research. By applying computer vision, 

deep learning, and other technologies, various classroom 

interaction behaviors can be automatically recognized, 

providing educators with more scientific and effective 

teaching evaluation tools. 

Research on classroom interaction behavior not only helps 

improve teaching quality, but also has important significance 

for personalized education and teaching optimization. Firstly, 

real-time interaction behavior analysis can help teachers 

quickly adjust teaching strategies, improve teaching content 

and methods, thereby enhancing classroom efficiency [11-14]. 

Secondly, systematic behavior recognition technology helps 

provide more accurate learning feedback to students, thereby 

promoting students' self-directed learning and active 

participation [15, 16]. Finally, with the help of big data and 

artificial intelligence analysis, scientific decision-making can 

be provided for education managers, promoting educational 

reform and innovation [17, 18]. However, despite some 

existing artificial intelligence-based classroom behavior 

analysis methods, challenges still remain in terms of algorithm 

accuracy, real-time performance, scalability, and so on. 

Therefore, conducting research on classroom interaction 

behavior analysis based on image processing and artificial 

intelligence has broad application prospects and profound 

social significance. 

Current research mainly focuses on various aspects of 

classroom behavior recognition and student behavior analysis, 

but these studies still have some shortcomings in practical 

applications [19-22]. Firstly, many existing methods have 

limitations in detecting interaction objects, especially in 
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complex classroom environments, where traditional object 

detection algorithms may struggle to achieve efficient and 

accurate object recognition [21, 22]. Secondly, existing 

behavior recognition methods are often limited to static 

images or single spatiotemporal features, ignoring the 

integration of dynamic spatiotemporal information in the 

classroom, leading to lower recognition accuracy in complex 

scenes [23-27]. In addition, the real-time performance and 

processing speed of existing algorithms are also insufficient to 

meet the demands of classroom applications. Therefore, how 

to improve the robustness of detection algorithms and combine 

dynamic spatiotemporal features for multidimensional 

behavior recognition remains an important challenge in 

current research. 

This paper is mainly dedicated to addressing these issues. It 

proposes an improved YOLOv5-based classroom interaction 

object detection algorithm aimed at improving the accuracy 

and real-time performance of interaction object recognition in 

the classroom. At the same time, this paper also proposes a 

classroom interaction behavior recognition method based on 

dynamic spatiotemporal information fusion, aiming to 

enhance behavior recognition accuracy and robustness by 

integrating multidimensional spatiotemporal features. The 

core contribution of this research lies in solving the 

deficiencies of existing methods in interaction object detection 

and behavior recognition through algorithm innovation and 

optimization, thereby promoting the application and 

development of artificial intelligence technology in the field 

of education. Through this research, not only can the 

automation level of classroom behavior analysis be improved, 

but also more accurate and scientific technical support can be 

provided for educational evaluation, with significant 

theoretical and practical value. 

 

 

2. CLASSROOM INTERACTION OBJECT 

DETECTION ALGORITHM BASED ON IMPROVED 

YOLOV5 

 

The traditional YOLOv5 algorithm often faces a trade-off 

between accuracy and lightweight performance in classroom 

interaction object detection. To achieve efficient 

computational performance while ensuring high detection 

accuracy, this paper proposes an improved YOLOv5-based 

classroom interaction object detection algorithm, which 

includes network structure optimization and loss function 

design. In terms of network structure, the idea of GhostNet is 

incorporated, and the C3Ghost module is introduced to 

optimize the redundancy of feature maps. The C3Ghost 

module effectively reduces the model’s parameter count by 

eliminating redundant feature map information, thereby easing 

the computational load and improving algorithm speed. To 

address the potential issue of insufficient correlation between 

feature map channels in the C3Ghost module, this study 

introduces the Convolutional Block Attention Module 

(CBAM) attention mechanism. CBAM can adaptively learn 

spatial and channel-wise attention information, focusing 

automatically on feature areas that are crucial for target 

detection, thereby enhancing the model’s ability to extract key 

features. In classroom interaction object detection, the 

movements, positions, and interaction behaviors of teachers 

and students often have strong dynamic and local 

characteristics.  

 

 
 

Figure 1. Backbone module of the improved YOLOv5 structure 

 

 
 

Figure 2. Neck and head modules of the improved YOLOv5 structure 

 

Therefore, CBAM can effectively improve the model’s 

detection accuracy and robustness in complex scenarios. 

Regarding loss function design, this paper replaces the original 

YOLOv5 Complete Intersection over Union (CIoU) loss 

function with the Enhanced Intersection over Union (EIoU) 

loss function. EIoU, when calculating the target box regression 

loss, not only considers the overlap between the predicted and 

ground-truth boxes but also incorporates the shape and 

positional distribution of the target boxes, enabling more 

accurate evaluation of the difference between predicted and 

real boxes in object detection. The EIoU loss function helps 

accelerate network training convergence and improves the 
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model’s ability to localize different types of interaction objects 

in dynamic classroom scenes. Figures 1 and 2 show the 

schematic diagram of the improved YOLOv5 structure. 

 

2.1 Lightweight backbone network 

 

In traditional GhostNet, the core idea of the Ghost Module 

is to generate low-dimensional feature maps through a small 

number of standard convolutions, and then use linear 

transformations to generate more feature maps, thus reducing 

the computational load while maintaining a high feature 

representation capability. This design of GhostNet can 

effectively reduce the model’s parameter count and improve 

computational efficiency. Assuming that the input and output 

feature map channels are denoted by z and v, the input and 

output feature map heights by g and g', the input and output 

feature map widths by q and q', the convolution kernel size by 

j, the linear operation kernel size by f, and the number of linear 

operations by t, the theoretical parameter compression ratio of 

the Ghost module can be calculated as: 
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The theoretical acceleration ratio of the Ghost module can 

be calculated as: 
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Traditional GhostNet performs excellently in general image 

recognition and classification tasks, but for classroom 

interaction object detection in dynamic and complex scenes, 

its ability to eliminate feature map redundancy and capture 

features still has room for improvement. This is especially 

important when handling interactions between different roles, 

where fine-grained feature extraction and higher robustness 

are critical. 

To address this issue, this paper introduces and optimizes 

the C3Ghost module based on traditional GhostNet to better 

meet the specific requirements of classroom interaction object 

detection. The C3Ghost module combines the GhostConv 

structure of GhostNet with the design advantages of the C3 

module to further enhance feature extraction capabilities and 

computational efficiency. Specifically, the C3 module 

generates half of the feature information through the Ghost 

bottleneck and the other half through traditional convolution, 

then concatenates these two feature maps to maximize the 

gradient combination difference. This design not only 

optimizes the feature map generation process but also reduces 

the propagation of redundant features, thus effectively 

improving the model’s performance in dynamic and complex 

classroom interaction scenes. Compared to traditional 

GhostNet, the C3Ghost module reduces computational load 

while optimizing the feature map generation and information 

transmission mechanisms, which further improves the model’s 

precise recognition ability for classroom interaction behaviors, 

especially in complex backgrounds. 

Moreover, when applied to classroom interaction object 

detection, the C3Ghost module can improve the model’s 

performance in handling teacher-student interactions, 

character positions, and posture changes in complex scenes 

through more effective feature fusion and information 

transmission. Traditional GhostNet focuses more on feature 

extraction in image classification, while the C3Ghost module 

specifically optimizes adaptability in dynamic scenes, 

effectively avoiding the loss of detection accuracy caused by 

feature redundancy or insufficient channel correlation, 

particularly in multi-person interaction scenarios. This 

improvement makes the YOLOv5 based on the C3Ghost 

module more suitable for precise detection of classroom 

interaction objects, achieving a better balance between real-

time performance and accuracy, and providing stronger 

technical support for classroom interaction behavior analysis. 

 

2.2 Attention mechanism 

 

In classroom interaction object detection, classroom scenes 

often involve multiple dynamic targets, such as the interaction 

between teachers and students. The states, postures, and 

positions of these targets may change over time, leading to 

complex scene variations. Traditional convolutional neural 

networks may struggle to effectively capture these changing 

and local detail information, especially when multiple objects 

appear simultaneously. Background interference and the 

similarity between targets may result in decreased detection 

accuracy.  

 

 
 

Figure 3. Structure of the CBAM attention mechanism 

module 

 

 
 

Figure 4. Structure of the channel attention mechanism and 

spatial attention mechanism 

 

To enhance the model’s ability to adapt to these complex 

scenes, this paper introduces CBAM, as shown in Figures 3 

and 4. By adding the CBAM attention mechanism to the C3-

Ghost module (i.e., C3-GCBAM), the network can more 

accurately focus on key information related to classroom 

interactions. In the channel dimension, CBAM extracts global 

statistical information of each channel through global average 

pooling, allowing important feature channels to be weighted 

and improving their activation. In the spatial dimension, 

CBAM uses pooling operations at different scales to capture 

3175



 

spatial information of varying granularities, helping the model 

to focus on feature areas related to the target’s position, which 

is particularly important for dynamic classroom interaction 

objects. 

 

2.3 Improved loss function 

 

YOLOv5 uses CIoU by default to calculate bounding box 

loss. Assuming that the diagonal length of the smallest 

enclosing rectangle of two candidate boxes is denoted by Z, 

Euclidean distance by ϑ, the center, width, and height of the 

predicted box by y, μ, g, and the center, width, and height of 

the ground-truth box by yhs, μhs, and ghs, and the balance 

parameter by β, the calculation formula for this loss function 

is: 
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(3) 

 

In classroom interaction object detection tasks, the dynamic 

nature and posture changes of targets often result in significant 

changes in the shape and position of the target boxes. 

Especially when different individuals interact, complex spatial 

relationships may be involved. For example, when a teacher 

raises a hand, a student answers a question, or participates in 

other behaviors, the shape and position of the target may 

change drastically. This can cause traditional IOU 

measurement methods, especially the CIoU loss function, to 

be inadequate in handling such dynamic behaviors. Although 

the CIoU loss function optimizes bounding box fitting by 

considering factors like the center point distance and aspect 

ratio, when the aspect ratio difference between the predicted 

and ground-truth boxes is large, the CIoU loss function’s 

convergence speed slows down, and it may even lead to 

instability during the network training process. In such cases, 

introducing the EIoU loss function can effectively address this 

problem. By providing more accurate aspect ratio consistency 

loss, the model can better understand and optimize the 

relationship between predicted and ground-truth boxes, 

particularly when dealing with classroom interaction objects 

that exhibit complex shape and position changes, thereby 

improving detection accuracy and stability. 

Compared to CIoU, the EIoU loss function improves aspect 

ratio handling. EIoU not only considers the overlap and center 

distance of target boxes, but also introduces separate 

consistency loss for width and height, allowing for more 

precise optimization of the aspect ratio between boxes. 

Assuming the width and length of the smallest enclosing 

rectangle of two boxes are denoted by Zμ and Zg, the 

calculation formula for this loss function is: 
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3. DYNAMIC SPATIOTEMPORAL INFORMATION 

FUSION FOR CLASSROOM INTERACTION 

BEHAVIOR RECOGNITION 

 

In the task of classroom interaction behavior recognition, 

video data often exhibits strong spatiotemporal dependencies 

and dynamics. Interaction behaviors between teachers and 

students, such as speaking, raising hands, and answering 

questions, change over time. To address this, this paper draws 

upon the concept of the Time Segmented Network (TSN) and 

uses sparse sampling techniques to process classroom video 

data. Specifically, the input video is divided into multiple 

segments of equal length, and one frame is randomly selected 

from each segment to form an input sequence containing J 

frames. This sparse sampling strategy ensures information 

coverage while reducing the computational cost of redundant 

frames, thereby improving the computational efficiency of the 

model. 

To further enhance the model's performance in 

spatiotemporal modeling, this paper proposes a classroom 

interaction behavior recognition algorithm based on dynamic 

spatiotemporal information fusion. This is achieved by 

utilizing a pre-trained 2D ResNet-50 network as the 

foundation for feature extraction, and embedding motion 

modules and residual modules to fuse spatiotemporal 

information. The introduction of the motion module is 

primarily to capture the dynamic changes of objects and 

actions in the video. By dynamically modeling spatiotemporal 

information, the model can analyze the continuity and 

changing patterns of these behaviors from the temporal 

dimension, thereby improving recognition accuracy. In 

addition, the residual module helps to address the issue of 

gradient vanishing in deep network training, making the model 

more stable during training and allowing it to capture deeper 

feature information effectively. 

 

3.1 Motion module 

 

In the proposed algorithm, the core goal of the motion 

module is to analyze the differences between consecutive 

frames in the video and extract dynamic changes in human 

actions, thereby improving the accuracy of recognizing 

interactive behaviors in the classroom. The structure is 

illustrated in Figure 5.  

 

 
 

Figure 5. Structure of the motion module 
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Classroom scenes typically involve diverse actions, such as 

students raising their hands or interacting with the teacher. 

These behaviors often exhibit strong spatiotemporal variation. 

To effectively capture these changes in actions, assume that 

the shape of the input feature D is [V, S, ZG, Q], where V 

represents the number of input images, S and Z represent the 

temporal dimension and feature channels, and G and Q 

represent the spatial dimensions of the video. Features of size 

Z/e are represented by D1, and a 1×1 2D channel convolution 

is represented by zconv2Dz/e. The convolution operation is 

denoted by *. The motion module first reduces the number of 

feature channels through the following convolution operation: 

 
( )

/

/
1 2 1*

z e

V S Z e G Q
conv DD z D D E

   
=   (5) 

 

And calculate the difference between adjacent frames to 

obtain subtle dynamic change features between frames, that is, 

by performing a differential calculation between the 

continuous frames D1(s-1) and the processed frame D'1(s). 

Assuming that the original action features processed at time s 

are represented by D'1(s), and the action features at the 

previous moment s-1 are represented by D1(s-1), the inter-

frame difference features are represented by D2∈E(V*S*Z*G*Q), 

where the time dimension is represented by S. The calculation 

formula is as follows: 

 

( ) ( )'
2 1 1 1 2D D s D s s S= − −    (6) 

 

Next, the motion module uses a 1x1 2D channel convolution 

operation zconv2Dz to expand the channel number of the inter-

frame difference feature, ensuring that the number of channels 

matches the original input feature. This process enhances the 

representation of the inter-frame difference features while 

preventing information loss. 

 
( )' '

2 2 22
*

z

V S Z G Q
conv DD z D D E
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=   (7) 

 

The expanded features are then summarized through a 3D 

global max pooling layer, which helps to reduce redundancy 

in the spatial dimensions while extracting the most 

representative contextual information from a broader 

spatiotemporal receptive field. The global max pooling layer, 

by performing global maximization in both the temporal and 

spatial dimensions, can capture the most significant dynamic 

features. This is crucial for classroom interaction behavior 

recognition, as key behavioral changes in such scenes are often 

caused by quick actions, such as a student rapidly raising a 

hand or a teacher turning around. 

 

( ) ( )'
2 2 2maxpool 3

V S Z G QMAX MAXD D D D E
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Finally, the motion module uses the Sigmoid activation 

function to calculate dynamic weights for the inter-frame 

difference features, and performs element-wise multiplication 

between the attention weights and the original input features 

D. The core aim of this process is to assign higher weights to 

the parts of the feature map that exhibit significant dynamic 

changes, thereby focusing more strongly on regions with 

noticeable dynamic changes during the recognition process 

and suppressing features that show little change or are 

irrelevant to the current task. In this way, the motion module 

effectively extracts and enhances the key action features in 

classroom interaction behaviors while filtering out irrelevant 

background information, improving both recognition accuracy 

and robustness. The Sigmoid activation function is denoted by 

σ, and the output feature is denoted by H, with the calculation 

formula as: 
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3.2 Feature fusion 

 

In the algorithm, feature fusion is a key step in improving 

the model's performance, especially when dealing with 

complex classroom scenarios. The goal is to efficiently 

integrate information from different branches to enhance the 

model's ability to recognize interaction behaviors. The core 

idea of feature fusion is to combine the feature information 

extracted from the correction branch and the context branch, 

thereby improving the model's ability to perceive and express 

dynamic spatiotemporal information. Specifically, the original 

feature D1D1D1 is divided into two branches for processing: 

the correction branch and the context branch, to optimize and 

supplement different spatiotemporal features. Figure 6 shows 

the structure of the feature fusion module. 

 

 
 

Figure 6. Structure of the feature fusion module 

 

First, the correction branch uses a 3×3 convolution 

operation to smooth the features. This is because in classroom 

interactions, the movement of individuals often leads to 

changes in spatial positions, and the correction branch 

effectively mitigates these displacements, ensuring spatial 

consistency between adjacent frames, thereby reducing 

interference for subsequent recognition tasks. Suppose a 3×3 

2D convolution with kernel size 3∗3 is denoted by zconv2D3*3, 

the calculation formula is: 

 
( )

3 3

/3 3 3 3
1 2 1 1*

V S Z e G Q
conv DD z D D E


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Since behaviors in classroom scenarios usually occur within 

a certain spatiotemporal context, relying solely on local 

information might not accurately capture the overall 

characteristics of the behavior. For example, a student raising 

a hand is often related to the teacher’s expression or 

explanation, and these relationships need to be captured by the 

context branch through global pooling. By using a 3D global 

max pooling layer, the context branch can aggregate 

information across both the temporal and spatial dimensions 

of the entire video sequence, thus providing more distinctive 

contextual features for the correction branch. 

 

( )( )
3 31 2 1* maxpool 3MAX

conv DD z D D


=  (11) 

 

To ensure the correlation of features extracted from the two 

branches, and to allow them to remain consistent and 
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complement each other during feature processing, the model 

adopts a shared convolution parameter strategy between 

branches. This approach enables the model to strike a balance 

between accuracy and computational efficiency, thus 

enhancing overall performance. 

In the final step of feature fusion, the features D3*3
1 

processed by the correction branch and smoothing, along with 

the context features D3*3
1 obtained through global pooling, are 

fused to obtain the final feature D'1(s). 

 

( ) ( )/' 3 3 '
1 1 1 1

V S Z e G QMAXD D D D s E
   = +   (12) 

 

This fusion method combines multidimensional feature 

information from different branches, retaining both the 

smoothed local spatiotemporal features and the globally rich 

contextual features, thereby enhancing the model’s overall 

ability in classroom interaction behavior recognition. Through 

this feature fusion process, the algorithm can more accurately 

recognize complex behavior patterns in the classroom and 

better handle the challenges posed by spatiotemporal changes 

in classroom scenarios, ultimately achieving precise 

recognition of dynamic classroom interaction behaviors. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 7 shows the results of classroom interaction object 

detection. Table 1 provides the results of the ablation 

experiments for classroom interaction object detection. Based 

on the data in Table 1, the performance of the four different 

models in the classroom interaction object detection task 

varies. Model 1 (the traditional YOLOv5 algorithm) has 

7.12M parameters, 15.9 GFLOPS, and achieves 73.5% in 

mAP@0.5%. Model 2 introduces the C3Ghost module, which 

slightly reduces the parameter count to 4.79M and GFLOPS to 

11.2. However, the mAP@0.5% only slightly decreases to 

72.4%. Model 3 further combines the C3-GCBAM module, 

resulting in an increase in both parameters (5.23M) and 

GFLOPS (12.1), with an improvement in mAP@0.5% to 

73.6%. Model 4 builds upon Model 3 by adding the EIoU loss 

function, leading to a slight increase in parameters (5.24M) 

and GFLOPS (11.8), and achieving the highest mAP@0.5% 

of 74.8%. 

From the experimental results, it is evident that the 

performance of the model significantly improves as 

optimization modules are gradually introduced into the 

traditional YOLOv5 model. Although the C3Ghost module 

(Model 2) causes a slight performance drop due to the 

reduction in parameters and computation, the introduction of 

C3-GCBAM in Model 3 and the EIoU loss function in Model 

4 significantly enhance the detection accuracy, particularly in 

the mAP@0.5% metric. Model 4, in particular, performs the 

best, indicating the effectiveness of dynamic spatiotemporal 

information fusion and loss function optimization in 

improving detection accuracy. Additionally, the moderate 

increase in parameters and GFLOPS suggests that an 

appropriate model complexity can effectively improve the 

accuracy and robustness of classroom interaction object 

detection. 

 

 
 

Figure 7. Classroom interaction object detection results 

 

Table 1. Ablation experimental results for classroom 

interaction object detection 

 
Model Name Parameters GFLOPS mAP@0.5% 

Model 1 7.12 15.9 73.5% 

Model 2 4.79 11.2 72.4% 

Model 3 5.23 12.1 73.6% 

Model 4 5.24 11.8 74.8% 

 

Based on the precision and recall data shown in Figure 8, 

we can observe the gradual optimization of the four models in 

the classroom interaction object detection task. Model 1 (the 

traditional YOLOv5 algorithm) initially exhibits relatively 

low precision and recall, but as training progresses, both 

precision and recall gradually improve. Specifically, precision 

increases from 0.50 to 0.78, and recall increases from 0.50 to 

0.63, showing some improvement. Model 2 (YOLOv5 + 

C3Ghost module) achieves a noticeable improvement in 

precision, with precision increasing from 0.50 to 0.784, and 

recall increasing from 0.50 to 0.642. Model 2, in particular, 

shows better improvement in recall compared to Model 1. 

Model 3 (YOLOv5 + C3-GCBAM module) further optimizes 

the model’s performance, with precision reaching 0.793 after 

40 epochs, and recall increasing to 0.649.  

 

  
(a) (b) 
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(c) (d) 

 

Figure 8. Comparison of classroom interaction object detection model running results 

 

This indicates that the introduction of the C3-GCBAM 

module enhances the model's feature extraction and fusion 

abilities, significantly improving overall detection 

performance. Model 4 (YOLOv5 + C3-GCBAM + EIoU 

module) performs the best, with precision stabilizing around 

0.793, and recall reaching 0.657 in the later stages of training. 

This confirms the effectiveness of the EIoU loss function in 

improving both detection precision and recall. 

From the mAP_0.5 and mAP_0.5:0.95 data in Figure 8, we 

can see that with the introduction of different optimization 

modules, the performance of all four models in the classroom 

interaction object detection task has shown varying degrees of 

improvement. Specifically, Model 1 (the traditional YOLOv5) 

shows an increase in mAP_0.5 from an initial value of 0.30 to 

0.72, indicating that the model's precision has gradually 

improved as training progresses. However, in terms of 

mAP_0.5:0.95, Model 1’s improvement is slower, ultimately 

reaching only 0.43, suggesting that while the model's precision 

improves, there is still considerable room for improvement 

under stricter metrics. Model 2 (YOLOv5 + C3Ghost) 

demonstrates a more significant improvement in mAP_0.5, 

increasing from 0.30 to 0.73, and also shows a relatively faster 

improvement in mAP_0.5:0.95, increasing from 0.10 to 0.44. 

This indicates that the C3Ghost module has a positive effect 

on improving the model's fine-grained detection and 

robustness. Model 3 (YOLOv5 + C3-GCBAM) shows steady 

improvement in both metrics, with mAP_0.5 reaching 0.73 

and mAP_0.5:0.95 stabilizing at 0.44, demonstrating that the 

C3-GCBAM module effectively enhances the model's feature 

fusion and discriminative ability. Finally, Model 4 (YOLOv5 

+ C3-GCBAM + EIoU) performs the best, with mAP_0.5 

improving from 0.30 to 0.74, and mAP_0.5:0.95 also showing 

a significant increase, reaching 0.45. This highlights the 

important role of the EIoU module in enhancing the model's 

spatial consistency and optimizing detection accuracy. 

From the comparative data in Table 2, the proposed 

classroom interaction object detection algorithm (Ours), based 

on the improved YOLOv5 model, outperforms other 

lightweight algorithms in several performance metrics. 

Specifically, YOLOX-s achieves an mAP@0.5 of 74.8%, the 

best performance among multiple lightweight detection 

models, but its larger parameters (9.25M) and GFLOPS (25.8) 

lead to higher computational and memory overhead. In 

comparison, YOLOv5n (parameters: 1.87M, GFLOPS: 4.3) 

and YOLOv5s (parameters: 7.05M, GFLOPS: 15.9) have 

smaller model sizes but their mAP@0.5 values are 72.3% and 

73.8%, respectively, slightly lower than YOLOX-s. Our 

model (Ours) has 5.23M parameters and 11.2 GFLOPS, with 

an mAP@0.5 of 76.2%, significantly higher than YOLOv5n 

and YOLOv5s, and close to YOLOX-s. This indicates that our 

algorithm provides higher accuracy while maintaining 

computational efficiency and real-time performance, 

demonstrating its advantage in classroom interaction object 

detection. 
 

Table 2. Comparison of the proposed classroom interaction 

object detection algorithm with other lightweight algorithms 

on the dataset 
 

Model Name Parameters GFLOPS mAP@0.5% 

YOLOX-s 9.25 25.8 74.8% 

YOLOv5n 1.87 4.3 72.3% 

YOLOv5s 7.05 15.9 73.8% 

Ours 5.23 11.2 76.2% 

 

The comparative analysis shows that the proposed 

YOLOv5-based detection algorithm strikes a good balance 

between detection accuracy and computational efficiency. 

Although it has fewer parameters and GFLOPS compared to 

YOLOX-s, it outperforms YOLOX-s in mAP@0.5, indicating 

that the method is better suited for real-time detection and 

accuracy in complex educational environments. In comparison 

to YOLOv5n and YOLOv5s, while these models have smaller 

computational overhead, they fall short in detection accuracy. 

Overall, the proposed algorithm not only improves detection 

accuracy but also optimizes model size and computational 

complexity, showing great potential for application in the 

education field and providing crucial technical support for 

enhancing AI applications in education. 

From the comparison data in Tables 3, 4, and 5, it can be 

observed that the dynamic spatio-temporal information fusion-

based classroom interaction behavior recognition model 

proposed in this paper outperforms existing mainstream 

models across multiple datasets. On the AffectNet dataset, the 

proposed model achieves a Top-1 accuracy of 94.5%, 

significantly higher than other models, such as Spatio-

Temporal TSN (92.5%) and TSN (TCNs) (93.7%). On the 

NTU RGB+D dataset, the proposed model also leads with an 

accuracy of 85.7%, surpassing TSN (ResNet) (81.2%), 

TSN(RGB) (82.5%), and Spatio-Temporal TSN (83.7%). On 

the TEACHER dataset, the proposed model again performs 

exceptionally, reaching an accuracy of 56.9%, exceeding TSN 

(ResNet) (47.5%), TSN(RGB) (48.9%), and Spatio-Temporal 

TSN (53.2%). Overall, the proposed model achieves the best 
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recognition accuracy across all the comparison datasets, 

demonstrating that this method can effectively enhance the 

accuracy of classroom interaction behavior recognition. 

 

Table 3. Comparison of different classroom interaction 

behavior recognition models on accuracy (AffectNet dataset) 

(%) 

 

Network Model Average Accuracy (Top-1) 

TSN (RGB) 83.2 

Spatio-Temporal TSN 92.5 

TSN (TCNs) 93.7 

Proposed model 94.5 

 

Table 4. Comparison of different classroom interaction 

behavior recognition models on accuracy (NTU RGB+D 

dataset) (%) 

 

Network Model Average Accuracy (Top-1) 

TSN (ResNet) 81.2 

TSN(RGB) 82.5 

Spatio-Temporal TSN 83.7 

TSN (TCNs) 84.9 

Proposed Model 85.7 

 

Table 5. Comparison of different classroom interaction 

behavior recognition models on accuracy (TEACHER 

dataset) (%) 

 

Network Model Average Accuracy (Top-1) 

TSN (ResNet) 47.5 

TSN(RGB) 48.9 

Spatio-Temporal TSN 53.2 

TSN (TCNs) 54.8 

Proposed Model 56.9 

 

Through comparative analysis, it can be concluded that the 

proposed dynamic spatio-temporal information fusion-based 

behavior recognition model has a significant advantage in 

accuracy, particularly in complex classroom interaction 

scenarios, where it achieves higher accuracy than existing 

methods. This highlights the importance of dynamic spatio-

temporal feature fusion in classroom behavior recognition, 

effectively addressing the shortcomings of current methods in 

terms of accuracy and robustness. The proposed model 

outperforms traditional TSN series models and their improved 

versions on multiple datasets, validating the effectiveness of 

spatio-temporal information fusion technology in classroom 

behavior recognition, and providing a more precise and 

reliable tool for applying artificial intelligence technology in 

the field of education. In summary, the recognition model 

proposed in this paper not only improves recognition accuracy 

but also provides new ideas and solutions for analyzing 

classroom interaction behavior in complex scenarios. 

 

 

5. CONCLUSION 

 

The core research of this paper focuses on two aspects: 

classroom interaction object detection and classroom 

interaction behavior recognition. For classroom interaction 

object detection, this paper proposes an improved YOLOv5-

based detection algorithm, incorporating various optimization 

modules to enhance detection accuracy and real-time 

performance. Through comparative experiments, the 

advantages of the proposed method in terms of accuracy and 

computational efficiency have been verified. Particularly in 

comparison with lightweight algorithms, this method 

demonstrates a high mAP value while maintaining relatively 

low computational overhead, indicating its potential for 

application in educational scenarios. Meanwhile, for 

classroom interaction behavior recognition, this paper 

proposes a recognition method based on dynamic 

spatiotemporal information fusion. By integrating 

multidimensional spatiotemporal features, the accuracy and 

robustness of recognition are significantly improved. 

Comparative experiments on multiple datasets (AffectNet, 

NTU RGB+D, TEACHER) show that the proposed behavior 

recognition model outperforms existing methods in terms of 

accuracy, validating the effectiveness of spatiotemporal 

information fusion in complex educational environments. 

This research also has certain limitations. First, although the 

proposed detection and recognition algorithms have achieved 

good results on multiple datasets, how to further optimize the 

model's computational efficiency and inference speed, 

especially on resource-constrained mobile or embedded 

devices, remains a challenge. Future research directions can be 

explored in the following aspects: (1) further optimizing the 

model's computational efficiency, particularly for applications 

on embedded platforms; (2) expanding the diversity of training 

datasets to cover classroom interaction behaviors in different 

countries and educational systems; (3) exploring more 

advanced spatiotemporal fusion methods, such as deep 

learning-based adaptive spatiotemporal modeling methods, to 

enhance the recognition of more complex behaviors; (4) 

studying how to more closely integrate classroom interaction 

object detection and behavior recognition to form a stronger 

real-time feedback system, providing more comprehensive 

technical support for the intelligentization of education. 
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