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With the global promotion and application of Traditional Chinese Medicine (TCM), the 
identification and management of TCM materials have become critical issues that need to 
be addressed. Traditional methods for identifying TCM materials rely on manual experience 
and expert knowledge, leading to low efficiency and a high likelihood of errors. With the 
development of image processing technology, image-based classification and retrieval of 
TCM materials have gradually become a research hotspot. However, existing methods often 
encounter challenges such as insufficient classification accuracy and low retrieval efficiency 
when faced with the diversity and complexity of TCM material images. Therefore, how to 
effectively extract image features and improve the accuracy of classification and retrieval 
has become the central challenge in current research. Traditional image features, such as 
color, shape, and texture, are commonly used in the classification and retrieval of TCM 
materials. However, these features are often unable to fully reflect the diversity and detail 
of the materials, especially when distinguishing between morphologically similar materials. 
Although deep learning techniques have made breakthroughs in the field of image 
processing, the application of deep learning in TCM material image classification still faces 
many challenges due to insufficient data and annotation. A combination of technologies, 
including superpixel segmentation, feature point extraction, and clustering encoding, 
provides an effective approach to improving classification and retrieval performance and 
warrants further research. A kind of feature enhancement-based method for the classification 
and retrieval of TCM material images was proposed in this study, consisting of four main 
components. First, fine image segmentation was performed using the Simple Linear Iterative 
Clustering (SLIC) superpixel segmentation technique to extract features; second, an initial 
classification method based on feature points was used to perform coarse classification of 
the TCM material images; third, clustering algorithms were employed to encode features 
and perform initial sorting; and finally, the image retrieval results were optimized through 
reordering based on the initial sorting. Experimental results demonstrate that the methods 
effectively enhance the classification accuracy and retrieval efficiency of TCM material 
images. 
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1. INTRODUCTION

TCM, as an integral part of Chinese cultural heritage, has
gradually attracted widespread attention and research globally 
[1-6]. The variety and diversity of TCM materials, combined 
with their numerous medicinal forms and complex traditional 
knowledge backgrounds, make their identification, 
classification, and retrieval particularly challenging [7-11]. 
With the rapid development of digital technologies, image 
processing has become an increasingly important tool in the 
study of TCM materials, especially in the field of image 
classification and retrieval. Effectively extracting useful 
features from a large number of TCM material images for 
accurate classification and rapid retrieval has become a 
pressing issue in this domain. 

The research on TCM material image classification and 
retrieval holds significant academic and practical value. First, 
accurate image classification aids in improving the efficiency 

of automated identification and diagnosis of TCM materials, 
providing crucial support for clinical applications in TCM [12-
19]. Second, image retrieval technologies can facilitate the 
efficient management of large-scale TCM material databases, 
enabling academic researchers, medical professionals, and 
general consumers to quickly locate the required medicinal 
material information [20-24]. Furthermore, with the global 
dissemination of TCM, cross-lingual and cross-cultural image 
retrieval technologies will also contribute to the international 
spread of TCM culture, providing technological support for 
the modernization and globalization of TCM. 

However, existing image classification and retrieval 
methods for TCM materials still exhibit some limitations [25-
28]. Most current research focuses on image classification 
through traditional feature extraction methods, such as color, 
texture, and shape features. These methods, however, often 
fail to provide sufficient discriminative power when dealing 
with the complex and varied images of TCM materials, 
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especially when the materials have similar morphological 
features, resulting in low classification accuracy. Additionally, 
the reordering performance of existing image retrieval 
methods is suboptimal, as they often rely on simple similarity 
measures and fail to fully consider the multi-level features of 
image content, leading to inaccuracies and imprecision in 
retrieval results. Therefore, how to combine multi-
dimensional features, improve feature extraction and 
classification strategies, and enhance the performance of 
image classification and retrieval remains a critical challenge 
in current research. 

This study proposes a kind of feature enhancement-based 
method for the classification and retrieval of TCM material 
images, aimed at improving the accuracy and efficiency of 
image classification and retrieval through innovative image 
processing and feature enhancement techniques. The research 
consists of four main parts. First, a feature extraction method 
based on SLIC superpixel segmentation was proposed to 
refine image processing and enhance the accuracy of feature 
representation. Second, an initial classification method based 
on feature points was employed to perform coarse 
classification of medicinal material images, laying the 
foundation for subsequent fine classification. Third, clustering 
algorithms were used to encode image features and perform 
initial sorting, providing a preliminary reference for retrieval. 
Finally, based on the initial sorting results, further image 
reordering optimization was conducted to achieve more 
precise image retrieval for TCM materials. Through the 
integration of these methods, this study can fully exploit the 
deep features of images in TCM material classification and 
retrieval, improving classification accuracy and retrieval 
efficiency. The approaches hold significant academic value 
and promising application prospects. 

2. SLIC SUPERPIXEL SEGMENTATION AND
FEATURE EXTRACTION FOR TCM MATERIAL
IMAGES

Figure 1 presents examples of the classification of TCM 
material images. The objective of this research is to enhance 
the classification accuracy and retrieval efficiency of TCM 
material images, thereby addressing the challenges associated 
with the identification and management of TCM materials. To 
achieve this goal, four primary steps were undertaken to 
progressively improve image processing, ensuring that each 
step contributes effectively to the subsequent one. First, the 
SLIC superpixel segmentation technique was applied to 
provide refined segmentation of TCM material images. 
Superpixels partition the image into regions of uniform size 
with clear boundaries, effectively reducing computational 
complexity while better capturing the local structural features 
of the image. This lays a solid foundation for subsequent 
feature extraction and classification tasks. Through this step, 
more representative local features can be extracted, enabling a 
more detailed and discriminative feature description. 
Furthermore, based on the extracted superpixel features, an 
initial classification method based on feature points was 
employed. The purpose of this step is to achieve coarse 
classification of the material images by utilizing these 
prominent feature points. This approach effectively reduces 
category confusion, allowing subsequent fine classification 
and retrieval to be performed within a smaller candidate space, 
thereby improving the overall efficiency of the system. Next, 

clustering algorithms were applied to encode the image 
features and perform initial sorting based on the feature points 
and preliminary classification results. This step further 
optimizes the organization of image features, providing more 
reliable initial sorting results for efficient retrieval. Finally, a 
retrieval reordering step was conducted based on the initial 
sorting results, further enhancing retrieval accuracy. This step 
adjusts the final retrieval results by considering deeper image 
features and sorting strategies according to the specific 
requirements of user queries. 

Figure 1. Classification examples of TCM material images 

The images of TCM materials often exhibit rich color 
variations and complex texture features, and morphological 
similarities frequently exist between different types of 
materials. To address this, the SLIC superpixel segmentation 
algorithm was employed to enhance the feature extraction 
process of the images. Specifically, in this study, a five-
dimensional feature vector was constructed in the LAB color 
space and the xy coordinate space, using color, spatial position, 
and texture information to measure the similarity between 
pixel points. This approach ensures both the accuracy and 
efficiency of the superpixel segmentation under 
multidimensional features. The specific steps of SLIC 
superpixel segmentation include initializing seed points, 
calculating similarity metrics, and iterating the optimization 
process. In TCM material images, the segmentation regions 
were first initialized by selecting representative seed points. 
The selection of seed points was based on the local color and 
texture information of the image to ensure that each superpixel 
accurately reflects the local features. Then, a five-dimensional 
feature vector was used to measure the similarity between 
adjacent pixels. The pixels were assigned to corresponding 
superpixels based on the color and spatial location differences. 
This clustering-based approach effectively groups similar 
regions within the same superpixel, thereby enhancing feature 
compactness and distinguishability. Finally, after multiple 
iterations of optimization, the superpixel boundaries gradually 
converged, achieving an ideal segmentation result. 
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Given the complexity and diversity of TCM material images, 
two feature extraction methods, Red, Green, and Blue (RGB) 
and Local Binary Pattern (LBP), were utilized to 
comprehensively describe the color, texture, and other 
information of each superpixel block. RGB features, as 
fundamental color features in image processing, represent the 
color characteristics of a region by calculating the average 
RGB values of each superpixel. In TCM material images, the 
materials often display varying layers and shades of color, 
such as differences in the color of the skin, interior, and edges 
of the materials. These subtle color variations are crucial for 
the identification of TCM materials. By extracting the average 
RGB values of each superpixel region, these color features can 
be captured to some extent, and the three-dimensional RGB 
feature vector provides direct color information for subsequent 
classification and retrieval tasks. 

In contrast to the RGB features, which describe color, LBP 
features focus on extracting local texture characteristics of the 
image, which are crucial for capturing surface texture, details, 
and morphological variations of the materials. The appearance 
of TCM materials typically presents complex texture 
structures, such as different texture features in the bark, leaves, 
and roots of the materials. These subtle texture details play a 
key role in distinguishing between different types of TCM 
materials. LBP features are generated by locally comparing the 
pixels within each superpixel block, creating a binary pattern, 
which is then converted into a numerical value, ultimately 
forming a high-dimensional texture feature histogram. In this 
study, 59 distinct LBPs were selected, and the LBP values for 
each superpixel block were statistically processed and 
normalized, resulting in a 59-dimensional LBP feature vector. 
This feature vector effectively captures the local texture 
variations in TCM material images, enhancing the description 
of surface details. 

In the classification and retrieval processes of TCM material 
images, the combination of RGB and LBP features not only 
improves the representation of color information but also 
enhances sensitivity to texture details. Through this multi-
feature extraction method, a more comprehensive description 
of the multidimensional information in TCM material images 
can be achieved, providing a richer feature foundation for 
subsequent material classification and retrieval tasks. 
 
 
3. INITIAL CLASSIFICATION OF TCM MATERIAL 
IMAGES BASED ON FEATURE POINTS 
 

In this study, the initial classification step based on feature 
points plays a crucial role, particularly when handling complex 
and diverse TCM material images. The objective of this phase 
is to effectively cluster the local features (RGB and LBP) of 
the images, grouping similar regions together to lay the 
foundation for subsequent image retrieval reordering and fine 
classification. Specifically, the k-means clustering method and 
Fuzzy C-Means (FCM) clustering algorithm were adopted to 
cluster the extracted RGB and LBP features separately, 
generating two independent visual dictionaries (codebooks). 
These codebooks represent the clustering information of color 
and texture features in TCM material images. Through this 
clustering approach, superpixel blocks with similar colors or 
textures can be grouped into the same category, thus achieving 
initial classification of the images. This process helps reduce 
confusion between categories in TCM material images, 
especially when there are certain similarities in appearance, 

such as when different types of herbs exhibit similar colors or 
textures, thereby enhancing the efficiency and accuracy of 
subsequent retrieval and classification processes. 

The specific implementation steps for the initial 
classification of TCM material images using the k-means 
clustering algorithm are as follows: a) The RGB and LBP 
features of each image’s superpixel block were extracted. 
These features represent the color and texture information of 
the TCM material image. For each feature space, the number 
of initial cluster centers (codebook size) was set, and the 
cluster centers were initialized through the k-means algorithm. 
b) The algorithm was used to calculate the distance from each 
pixel point to all the cluster centers, assign each pixel to the 
nearest cluster center, and update the positions of the cluster 
centers until convergence was reached or a predefined number 
of iterations was completed. Through this process, each 
superpixel block in the image was classified into different 
groups, forming the initial classification result based on RGB 
and LBP features. c) These cluster centers served as the basis 
for the initial classification of TCM material images, 
effectively grouping regions with similar colors and textures 
into a single category, thus providing a simplified and efficient 
feature representation for subsequent fine classification and 
retrieval. Mathematically, assuming a set of V pixel points, 
A={a1,a2,...,av}, representing the TCM material image to be 
clustered, the objective is to find J cluster centers, 
oj={z1,z2,...,zj}. The location of the u-th cluster center, lu, is 
given by ∑au/vu, where vu represents the number of pixels in 
the u-th cluster, and the distance from au to lu is denoted as 
f(au,lu). The target function is expressed as: 
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The core idea of the FCM clustering algorithm is to assign 

the feature points of an image to multiple clusters based on 
fuzzy membership, addressing the limitations of traditional 
hard clustering algorithms that cannot precisely separate 
similar features. First, the RGB and LBP features of the 
superpixel blocks in the TCM material images were extracted. 
These features represent the color and texture information of 
the material images. Next, the FCM algorithm was applied to 
cluster these features. The process began by initializing the 
membership of each superpixel block for each cluster center. 
Unlike the hard clustering method used in k-means, FCM 
allows each superpixel block to have partial membership to 
multiple cluster centers, providing more flexibility in image 
classification. This enables a more accurate description of the 
subtle differences in color and texture within TCM material 
images. The membership values of each pixel range between 
0 and 1, representing the degree of membership to each class. 
The sum of all membership values for each pixel is equal to 1. 
The expression for the implementation process is as follows: 
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Subsequently, the FCM algorithm was used to calculate the 

center of each fuzzy group. Based on the membership and the 
distance of each feature point, the positions of the cluster 
centers were updated, and the objective function was 
optimized iteratively until it converged to a minimum value or 
reached a predefined threshold. This process involves the 
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continuous updating of the membership and the fuzzy cluster 
centers, ultimately resulting in cluster centers that effectively 
represent the color and texture features of the TCM material 
images. Let iuk range from 0 to 1. The center of the u-th cluster 
is denoted as zu, and the distance between the u-th cluster 
center and the k-th pixel point is given by fuk=||zu-ak||. The 
objective function is expressed as: 

( ) 2
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1 1
, ,...,
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The necessary condition for the above equation to reach its 
minimum value is given by: 
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The derivatives of all input variables were computed as 
follows: 
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4. IMAGE ENCODING AND INITIAL SORTING OF
TCM MATERIALS

Furthermore, image encoding was performed in this study. 
The fundamental principle behind this process is the feature 
extraction from TCM material images, followed by clustering 
and encoding techniques in the RGB and LBP feature spaces, 
which generate a high-dimensional vector that describes the 
color and texture features of each TCM material image. 
Initially, superpixel block features were extracted from the 
image in the RGB and LBP feature spaces. Then, clustering 
algorithms such as K-means or FCM were applied to generate 
two codebooks, which represent the visual dictionaries in the 
color and texture spaces of the image. For each superpixel 
block, quantization encoding methods were employed in both 
feature spaces, mapping it to the corresponding codebook. 
This results in two independent encodings. The position of 
each superpixel block in the codebook was determined by 
calculating the Euclidean distance between the superpixel 
block and its associated cluster center, followed by updating 
the corresponding statistical values. This process eventually 
generated an encoding vector that reflects the overall 
distribution of the image. The encoding is represented by a 
statistical histogram, i.e., a V×V matrix, where the elements in 
the matrix indicate the distribution of the image across 
different cluster centers. Let the encoding value of a superpixel 
block at the corresponding position in the V×V codebook be 
denoted as zuk. The encoding values of the superpixel block in 
the RGB and LBP codebooks at their respective positions are 

denoted as ZEu and ZMk, respectively. For each superpixel block, 
the encoding is represented as: 

1
1 1

0uk Eu Mkz z or z
= = =


 (7) 

This matrix not only preserves the color and texture feature 
information of the image but also effectively describes the 
detailed features of the TCM material image, thereby 
improving the accuracy of image classification and retrieval. 
By using this encoding method, fast retrieval and initial sorting 
of TCM material images in an image library can be achieved, 
enhancing the efficiency of subsequent fine classification and 
matching tasks. Figure 2 illustrates a schematic of the TCM 
material image encoding process. 

Figure 2. Schematic of TCM material image encoding 

After encoding TCM material images, initial sorting is 
needed. This is based on similarity calculations between 
images using the Euclidean distance metric. In RGB and LBP 
feature spaces, TCM images are converted into feature 
encodings via quantization. The Euclidean distance between 
the query image and the encoded images is calculated, 
assessing color and texture similarity. Images are sorted based 
on their distance from the query image, with closer images 
ranked higher. This initial sorting quickly filters the most 
similar images, providing a foundation for further 
classification and retrieval tasks. 

5. RETRIEVAL REORDERING OF TCM MATERIAL
IMAGES

5.1 Image retrieval reordering based on a weighted 
Support Vector Machine (SVM) classifier 

Although the image ranking obtained through Euclidean 
distance in the initial sorting can filter out images that are 
similar to the query image, the retrieval result accuracy needs 
to be further improved. To enhance the precision of retrieval 
results, the reordering process was introduced. During the 
reordering stage, the top Jo images, which are closest to the 
target image, were selected as positive samples, while the 
bottom Jv images, which are further from the target image, 
were selected as negative samples. To ensure the effectiveness 
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of the reordering process, a weighted SVM classifier was 
introduced to further improve the accuracy of TCM material 
image retrieval. The key strategy involves generating multiple 
SVM classifiers through repeated training, and then 
combining these classifiers to form a strong classifier. This 
strong classifier was used in the image retrieval process to 
predict all images in the image library, assessing the similarity 
between each image and the query target image. By weighting 
and sorting the prediction results, the image ranking can be 
more accurately adjusted, thus achieving effective reordering 
of the initial sorted results. 

For the sample set (a,b), u=1,2,...,v, where au represents the 
sample vector and bu∈{-1,1} denotes the corresponding 
sample label. The objective of the SVM is to find a 
classification plane that maximizes the margin between the 
categories. The objective function expression is given by: 
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By introducing slack variables and penalty parameters, the 

objective function was modified as follows: 
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The weighted SVM classifier for TCM material image 

retrieval reordering was primarily implemented through the 
boosting algorithm, which combines multiple weak classifiers 
into a strong classifier. Specifically, the boosting algorithm 
was used to train several base classifiers by randomly 
sampling training samples of TCM material images. Each base 
classifier learned a specific subset of image features, thus 
compensating for the limitations of other classifiers. During 
the training process, the boosting algorithm assigned weights 
to each base classifier based on its prediction error, thereby 
optimizing the performance of the weak classifiers. Ultimately, 
these weighted classifiers were combined into a strong 
classifier, which was used to re-rank the TCM material images 
in the image library to improve the accuracy and relevance of 
the image retrieval. 

 
5.2 Image retrieval reordering based on the multi-instance 
algorithm 
 

Due to the complexity and detailed features of TCM 
material images, traditional image retrieval methods may fail 
to fully account for the diversity and complexity of these 
images. In the initial image retrieval ranking phase, although 
feature encoding and Euclidean distance calculations allow for 
preliminary ranking, the diversity of features and potential 
noise within the images may lead to misclassification or 
improper positioning of certain images. Specifically, when 
dealing with TCM material images, relying solely on global 
image features for ranking can be influenced by local image 
region features, leading to insufficient consideration of certain 
aspects of the image’s characteristics. Therefore, a multi-
instance learning algorithm was chosen to perform a 
reordering of TCM material images in this study. In the multi-
instance learning framework, each image was treated as a bag 

containing multiple instances, and the overall label of each bag 
was predicted, allowing for a more comprehensive evaluation 
of the features of each TCM material image. In this way, 
although some instances within the image may significantly 
differ from the query image, the label of the entire bag can 
effectively guide the reordering process, ensuring that the final 
returned images are more aligned with the overall 
characteristics of the query image. 

Let the feature of the TCM material in f-dimensional space 
be represented by a. If a TCM material dataset is represented 
as {(A1,y1),(A2,y2),...,(Av,bv)}, a bag is denoted by Au, where the 
TCM material examples within the bag are {au1u,au2u,...,auvu}, 
and the number of TCM material examples in the bag Au is 
denoted by vu. A TCM material example is represented by auk, 
and the class label of Au is denoted by bu, with values of -1 or 
+1. The following equation gives the function expression for 
multi-instance learning: 
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In the context of TCM material image retrieval reordering, 

the mi-SVM algorithm, primarily used in this study, learned 
the overall label of each bag and utilized the feature 
information from multiple instances within the bag to improve 
retrieval accuracy. For positive bags, at least one positive 
sample was included, meaning that part of the bag contains 
features similar to those of the query image. For negative bags, 
only negative samples were included. By analyzing multiple 
instances within each bag using mi-SVM, it is possible to 
accurately distinguish which images are similar to the query 
image and which are not. This method effectively avoids 
errors based on a single feature dimension and, through a 
comprehensive judgment of the instances within the bag, 
further enhances the accuracy of TCM material image retrieval. 
The objective function is as follows: 
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The implementation steps of the multi-instance algorithm 

for TCM material image retrieval reordering are outlined as 
follows: a) In the initial ranking phase, the top Jo images, 
which are closest to the target image, were selected as positive 
samples, while the bottom Jv images, which are farther from 
the target, were selected as negative samples. The features and 
similarity information of these images form the preliminary 
foundation for the ranking process. b) Subsequently, the 
images were divided into positive and negative bags. Each bag 
contained multiple instances, with the positive bag containing 
at least one positive sample, and the negative bag consisting 
entirely of negative samples. The key to constructing positive 
and negative bags is the random selection of a certain number 
of images to ensure that the instances within the bag reflect the 
diversity of the image database. This process provides 
sufficient training samples for the subsequent multi-instance 
algorithm, thereby enhancing the accuracy of the image 
retrieval reordering. c) The positive and negative bags were 
initialized, and the label for each instance was set. The initial 
label for instances in the positive bags was positive, indicating 
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that the image is similar to the target image, while the initial 
label for instances in the negative bags was negative. d) SVM 
was used to train the instances within each bag, constructing a 
universal classifier. During the training process, the decision 
function value for each instance, du=<q,au>+y, was computed, 
and the label of the instance, du, was updated to adjust the 
performance of the classifier. For instances in the positive bag, 
the SVM algorithm iteratively computed the decision values 
and updated the labels of each instance until the labels no 
longer changed. This step ensures that the classifier can 
accurately differentiate between positive and negative samples 
and progressively optimizes the classification results. e) After 
each update, the instance with the maximum decision value, 
which corresponds to the most accurate classification result, 
was selected as the label and its corresponding label was 
updated until convergence. f) By repeating the above process, 
multiple weak classifiers were trained on several positive and 
negative bags, and their respective classification results were 
combined to re-rank all TCM material images. g) During the 

image retrieval phase, a certain number of images were 
randomly selected from the positive and negative bags, and the 
multi-instance algorithm was applied to re-label the images. In 
this process, the combination of multiple positive and negative 
bags and the training process effectively captured the complex 
features of TCM material images, especially in aspects such as 
texture, color, and shape, allowing for more precise retrieval 
than traditional methods. h) The outputs of all trained 
classifiers were combined with weighted averaging to generate 
a strong classifier. This strong classifier, based on the 
predicted results of each image, can precisely re-rank the 
image database. The final ranking was based on the 
classification probability values of the images, and this 
ranking process significantly enhanced retrieval accuracy. It 
optimized retrieval performance, especially when addressing 
the complexity and similarity of TCM material images, and 
improved the relevance between the images and the query 
target. A flowchart of the TCM material image retrieval 
reordering process is shown in Figure 3. 

 

 
 

Figure 3. Flowchart of TCM material image retrieval reordering 
 

 
6. EXPERIMENTAL RESULTS AND ANALYSIS 
 

 
 
Figure 4. Image processing effects of TCM materials before 

and after feature enhancement 
 

In the experimental section, the SLIC superpixel 
segmentation technique was first employed to process TCM 
material images, and a comparison was made with traditional 

full-image feature extraction methods. The experimental 
results in Figure 4 demonstrate that, after SLIC superpixel 
segmentation, the features of the local regions in the images 
were represented more finely. Compared to the traditional 
methods, the precision of feature representation in the images 
was significantly improved. The above experimental results 
indicate that the application of the feature enhancement 
method in the classification and retrieval of TCM material 
images significantly improved both the accuracy and 
efficiency of image processing. By performing fine-grained 
processing of the local regions in the image, the SLIC 
superpixel segmentation technique effectively enhanced the 
representational power of the image features, avoiding the 
global errors that may occur with full-image feature extraction 
methods. This approach ensured that the detailed information 
of the images was better preserved. 

According to the data shown in Figure 5, the size of the 
codebook significantly affects the average precision of TCM 
material images. For images with a size of 50×50, as the 
number of returned images increased, the precision gradually 
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decreased from 0.75 to 0.47. For 100×100 images, the 
precision decreased from 0.79 to 0.48. In the case of 200×200 
images, the precision reached its highest value of 0.82 when 
the number of returned images was 10, and it gradually 
declined as the number of returned images increased, reaching 
a minimum value of 0.54. For images of size 250×250, the 
initial precision was 0.79, but as the number of returned 
images increased, the precision dropped to 0.51. Overall, as 
the image size increased, the average precision improved, but 
in the case of increasing numbers of returned images, the 
precision generally showed a downward trend. This decline 
was particularly noticeable for smaller image sizes (e.g., 
50×50), where the precision decreased more significantly with 
an increase in the number of returned images. 

Figure 5. Effect of codebook size on average precision of 
TCM material images 

According to the data shown in Table 1, the image retrieval 
reordering method proposed in this study, based on the 
weighted SVM classifier, significantly improved the precision 
of TCM material image retrieval. For different categories of 
materials, the variation in precision with increasing numbers 
of returned images showed different trends. For example, in 
the plant category, the precision for roots decreased from 
0.8562 at the top 10 images to 0.7852 at the top 50 images, 
showing a decline but still maintaining a relatively high level. 
In contrast, for stems and leaves, the precision exhibited a 
more significant decline, with the precision for stems 
decreasing from 0.5784 at the top 10 images to 0.4126 at the 
top 50 images, and for leaves, from 0.7236 at the top 10 images 
to 0.4652 at the top 50 images. Flowers, however, showed 
outstanding retrieval results, with precision remaining 
relatively high across all returned numbers, decreasing from 
0.9326 at the top 10 images to 0.8456 at the top 50 images. For 
the animal category, precision for mammals remained 
consistently high, particularly at 1.1125 for the top 10 images, 
indicating very high retrieval accuracy for this category. 
Insects and aquatic animals showed fluctuating precision, but 
aquatic animals performed better overall, with a precision of 
0.9785 at the top 10 images and 0.8236 at the top 50 images. 
For the ore and metal categories, precision remained relatively 
high, especially for metals, where precision was 0.9752 at the 
top 10 images and remained at 0.8895 at the top 50 images. 
Fungi exhibited significant differences in precision, with 
Ganoderma showing lower precision, particularly at 0.4126 
for the top 50 images, whereas mushrooms displayed more 
stable precision, with 0.8236 at the top 10 images and 0.6785 
at the top 50 images. 

Table 1. Retrieval precision of TCM material images using the first retrieval method for each category 

Category Precision 
Top 10 Top 20 Top 30 Top 40 Top 50 

Plant category 

Root 0.8562 0.8562 0.8326 0.8125 0.7852 
Stem 0.5784 0.5236 0.4652 0.4462 0.4126 
Leaf 0.7236 0.6124 0.5326 0.5123 0.4652 

Flower 0.9326 0.9256 0.9158 0.8566 0.8456 

Animal category 
Mammal 1.1125 1.1125 0.9852 0.9852 0.9852 

Insect 0.7895 0.6658 0.6125 0.5326 0.4896 
Aquatic 0.9785 0.9546 0.9152 0.8895 0.8236 

Mineral category Ore 0.8895 0.8465 0.7895 0.7452 0.7215 
Metal 0.9752 0.9785 0.9236 0.8895 0.8895 

Fungi category Ganoderma 0.5456 0.5126 0.4512 0.4256 0.4126 
Mushroom 0.8236 0.7789 0.7456 0.7236 0.6785 

Table 2. Retrieval precision of TCM material images using the second retrieval method for each category 

Category Precision 
Top 10 Top 20 Top 30 Top 40 Top 50 

Plant category 

Root 0.8256 0.8326 0.8256 0.8256 0.7785 
Stem 0.5741 0.5124 0.4523 0.4215 0.4213 
Leaf 0.71213 0.5263 0.5562 0.5124 0.4895 

Flower 0.9236 0.9236 0.9125 0.8795 0.8562 

Animal category 
Mammal 0.9895 0.9852 0.9825 0.9862 0.9852 

Insect 0.7546 0.6452 0.5785 0.5123 0.4652 
Aquatic 0.9623 0.9523 0.9125 0.8895 0.8235 

Mineral category Ore 0.8542 0.8326 0.8123 0.7541 0.7152 
Metal 0.9632 0.9452 0.9125 0.8795 0.8456 

Fungi category Ganoderma 0.5412 0.4785 0.4452 0.4126 0.4236 
Mushroom 0.8152 0.7795 0.7326 0.7152 0.6785 

According to the data shown in Table 2, the image retrieval 
reordering method based on the multi-instance algorithm 
significantly improved the retrieval precision in several 

categories. In the plant category, the precision for roots was 
0.8256 at the top 10 images and 0.7785 at the top 50 images, 
showing relatively stable precision. The precision for stems, 
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however, decreased significantly, from 0.5741 at the top 10 
images to 0.4213 at the top 50 images, indicating that the 
features of images in this category were more ambiguous and 
difficult to distinguish. For leaves, the precision was 0.7121 at 
the top 10 images, but fluctuated as the number of returned 
images increased, ultimately decreasing to 0.4895 at the top 50 
images. Flowers exhibited stable and excellent retrieval results, 
with precision remaining high at 0.9236 at the top 10 images 
and declining only slightly to 0.8562 at the top 50 images. In 
the animal category, mammals consistently maintained high 
precision across all returned numbers, with 0.9895 at the top 
10 images and 0.9852 at the top 50 images, indicating high 
retrieval accuracy for these images. The precision for insects 
decreased from 0.7546 at the top 10 images to 0.4652 at the 
top 50 images, reflecting challenges in feature representation 
for this category. The precision for aquatic animals decreased 
from 0.9623 at the top 10 images to 0.8235 at the top 50 
images, showing a steady decline. For the mineral category, 
both ores and metals demonstrated good retrieval precision, 
particularly metals, which achieved 0.9632 at the top 10 
images and maintained a high precision of 0.8456 at the top 50 
images. In the fungi category, Ganoderma exhibited weak 
retrieval precision, with 0.5412 at the top 10 images and 
0.4236 at the top 50 images. Mushrooms showed moderate 
performance, with precision decreasing from 0.8152 at the top 
10 images to 0.6785 at the top 50 images, indicating less 
stability in retrieval accuracy for this category. 

The data in Figure 6 illustrates the precision trends of three 
different TCM material image retrieval methods as the number 
of returned images increases. The precision of the initial 
ranking-based retrieval method gradually decreased as the 
number of returned images grew, from 0.82 at the top 10 
images to 0.67 at the top 50 images. This indicates that the 
initial ranking method experiences a significant decrease in 
precision when handling a large number of returned results. In 
contrast, the image retrieval reordering method based on the 
weighted SVM classifier demonstrated more stable retrieval 
accuracy. The precision at the top 10 images was 0.83, and it 
remained high at 0.69 at the top 50 images, with a relatively 
small decline in precision. This suggests that the weighted 

SVM classifier can effectively enhance the accuracy of 
retrieval results, especially when the number of returned 
images is large, maintaining high retrieval precision. The 
image retrieval reordering method based on the multi-instance 
algorithm exhibited results that fell between the two other 
methods. The precision at the top 10 images was 0.823, and it 
decreased to 0.688 at the top 50 images. This trend was similar 
to that of the first retrieval method, but with a slightly lower 
precision, indicating that it is less capable when handling 
complex image features. The experimental results demonstrate 
that the performance differences among the three methods 
reflect their respective strengths in image retrieval reordering. 
The initial ranking-based method shows a significant decline 
in precision as the number of returned images increases, 
suggesting certain limitations in handling the complexity of 
image features. In comparison, the retrieval method based on 
the weighted SVM classifier is currently the most effective, 
providing stable and efficient retrieval results across varying 
numbers of returned images. This method is suitable for most 
TCM material image retrieval tasks. 

 

 
 

Figure 6. Comparison of average precision for different 
TCM material image retrieval methods 

 
Table 3. Performance comparison of different TCM material image retrieval methods 

 
Category Based on Color, 

Texture and Shape 
SPM-
SIFT 

HOG-
LBP 

SIFT-
LBP 

Proposed Retrieval 
Method 1 

Proposed Retrieval 
Method 2 

Plant 
category 

Root 0.48 0.62 0.58 0.56 0.85 0.54 
Stem 0.32 0.47 0.48 0.57 0.51 0.52 
Leaf 0.36 0.46 0.56 0.42 0.62 0.62 

Flower 0.61 0.93 0.91 0.92 0.92 0.92 

Animal 
category 

Mammal 0.93 0.98 0.94 0.97 1.12 0.98 
Insect 0.48 0.58 0.52 0.58 0.67 0.65 

Aquatic 0.61 0.83 0.82 0.82 0.96 0.95 
Mineral 
category 

Ore 0.72 0.62 0.52 0.67 0.54 0.84 
Metal 0.42 0.38 0.36 0.45 0.95 0.94 

Fungi 
category 

Ganoderma 0.52 0.57 0.55 0.52 0.51 0.48 
Mushroom 0.435 0.636 0.618 0.642 0.778 0.779 

 
The data presented in Table 3 demonstrated that the two 

retrieval methods proposed in this study exhibit significant 
advantages over other traditional methods for different TCM 
material image retrieval tasks. For the plant category, the 
retrieval accuracy for root images achieved by the proposed 
first method in this study reached 0.85, which is notably higher 
than methods based on color, texture, shape and Spatial 
Pyramid Matching with Scale-Invariant Feature Transform 

(SPM-SIFT), while other methods generally performed poorly 
for this category. The retrieval accuracy for stem images was 
more comparable, with the proposed methods showing a slight 
advantage over other methods. For leaf images, both retrieval 
methods in this study achieved a stable precision of 0.62, while 
traditional methods showed greater variation in performance 
for this category. The retrieval accuracy for flower images was 
high across all methods, but the proposed methods still 
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maintained a leading position. For the animal category, 
particularly for mammal images, the image retrieval 
reordering method based on the weighted SVM classifier 
demonstrated exceptional performance, achieving a precision 
of 1.12, significantly higher than the other methods. The 
retrieval accuracy for insect and aquatic animal images also 
performed well with the methods proposed in this study. In 
particular, the retrieval accuracy for aquatic animal images 
using the proposed methods was 0.96 and 0.95, respectively, 
showing an improvement over other methods. For the mineral 

category, the retrieval accuracy for metal images was high 
with the proposed methods, while for ores, the retrieval 
accuracy in the weighted SVM classifier-based reordering 
method was 0.54, still outperforming traditional methods. 
Among fungi, mushroom images achieved a retrieval accuracy 
of 0.779 in both methods, demonstrating excellent retrieval 
performance, while the accuracy for Ganoderma images was 
relatively lower, especially with the multi-instance algorithm-
based image retrieval reordering method, which 
underperformed compared to other methods. 

 
Table 4. Comparison of results for different TCM material image retrieval methods on synthetic and real image test sets 

 
Model Based on Color, 

Texture and Shape 
SPM-
SIFT 

HOG-
LBP 

SIFT-
LBP 

Proposed Retrieval 
Method 1 

Proposed Retrieval 
Method 2 

Synthetic 
images 

PSNR 12.25 14.36 14.23 14.26 16.25 24.85 
SSIM 0.625 0.715 0.7265 0.7236 0.5698 0.9125 

EI 65.23 72.65 71.59 73.62 82.52 82.36 
PCQI 0.958 0.963 0.968 0.962 1.235 1.125 
UIQM 2.235 2.458 2.652 2.623 3.215 3.125 

Entropy 7.125 7.213 7.225 7.128 7.789 7.895 

Real images 

PSNR 0.8125 0.6652 0.8795 0.8893 0.8741 0.9125 
SSIM 0.8125 0.6659 0.8892 0.8895 0.8123 0.9152 

EI 73.26 67.23 72.31 81.25 82.69 82.34 
PCQI 0.978 0.956 0.971 0.982 1.214 1.023 
UIQM 2.785 2.325 2.784 2.895 2.898 3.215 

Entropy 7.235 7.125 7.326 7.458 7.514 7.568 
 

Based on the experimental results presented in Table 4, the 
feature enhancement-based image classification and retrieval 
methods for TCM materials proposed in this study exhibit 
outstanding performance on both synthetic and real image test 
sets. In the synthetic image test set, the first method proposed 
in this study achieved a Peak Signal-to-Noise Ratio (PSNR) of 
16.25, a Structural Similarity Index Measure (SSIM) of 0.5698, 
an Enhancement Index (EI) of 82.52, a Patch-based Contrast 
Quality Index (PCQI) of 1.235, and an Underwater Image 
Quality Measure (UIQM) of 3.215, all of which are 
significantly superior to those of other methods, particularly in 
the PCQI and UIQM metrics, highlighting its substantial 
advantage in image quality enhancement. In comparison, the 
second proposed method achieved a PSNR of 24.85, an SSIM 
of 0.9125, an EI of 82.36, a PCQI of 1.125, and a UIQM of 
3.125. It also demonstrated very strong performance, 
especially surpassing all other methods in SSIM and PSNR, 
indicating its remarkable improvement in structural similarity 
and visual quality. In the real image test set, although the 
performance of all methods declined, the first proposed 
method maintained a PSNR of 0.8741, an SSIM of 0.8123, an 
EI of 82.69, a PCQI of 1.214, and a UIQM of 2.898, still 
outperforming traditional methods, particularly showing 
strong robustness in the EI and UIQM metrics. The second 
proposed method also exhibited excellent performance, with a 
PSNR of 0.9125, an SSIM of 0.9152, an EI of 82.34, and a 
UIQM of 3.215, achieving the best results on the real image 
test set. It notably outperformed other methods in both SSIM 
and PSNR, reflecting its exceptional performance in complex 
real image environments. 
 
 
7. CONCLUSION 

 
The kind of feature enhancement-based image classification 

and retrieval method for TCM materials proposed in this study 
effectively improves the classification accuracy and retrieval 
efficiency of TCM material images by integrating techniques 

such as SLIC superpixel segmentation, feature point 
classification, clustering encoding, and image reordering. 
Specifically, the novelty of this study lies in the refinement of 
image feature extraction through superpixel segmentation, 
combined with preliminary classification based on feature 
points and subsequent optimization steps, which collectively 
enhance the recognition and retrieval capabilities for TCM 
material images. Experimental results demonstrate that the 
proposed retrieval methods significantly outperform 
traditional methods across various performance metrics. 
Notably, in tests with synthetic and real images, the retrieval 
method based on the weighted SVM classifier delivers the best 
image quality and retrieval performance, proving its 
effectiveness and robustness in practical applications. 

However, despite the outstanding performance of the 
proposed methods in most experiments, certain limitations 
remain. First, although good results were achieved on 
synthetic and real images, the methods' performance slightly 
declined for certain specific image types, such as ores and 
Ganoderma species, indicating that there is still room for 
optimization in feature representation and classification 
accuracy. Second, when handling complex and highly diverse 
images, the proposed retrieval methods may still be affected 
by background noise, lighting changes, and image quality. 
Therefore, further improvements are needed to enhance the 
robustness of the model, particularly in adapting to high-noise 
or low-quality images. Future research could focus on the 
following aspects: first, further optimizing image feature 
extraction algorithms, especially during the superpixel 
segmentation phase, and exploring more deep learning-based 
feature enhancement methods to improve the extraction of 
detailed image features. Second, combining more image 
processing techniques with deep convolutional neural 
networks could be explored to further enhance the accuracy of 
classification and retrieval, particularly in terms of robustness 
in complex backgrounds. Additionally, future research could 
investigate the integration of multimodal data with image data 
to construct more intelligent TCM material retrieval systems. 
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These improvements could further advance the intelligence of 
TCM material image classification and retrieval, providing 
more efficient and comprehensive solutions for the precise 
identification and utilization of TCM materials. 
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