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This research addresses the pressing global challenge of securing rice production, a staple 
for over half of the world's population, amidst projections of a population surge to 9.7 billion 
by 2050 and a potential peak of 11 billion by 2100. Despite economic growth, food security 
remains precarious due to plant diseases impacting rice, intensified by evolving cultivation 
practices and climate shifts. Our innovative solution combines a Convolutional Neural 
Network (CNN) with Big Transfer (BiT) to enhance image classification for rice diseases. 
BiT, known for adaptability and outstanding performance on limited datasets, integrates 
seamlessly with a scalable CNN, yielding robust results across diverse tasks, even with 
sparse training data. Operating on a dataset with six classes, each containing only 20 training 
images, our hybrid CNN_BiT model demonstrates remarkable efficacy. Achieving 100% 
accuracy, 93.75% precision, 93% recall, and a 94.2 F1 Score, this model surpasses recent 
counterparts in identifying rice leaf diseases. The integration of customized feature 
extraction from the CNN with BiT's advanced feature understanding results in a potent, 
resilient, and efficient model. These fusion holds promise for addressing image classification 
challenges in agriculture, showcasing its potential impact on global food security. 
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1. INTRODUCTION

Over the next three decades, the global population is
projected to increase by approximately 2 billion individuals, 
going from the current 7.7 billion to 9.7 billion by 2050. The 
projected population peak around 2100 is estimated to 
approach nearly 11 billion individuals [1]. Rice, being a staple 
grain for much of the world's population, serves as a vital 
source of calories for over half of the people on Earth [2]. The 
significant increase in rice productivity, attributed to the 
adoption of using enhanced cultivars, fertilization methods, 
and irrigation techniques during the Green Revolution, played 
a crucial role in boosting production and causing a sustained 
decrease in rice prices. This development has been a key driver 
in alleviating the reduction of poverty in Asia over the 
preceding centuries. In spite of these prior accomplishments, 
the ongoing growth of rice productivity remains critical for 
various reasons. The pace of rice harvest improvement has 
considerably experienced a deceleration in the recent years, 
failing to retain pace in tandem with the expansion of the 
population. This shortfall has resulted in shortages and 
elevated prices, particularly impacting impoverished 
communities. The 2008 food crisis and the spike in rice prices 
underscored the vulnerability of food security. Despite 
substantial economic growth in many regions, the stability of 
food security remains somewhat precarious [3]. Plant diseases 
constitute a significant hindrance and play a crucial role in 
realizing the maximum potential yield. Rice, being the most 
vital global food crop, faces threats from various diseases 

caused by fungi, bacteria, and viruses. Changes in agronomy 
techniques, diminished cultivar variation leading to a slender 
inherited foundation, and observable weather-related shifts 
have altered the changing patterns of rice ailments throughout 
the duration. The primary diseases have increasingly 
developed potent and expanded to novel regions. Numerous 
ailments previously deemed minor have now gained economic 
significance in various areas [4]. 

Timely disease detection is crucial for optimizing 
agricultural output. Innovation is imperative in addressing this 
need, and the application of advanced techniques is key to 
more accurate solutions. Globally, Artificial Intelligence (AI) 
methods are being employed in agriculture to enhance the 
efficiency of crop health monitoring. These AI techniques 
surpass human capabilities, offering precision in crop 
management. 

Agriculturists are increasingly integrating artificial 
intelligence and machine learning techniques to elevate the 
effectiveness of crop management. This involves the 
identification and treatment of crops affected by various 
diseases and pest infestations. Emerging technologies such as 
machine learning, computer vision, satellite imaging, artificial 
intelligence, and data analysis play pivotal roles in disease 
management across a wide array of crops. Their adoption 
signifies a paradigm shift in agricultural practices, ensuring 
enhanced accuracy and efficacy in disease detection and 
mitigation [5]. It is evident that models based on machine 
learning hold significant promise in the agricultural sector, 
particularly in the realm of detecting plant and crop diseases. 
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Nonetheless, several challenges persist, including the dilemma 
encountered during model training with extensive datasets. 
While utilizing large datasets can undoubtedly enhance the 
precision of predicting disease models which comes at the 
expense of increased computational demands. In particular, 
computational models or edge devices, which are typically 
smaller and less computationally intensive, struggle to achieve 
optimal performance under these circumstances. This 
challenge is compounded by the issue of covariate shift, 
stemming from disparities between the distributions of the 
training data used to develop the model and the data on which 
the model is subsequently applied. Addressing these 
challenges is essential to ensure the effective integration of 
machine learning in agriculture and to strike a balance between 
accuracy and computational efficiency [6]. 

This research paper tackles the aforementioned challenge 
by integrating a CNN as a more scalable approach to image 
classification, alongside BiT. BiT embodies a collection of 
image models that have been pre-learned to exhibit 
exceptional adaptability, delivering outstanding performance 
on new datasets, even when limited examples are available per 
class. The integrated approach not only yields significantly 
improved results across diverse tasks but also demonstrates 
robust transferability, proving effective even when confronted 
with datasets containing only a sparse number of images per 
class. 

BiT, developed by Google Research, is a comprehensive 
transfer learning framework designed to offer a robust and 
versatile feature extractor. It can be fine-tuned for a range of 
downstream tasks. However, the computational demands of 
advanced image processing algorithms, particularly for tasks 
like leaf detection on large datasets or real-time monitoring 
applications, can be substantial. This could pose challenges in 
resource-limited environments or for tasks requiring swift 
processing. Thanks to its thorough pre-training, BiT 
demonstrates strong generalization capabilities to new tasks 
even with limited data. Even when provided with a small 
number of images, BiT maintains good classification 
performance. The fundamental concept of BiT involves pre-
training a model on a comprehensive and varied dataset, such 
as ImageNet, employing self-supervised learning methods. 
Self-supervised learning entails training the model to predict 
specific data properties without relying on explicit human 
annotations. Through pre-training in this fashion, the model 
acquires complex representations of the input data, facilitating 
their transfer to other tasks with minimal fine-tuning. 
Therefore, in this study, we opt for BiT for rice disease 
detection with limited datasets. BiT does have certain 
drawbacks. However, when paired with CNN, it has the 
potential to alleviate or counteract some of these 
disadvantages. 

i) BiT focuses on learning high-level, abstract
representations, while combining it with CNNs
enhances the capture of fine-grained visual details.
This fusion has the potential to produce more robust
and comprehensive representations of the input data.

ii) In contexts with limited labeled data, this
integration could expedite fine-tuning processes, as
CNNs excel at extracting task-specific features
from restricted datasets.

iii) CNNs are frequently employed in domain
adaptation scenarios, where the target domain
diverges substantially from the source domain.
Integrating a CNN model with BiT can bolster the

model's capacity to adapt to new domains or 
datasets by harnessing the domain-specific features 
extracted by the CNN. 

One of the drawbacks associated with CNNs is their reliance 
on the Spatial Invariance Assumption. 

iv) The spatial invariance assumption within CNNs
suggests that CNNs treat all regions of an image
equally, regardless of their spatial position. In
contrast, BiT captures extensive long-range
dependencies and global context within the data,
potentially mitigating the spatial invariance
assumption inherent in CNNs.

So synergizing CNN with BiT innovatively for rice leaf 
disease detection with a limited dataset can lead to a more 
robust solution. By combining the strengths of both models, 
we can capitalize on the feature extraction capabilities of 
CNNs while harnessing the generalization power of BiT's 
extensive pre-training. This approach allows us to overcome 
the limitations of each model individually. Additionally, by 
leveraging the complementary aspects of CNNs and BiT, we 
can boost the model's capability to generalize to novel and data 
that has not been observed before, ultimately improving 
accuracy and reliability of rice leaf disease detection even with 
limited dataset sizes. 

Incorporating a Big Transfer (BiT) model into a machine 
learning pipeline alongside a CNN also offers numerous 
advantages, particularly in the realm of image processing and 
classification tasks such as: 

1. Utilizing Pre-Trained Features: BiT models
undergo pre-training on extensive and diverse
datasets, endowing them with a robust and versatile
feature extraction capability. Through integration
with a CNN, this combines the benefits of tailored
feature extraction with the sophisticated,
generalized feature comprehension inherent in the
BiT model.

2. Improved Performance on Limited Datasets: In
scenarios where training data is restricted, a model
developed entirely from scratch may encounter
challenges in acquiring effective features and
achieving generalization. Nevertheless, the pre-
trained elements of the BiT model offer a remedy
by supplying a comprehensive, pre-learned set of
features. Subsequently, the CNN layers can fine-
tune these features tailored to the specific task,
resulting in superior performance compared to a
model trained solely on the constrained dataset.

3. Enhanced Generalization: The synergy between
CNN and BiT enhances the model's skill to
generalize effectively to novel, data that has not
been observed before. The CNN layers adapt to the
intricacies of the current task, and concurrently, the
BiT model, with its comprehensive pre-training,
contributes a broader understanding of image
features. This collaborative approach results in
heightened accuracy and robustness in real-world
applications.

4. Streamlined Training Process: Employing a pre-
trained BiT model reduces the computational costs
and time typically associated with training a model
entirely from the ground up. Subsequently, the CNN
layers demand comparatively less data and training
time for fine-tuning, rendering the overall process
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more efficient. 
5. Mitigated Overfitting: In situations where the

dataset is limited or lacks diversity, training a model 
from the ground up can frequently result in
overfitting, wherein the model becomes excessively
attuned to the training data but struggles with
performance on new data. The incorporation of a
pre-trained BiT model serves to alleviate this risk by
infusing more generalized learning, enhancing the
model's overall robustness.

The following sections of this document are structured as 
follows: Section 2 contains a review of relevant literature, 
exploring various research documents applying deep learning-
based methods to improve the precision of identifying rice 
diseases. In Section 3, we outline the methodology, with 
subsection 3.1 detailing the dataset and 3.2 providing a 
comprehensive outline of the recommended approach for 
detecting crop ailments. Section 4 discusses experimental 
analyses, where thorough experiments are carried out and 
results are assessed through a comparative examination. This 
section includes an analysis of computational complexity and 
cost in 4.1, followed by a comparison of CNN_BiT with other 
deep learning models in 4.2. To conclude, Section 5 presents 
the paper's conclusion. 

2. LITERATURE REVIEW

Numerous research studies have used deep learning-based
methods to boost the accurateness of identifying rice diseases. 
Ghazanfar Latif and colleagues have introduced a novel 
technique for precisely identifying and categorizing diseases 
that impact rice leaves. They employed Deep Convolutional 

Neural Networks (DCNN) and domain adaptation techniques 
to develop this innovative method. The method involves a 
modified knowledge transfer process built upon the VGG19 
construction. Over this improved system, they successfully 
identify and diagnose six different disease modules that affect 
rice foliage [7].  

Upadhyay and Kumar [8] introduced an efficient practice 
for sensing diseases in paddy plants by employing layers of 
Convolution. In order to enhance the accuracy of rice leaves 
ailment detection, the proposed model incorporates global-
scale Otsu's thresholding for converting images into binary 
format, thereby efficiently removing incidental noise from 
them. 

Chen et al. [9] conducted a thorough examination of deep 
learning-based methods, leading to the creation of a 
combination of convolutional networks premeditated to 
improve the model's capability to identify subtle 
characteristics in plant lesions. By smearing principles of 
ensemble learning, they combined three frivolous CNNs to 
create a unique network called "Es-MbNet". 

Zhou et al. [10] introduced an original architecture termed 
as “residual-distilled transformer." Drawing inspiration from 
the initial achievements of employing transformers in 
computer vision tasks, they incorporated a distillation 
technique to extract and enhance weights and parameters from 
pre-trained vision transformer models. Afterwards, the refined 
features are input into a multi-layer perceptron (MLP) to 
generate predictions. 

Sudhesh et al. [11] introduced a novel method for noticing 
paddy leaf ailments over the application of Decomposition of 
Dynamic Modes in conjunction with preprocessing driven by 
attention. They engrossed on four different groups of paddy 
leaf ailments, conducting four groups of trials to evaluate the 
success of ten pre-learned DCNN models. 

Table 1. Analysis of literature review papers for rice leaf diseases detection 

Reference No. Methodology Rice Diseases Detected Total No. of Images Used 

[7] Deep Convolutional Network VGG19

Bacterial leaf blight, 
Brown spot, 
Leaf blast, 
Leaf scald, 

Narrow brown, 
spot. 

1750 

[8] Otsu’s global thresholding technique,
CNN 

leaf smut, 
Brown spot, 

Bacterial, 
leaf blight. 

4000 

[9] Lightweight CNNs-SE-MobileNet,
Mobile-DANet, MobileNet V2

Rice blast, 
Brown spot, 
Leaf smut, 
Leaf scald, 
Stackburn,  
white tip. 

500 

[10] Vision Transformer,
MLP 

Bacterial blight, 
Brown spots, 

Blast and 2 Tungro. 
805 

[11] 

DenseNet121, 
Dynamic Mode Decomposition, 

Random Forest, 
XceptionNet, 

SVM 

Bacterial blight, 
Blast, 

Brown spot and Tungro. 
3416 

[12] 
MobileNet, 

Augmented attention mechanism, 
Bayesian optimization method 

Brown spot, 
Rice hispa damage, 

Rice leaf blast. 
2370 
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Table 2. Analysis of BiT literature review papers across 
various applications 

 
Reference 

No. Methodology Utilized for 

[13] big transfer 
learning 

Skin Cancer 
Classification 

[14] big transfer 
learning Fine Art Classification 

 
Zhao et al. [14] delved into the effectiveness of 

convolutional layers for image classification tasks correlated 
to art. To assess how different hyperparameters affect model 
performance, diverse hyperparameter configurations were 
tested in the experiments. The researchers systematically 
compared the outcomes of five weight initializations across 
various tasks to understand the impact of transfer learning on 
the final results. Notably, refining the networks prelearned on 
a larger data collection demonstrated improved transferability. 
This observation underscores that the prior information 
acquired by implementations in practical scenarios is also 
applicable to the creative domain, a method referred to as BiT. 

Arkah et al. [13] encounters challenges in supplying neural 
networks with ample data, primarily due to the costly 
annotation progression and the expertise essential. A 
commonly employed strategy to address this issue is big 
knowledge transfer, involving utilization of pre-trained 
models from ImageNet (such as VGG, GoogleNet, and 
ResNet50) on a substantial volume of unlabeled pictures of 
skin cancer initially. Subsequently, these models are adjusted 
on a smaller set of labeled skin images. 

Wang et al. [12] introduced a new method named ADSNN-
BO, this model is designed for identifying and categorizing 
rice diseases using images of rice leaves. Built upon the 
MobileNet architecture, the ADSNN-BO model integrates an 
attention mechanism and undergoes fine-tuning using 
Bayesian optimization. To ensure interpretability, the model 
employs feature analysis techniques like activation mapping 
and filter visualization. The results suggest that the attention-
based mechanism in the ADSNN-BO model improves the 
learning of pertinent features more effectively. 

In the literature review, the research presented indicates that 
the image data size for classifying rice diseases is often large, 
as noted in Table 1. Our study, however, focuses on a smaller 
dataset consisting of only 20 images per class, totalling 120 
images. This contrasts with the datasets typically used in the 
reviewed papers. 

BiT, a recent innovation in transfer learning, presents 
promising potential for application in rice leaf disease 
detection, although further exploration is warranted. Recent 
studies [13, 14] as in Table 2 have showcased the efficacy of 
BiT in various applications beyond rice leaf disease detection. 
Our research endeavors involve integrating BiT with CNN, 
leading to the development of a robust model for accurately 
detecting rice leaf diseases, suggesting a fruitful avenue for 
future investigation. 
 
 
3. METHODOLOGY 

 
3.1 Dataset 

 
This paper addresses five significant rice diseases that pose 

considerable challenges to rice farmers worldwide, as they 

have the potential to substantially diminish both the yields and 
quality of rice crops.  

1. Rice Blast: Rice blast, a fungal disease caused by 
Magnaporthe oryzae, poses a significant threat to rice 
cultivation globally. It can result in substantial yield losses and 
jeopardize food security in affected regions. Symptoms 
include lesions on leaves, stems, and panicles, ultimately 
leading to plant death. It is characterized by the infection of 
rice plants through spores, leading to the development of 
abnormalities or marks on various parts of plants, including 
leaves, leaf collars, panicles, stems, and stem nodes. The 
infectious agent retains the ability to generate spores for more 
than 20 days, presenting a significant menace to rice crops 
susceptible to this disease [15]. 

2. Brown Spot: Bipolaris oryzae, the fungus responsible for 
brown spot, flourishes in warm and humid conditions, which 
heightens the vulnerability of regions with tropical and 
subtropical climates to outbreaks of this disease. During the 
winter, the fungus persists in plant debris and soil. Its spores 
disperse via wind, water, or human actions. It impacts rice 
plants, affecting different plant components including leaves, 
glume, Seedlings, leaf sheaths, stems, and mature plant grains. 
Particularly, dark coffee-colored spots emerge on the panicle, 
and in severe cases, spot formation may occur. on the grains, 
ultimately leading to diminished yield and compromised 
milling quality [16]. 

3. Bacterial Sheath Blight: Bacterial sheath blight, triggered 
by Burkholderia gladioli bacteria, impacts various crops like 
rice and maize. It induces distinct symptoms such as water-
soaked lesions on leaf sheaths, with rapid spread often 
culminating in the formation of a mucilaginous bacterial 
sheath. It usually becomes evident during the heading stage of 
the rice plant. In mature plants, water-soaked and translucent 
lesions develop near the edges of the leaves. Over time, these 
lesions increase in size and display a wavy margin. Eventually, 
the affected areas turn a straw-yellow color, spreading to cover 
the entire leaf. If left uncontrolled, this disease can lead to 
decreased crop yields and compromised quality [17]. 

4. Rice Tungro: Rice tungro is characterized by stunted 
growth, yellowing of leaves, and reduced tillering in infected 
plants. The disease stems from the collaborative impact of two 
viruses transmitted by leafhoppers. The viruses are Rice 
tungro bacilliform virus (RTBV) and Rice tungro spherical 
virus (RTSV). RTBV induces symptoms of stunting and 
chlorosis, while RTSV enhances the transmission efficiency 
of RTBV by the insect vectors. The manifestation of this 
disease includes symptoms such as leaf discoloration, stunted 
growth, reduced tiller numbers, and grains that are only 
partially filled. Tungro disease also affects certain wild rice 
relatives and other grassy weeds commonly found in rice fields. 
The resulting yield losses can be substantial, particularly in 
regions where the disease is widespread [18]. 

5. False Smut: It is caused by the pathogen Ustilaginoidea 
virens infiltrates the rice spikelet over a minor aperture prior 
to heading. It's characterized by the formation of fungal spore 
masses within the rice panicle, resembling grains but actually 
composed of fungal structures. This disease is more prevalent 
in warm, humid climates, fostering ideal conditions for fungal 
proliferation and spore generation. Elevated nitrogen fertilizer 
usage and waterlogged environments can further elevate the 
likelihood of disease onset. In the vegetative phase of rice 
development, the fungus takes hold by infiltrating the tissue at 
the rising tips of the tillers. The effects of rice false smut 
predominantly influence the quality, altering the visual 
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presentation of the crop. False smut can indeed lead to 
substantial reductions in yield and the quality of grains [19].  

Figure 1. Comprehensive dataset: Six classes featuring 
healthy rice crops and five ailments affecting rice plants 

In addition to these five categories of rice diseases, the 
dataset also incorporates images of healthy rice crops. In total, 
the dataset comprises six classes, with each class containing 
only 20 images for training purposes which is depicted in 
Figure 1. Current data comprising images of both diseased and 
healthy rice crops was gathered in the open fields of 
Melmaruvathur, Kavaraipettai, and Gummidipondi regions in 
South India during December 2021, the pictures were captured 
using Xiaomi and Redmi phones of 48 megapixels resolution. 
However, they were susceptible to noise and distortion due to 
the unregulated environmental conditions in the open field, 
along with fluctuations in lighting and backgrounds. 
Preserving reliability in image proportions poses a challenge, 
particularly when the data collection of imageries of 
fluctuating dimensions. To solve this issue, the training hired 
data expansion methods to change the size of all pictures to the 
specified input dimension of 224×224 for the CNN. 
Furthermore, image normalization was implemented to 

alleviate issues related to gradient propagation. Additionally, 
image enhancement methods such as Erosion, Dilation, 
Opening, and Closing were performed to augment areas of 
images with changing levels of intensity. 

3.2 Synergizing BiT model within CNN framework for 
enhanced transfer learning in computer vision 

The block diagram in Figure 2 illustrates the overarching 
process outlined in this research article. Elaboration on the 
procedural specifics will be provided in the subsequent 
subsections. 

3.2.1 Convolutional Neural Network 
Convolution represents a mathematical operation 

performed on two functions with real-valued arguments. This 
operation is commonly represented by an asterisk (*). It is 
essential that one of the functions, denoted as w, be a valid 
probability density function to ensure that the output 
represents a weighted average. Additionally, w must be zero 
for all negative arguments to prevent looking into the future, a 
capability beyond our practical reach. 

In the context of CNNs, the first function x involved in the 
convolution is often called the input, while the second function 
(in this case, w) is referred to as the kernel. The result of the 
convolution is termed the feature map. It is represented as  

s(t) (x * w)(t)=  (1) 

Convolutional networks have the capacity to produce 
outputs that extend beyond traditional class labels in 
classification tasks or numerical values in regression tasks. 
Instead, they can generate high-dimensional, structured 
objects, typically in the form of tensors produced by standard 
convolutional layers. As an illustration, the model might 
generate a tensor S, where Si,j,k represents the probability that 
the pixel at coordinates (j, k) in the input to the network 
belongs to class i. This capability enables the model to 
meticulously label each pixel in an image and create precise 
masks that accurately delineate the contours of individual 
objects [20]. 

Figure 2. Block diagram of proposed hybrid model framework of BiT with CNN 
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Fully connected layers, as their name suggests, establish 
extensive connections with preceding layers. Typically, these 
layers utilize activation functions like "sigmoid" or "softmax" 
in the final layer to generate predictions related to classes. 
Essentially, convolutional layers discern features extracted 
from input data, which are then condensed by successive 
aggregation layers. Utilizing the high-level features obtained, 
fully connected layers typically conduct the classification of 
input data into predefined categories during the final stages. 
Moreover, the classification layer not only categorizes the data 
but also extracts features crucial for both classification and 
detection tasks. Figure 3 illustrates the components of a typical 
CNN [21]. 

Figure 3. Components of a standard CNN layers 

3.2.2 BiT-Big transfer model 
Several recent advancements have been made in enhancing 

the training of deep neural networks. The objective is not to 
incorporate additional components or complexities, but rather 
to present a methodology that relies on the minimal number of 
techniques while achieving outstanding performance across 
various tasks. This approach is referred to as "Big Transfer" 
(BiT). 

They conduct training on networks using three distinct sizes 
of data collections. The major, BiT-L, undergoes training 
concerning JFT-300M data collections, consisting of 300 
million images with noisy labels. BiT is subsequently 
transferred to a variety of tasks, encompassing dimensions of 
data collections used for learning fluctuates from one instance 
per class to an over-all of one million examples. These 
assignments encompass a variety of datasets, including 

ImageNet's ILSVRC-2012, CIFAR-10/100, Oxford-IIIT Pet, 
Oxford Flowers-102 (including few-shot variants), and the 
VTAB-1k benchmark comprise 19 different datasets. 
Remarkably, BiT-L achieves effectiveness even when limited 
downstream data is available (see Table 3). 

When BiT-M utilizes ILSVRC-2012 for pre-training 
(needed only once) and is additionally skilled on the public 
ImageNet-21k data collections, it delivers notable 
enhancements, providing cost-effective fine-tuning for 
subsequent tasks. BiT not only demands a concise refining 
practice for each freshchore nevertheless obviates the 
necessity for wide-ranging model fine-tuning on novel tasks. 
As an alternative, it employs an exploratory for configuring 
parameter tuning during transfer, proven effective across our 
diverse evaluation suite, is presented. It is crucial to highlight 
that the most significant aspect of BiT is its effectiveness, 
providing insights into the intricate relationship among 
dimensions, structure and learning parameters [22]. 

The essential elements identified for constructing a 
proficient network for transfer can be categorized into two 
groups: upstream components employed in pre-training at the 
upstream and transmission of downstream components for 
optimizing the process for an innovative task. 

Pre-training at the upstream stage. The initial crucial factor 
is scale. In the realm of deep learning, it is widely 
acknowledged that larger networks exhibit superior 
performance in their designated tasks. Additionally, the 
relationship between larger datasets and the necessity for 
correspondingly expansive architectures is well-established. 
The efficacy of scale, particularly during the pre-training 
phase, is meticulously examined within the framework of 
transfer learning, extending to tasks characterized by a scarcity 
of data points. This analysis explores the intricate balance 
among the computational resources allocated (training time), 
the dimensions of the architecture, and the magnitude of the 
dataset. To explore this further, three BiT models undergo 
training on three significant data collections: ILSVRC-2012, 
which includes 1.3 million pictures (BiT-S); ImageNet-21k, 
comprising 14 million images (BiT-M); and JFT, boasting an 
impressive 300 million imageries (BiT-L). 

Another crucial module involves Group Normalization (GN) 
and Weight Standardization (WS). Although Batch 
Normalization (BN) is a standard feature in the majority of 
advanced image models for stabilizing learning, it has been 
found that BN presents challenges for Big Transfer aimed at 
two specific motives. Firstly, during the learning of extensive 
models having batches of small size per device, BN 
demonstrates suboptimal performance or imposes 
synchronization costs across devices. Secondly, because of the 
need to update statistics in succession, BN is disadvantageous 
for transfer learning. In contrast, the pairing of GN and WS 
has shown enhancements in performance, particularly in 
situations where batches of small sizes are trained for 
ImageNet and COCO. This study showcases GN and WS 
proves beneficial for conducting training with sizable batch 
dimensions which also significantly influences the landscape 
of transfer learning. 

Table 3. BiT: Cutting-edge transfer learning for computer vision 

Datasets ILSVRC-2012 CIFAR-10 CIFAR-100 Pets Flowers 
Models Accuracy (in Percent) 
BiT-L 95 98 98 99 100 

Generalist SOTA 90 97 95 96 96 
Baseline (ILSVRC-2012) 75 95 80 95 90 
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Transmission to task that downstream. They suggest an 
economical refinement procedure that is applicable to a varied 
range of downstream jobs. Significantly, they have 
sidestepped the need for a costly exploration of tuning 
parameters for every original task and data volume. Instead, 
they experimented with a singular hyperparameter per task 
referred to as "BiT-HyperRule." This rule intelligently selects 
crucial tuning parameters based on a straightforward process 
with basic image resolution and the quantity of data instances. 

Remarkably, during the downstream tuning phase, none of 
the following regularization forms were utilized: reducing 
weight decay to zero, reverting weight decay to initial 
parameters, or omitting dropout are all viable options. 
Remarkably, despite the significant size of the network, with 
BiT boasting 928 million parameters, its performance remains 
robust even without these techniques and their corresponding 
hyperparameters. This resilience persists even when 
transitioning to extremely small datasets. BiT adopts a 
streamlined training and fine-tuning framework, incorporating 
a select few components chosen with precision to strike a 
balance between complexity and performance. Leveraging 
extensive pre-training on a large scale is instrumental in 
achieving commendable performance [23]. 

 
3.2.3 Optimizinning in rice crop disease detection: integrating 
the BiT model into a CNN framework 

Implementation utilizes TensorFlow, employing Keras as 
its high-level API for constructing and training deep learning 
models. After the datasets are stored, images undergo resizing 
to 384×384 pixels followed by cropping to 224×224.The 
dataset is partitioned within the realms of training and 
validation sets, with an 85% allocation for training and 15% 
for validation. As depicted in Figure 4, the information stream 
of the Hybrid CNN_BiT model is depicted. is presented where 
various preprocessing functions are applied to images, 
encompassing resizing, cropping, and normalization. Training 
and validation datasets are meticulously prepared, 
incorporating diverse data augmentation techniques such as 
random flipping, along with batching. This meticulous 
preparation optimizes the data for seamless integration into the 
neural network during the training process. 

 

 
 

Figure 4. Information stream of the hybrid CNN_BiT model 

The images undergo processing through a CNN block of 
layers. The BiT (Big Transfer) Model, denoted as BiT_model, 
is employed as a pre-trained model sourced from TensorFlow 
Hub. This model takes the output of a custom CNN as its input, 
with the CNN serving as a feature extractor. The resulting 
outputs are then channeled into the BiT model, offering the 
flexibility for further fine-tuning as necessary. This model 
features the integration of the BiT model along with a Dense 
layer tailored for the classification task into NUM_CLASSES 
categories. This deliberate integration strategy seeks to 
leverage the synergies between CNNs and transfer learning, 
capitalizing on the distinctive strengths inherent in both 
approaches. 

The fusion of a BiT model with a CNN represents a potent 
alliance in tackling image classification tasks. This integration 
harnesses the benefits of both deep, pre-trained feature 
representations and tailored, task-specific feature extraction. 
Consequently, this methodology frequently yields models that 
exhibit heightened accuracy, resilience, and efficiency when 
confronted with diverse challenges in image classification. 

 
 

4. EMPIRICAL INVESTIGATION AND FINDINGS 
 
In the empirical setup, the proffered model utilized a data 

collection consists of six categories, covering five varieties of 
rice diseases (Blast, Brown spot, Bacterial Sheath Blight, 
Falsemut, Tungro), with the sixth category specifically for 
identifying healthy rice leaves. Each category contained only 
20 images, resulting in a total of 120 images. These images 
underwent preprocessing, involving resizing to 384×384 
pixels and subsequent cropping to 224×224. 

The dataset was partitioned into training and validation sets, 
with an 85% allocation for training and 15% for validation 
purposes. The experimentation was directed utilizing 
functions from TensorFlow library and Keras on Google 
Collab Pro. The model experienced a 25-epoch training 
regimen, retaining the Stochastic Gradient Descent (SGD) 
optimizer. For the multi-class classification nature of the 
problem, Sparse Categorical Cross entropy was utilized. 

To enhance the training process, the experiment 
incorporated the use of callbacks, specifically employing 
Early Stopping. This mechanism facilitated the cessation of 
training when the validation accuracy ceased to show 
improvement, contributing to a more efficient and optimized 
training procedure. 

The research outcomes are assessed through evaluation 
metrics such as Accuracy, Precision, Recall, and F1 Score. 
Accuracy assesses the classifier's capacity to accurately 
categorize the complete dataset, considering both positive and 
negative instances. Precision, on the other hand, measures the 
ratio of correctly identified positive samples among all 
instances classified as positive, providing insight into the 
classifier's precision in identifying positive cases. 

In contrast, recall measures the model's performance 
concerning the actual observations of a specific class. F1 Score, 
a machine learning evaluation metric, quantifies a model's 
overall accuracy by combining the precision and recall scores. 
This comprehensive approach provides a more nuanced 
understanding of the model's effectiveness in handling both 
positive and negative instances [24]. 

 
TN TPAccuracy

TN FN TP FP
+

=
+ + +

 (2) 
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=
+

(4) 

*2  (precision*recall) F1 Score
 (precision+recall) 

= (5) 

1. TP means True Positive: The instances correctly
identified as positive by the classifier. 

2. TN means True Negative: The instances correctly
identified as negative by the classifier. 

3. FN means False Negative: The instances that are
genuinely positive but were incorrectly classified as negative 
by the classifier. 

4. FP means False Positive: The instances that are genuinely 
negative but were incorrectly classified as positive by the 
classifier. 

Leveraging the innovative hybrid CNN_BiT model 
construction, the model achieves exceptional performance, 
boasting a flawless accuracy of 100%, as depicted in Figure 5. 
Additionally, the precision stands at an impressive 93.75%, 
with a recall rate of 93%, and an F1 Score reaching 94.2. 
Despite having only limited dataset comprising a minimal 
number of images (only 20 images for each class), these 
compelling results demonstrate the efficacy of the hybrid 
model. Notably, it surpasses the efficiency of the most recent 
models in precisely recognizing rice foliage ailments. 

Figure 5. The accuracy chart for the hybrid CNN_BiT model 

Figure 6 presents the statistical analysis conducted for the 
detection of rice leaf disease, wherein confidence intervals 
(CIs) are utilized to estimate the range of values likely to 
contain the population parameter with a specified level of 
confidence. These intervals provide valuable insights into the 
precision and reliability of our findings. By incorporating CIs 
into our analysis, we gain a clearer understanding of the 
variability inherent in our data and the robustness of our 
conclusions. Moreover, they serve as a valuable tool for 
communicating the uncertainty associated with our estimates 

to stakeholders and fellow researchers. Thus, the inclusion of 
confidence intervals enhances the comprehensiveness and 
credibility of our study's statistical assessment of rice leaf 
disease detection. 

Figure 6. Performance metric utilization through confidence 
intervals 

4.1 Computational complexity and cost analysis 

The utilization of BiT big for transfer learning alongside a 
CNN model displays promising outcomes, as evidenced by the 
provided metrics. Here's a breakdown of the comparison and 
feedback: 

With a batch size of 64 and training over 25 epochs with 45 
steps per epoch, the time taken for each epoch ranged from 
996 to 1114 seconds. The total number of parameters 
amounted to 23,512,646, resulting in a computational 
complexity of 52,903,453,500 for the entire training process, 
based on the provided computations per epoch. 

Given a TPU cost of $10 per hour, the estimated cost for 
training the model for approximately 7.107 hours totals 
$71.072. This demonstrates efficient training time, which can 
be advantageous, especially for scenarios involving large 
datasets or limited computational resources. Considering the 
substantial computational complexity of BiT big transfer 
learning, significant computational resources may be required. 
However, the estimated computational cost of $71.072 appears 
reasonable, given the performance and efficiency benefits it 
offers. 

In inference, BiT big transfer learning, when integrated with 
CNNs, showcases satisfactory performance metrics, 
positioning it as a strong contender against standard models. 

4.2 Comparative analysis of CNN_BiT and other DL 
models  

The proposed method is compared to traditional neural 
network models such as DenseNet121, ResNet50, MobileNet, 
and BiT individually. The results, shown in Table 4, 
demonstrate the superior performance of the proposed 
approach. Figure 7 gives Comparative Performance 
Evaluation of various Deep learning Models versus Hybrid 
CNN_BiT Model. When employing a consistent minimal set 
of 20 images for the execution of various deep learning models, 
namely ResNet50, MobileNet, and DenseNet121, the 
achieved accuracies are notably low at 60.52%, 25%, and 75%, 
respectively. However, the utilization of big transfer learning 
produces significantly improved results. Particularly, when 
Big Transfer is integrated with convolutional layers, it excels 
in feature extraction on both global and local scales. 
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Table 4. Comparative analysis between the CNN_BiT model 
and other deep learning models 

 
Models Accuracy Precision Recall F1 Score 

DenseNet121 75 73.68 58.33 65.12 
ResNet50 60.52 84.2 32.42 48.37 
MobileNet 25 21.74 20.63 22.1 
BiT Model 96 91.5 90 92 
BiT_CNN 

Model 100 93.75 93 94.2 

 

 
 

Figure 7. Comparative performance evaluation of various 
deep learning models versus hybrid CNN_BiT model 

 
The fundamental concept behind BiT lies in transfer 

learning, wherein a model initially developed for a particular 
task is repurposed as the foundation for a second task. With 
BiT, one can take a pre-trained model and refine it on a 
specific dataset, even if that dataset is significantly smaller 
than the original training set. Integrating the BiT model into 
our pipeline harnesses the potency of pre-trained features, 
notably enhancing overall performance, especially for tasks 
with limited or insufficiently diverse training data that may 
impede the training of a robust model from scratch. 

Through its integration with a CNN, this approach 
effectively amalgamates the strengths of tailored feature 
extraction (tailored to the specific task) with the BiT model's 
advanced and generalized understanding of features. This 
synergistic strategy often culminates in models that exhibit 
heightened accuracy, resilience, and efficiency when 
confronted with diverse challenges in image classification. 

 
 

5. CONCLUSIONS 
 
In conclusion, this research paper addresses the pressing 

challenge of timely disease detection in rice, a critical global 
food crop facing threats from various pathogens. The 
integration of a CNN with BiT in a hybrid model proves to be 
a highly effective and innovative solution, particularly in the 
domain of image processing and classification tasks. The 
advantages of this integrated approach are manifold. First and 
foremost, leveraging pre-trained features from the BiT model, 
which undergoes extensive and diverse pre-training, enhances 
the hybrid model's ability for robust and versatile feature 
extraction. This, when combined with the CNN's tailored 
feature extraction capabilities, results in a comprehensive 
understanding of image features that contributes to improved 
performance. It also demonstrates the practical benefits of this 

hybrid model, especially in scenarios with limited datasets.  
The experimental results are compelling, with the hybrid 

model achieving a flawless accuracy of 100% and impressive 
precision, recall, and F1 Score metrics. Despite the 
challenging scenario of a dataset comprising only 20 images 
per class, the hybrid model surpasses the efficiency of the most 
recent models in precisely categorizing the ailments of rice 
crops. In practical terms, the streamlined training process, 
reduced computational costs, and mitigation of overfitting 
risks make the hybrid CNN_BiT model a valuable tool for 
optimizing agricultural output. The research underscores the 
importance of incorporating advanced AI techniques in 
agriculture, particularly in the context of disease detection, to 
address evolving challenges and ensure global food security.  

Future work entails validating the robustness and 
generalizability of the model through extensive testing on 
diverse datasets and under various environmental conditions. 
This validation process will provide insights into the model's 
performance across different domains and its ability to adapt 
to unseen scenarios. Additionally, exploring transfer learning 
techniques to fine-tune the model on specific tasks and 
evaluating its effectiveness in real-world applications will be 
crucial steps in further enhancing the model's utility and 
reliability. 
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