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There are various deep learning models used to solve computer vision problems, with 

convolutional neural networks (CNNs) and transformers being commonly employed. 

However, these models have typically proposed by technological giants, and most 

researchers have relied on them. In this research, we aim to propose a new generation CNN 

model, termed Double Squeeze-and-Excitation Network (DoubleSENeXt), to address the 

stagnation in the development of new models. In this study, two new image classification 

models have been introduced: (i) DoubleSENeXt and (ii) an Exemplar Deep Feature 

Engineering (EDFE) model. The proposed DoubleSENeXt consists of four main stages: (1) 

stem, (2) main, (3) downsampling, and (4) output stages. Additionally, we have presented a 

lightweight version of the proposed DoubleSENeXt. The EDFE model comprises three main 

phases: (i) feature extraction with the pretrained DoubleSENeXt, (ii) feature selection using 

Cumulative Weighted Iterative Neighborhood Component Analysis (CWINCA), and (iii) 

classification with the tkNN algorithm-based k-nearest neighbors. Both new models have 

been applied to a newly collected enchondroma image dataset for classification. Both 

models achieved over 92% test classification accuracy on this dataset, with the proposed 

DoubleSENeXt reaching 92.15% test classification accuracy, and the EDFE model further 

improving this accuracy to 97.67%. 
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1. INTRODUCTION

Bone tumors are generally classified into two categories: 

enchondromas and chondrosarcomas. Enchondromas are 

benign, non-cancerous tumors, whereas chondrosarcomas are 

malignant, cancerous tumors [1, 2]. Determining whether a 

tumor is an enchondroma or a chondrosarcoma is critically 

important, as the treatment approach for enchondroma tumors 

differs significantly, while the treatment for chondrosarcoma 

tumors falls under cancer therapy. Thus, distinguishing 

between these types of bone tumors is crucial from a clinical 

perspective [3]. Bone tumor types are identified using MRI 

(magnetic resonance imaging), and the accuracy of this 

identification depends on the radiologist's experience and 

expertise. Additionally, there is no autonomous method 

currently used in hospitals or medical centers for identifying 

bone tumor types [4]. In MRI-based manual tumor detection, 

common challenges include the tumor being in an early stage, 

unclear imaging, and limited experience of the radiologist. To 

address these issues more efficiently, there is a need for 

autonomous assistants. The most suitable methods for 

developing such assistants are computer vision techniques [5]. 

In this research, the main focus is on detecting 

enchondromas. Therefore, some preliminary information 

about enchondromas is provided as follows: Enchondromas 

are among the most common benign bone tumors found in the 

medullary cavity of long bones, such as the tibia and femur [6]. 

These tumors are usually asymptomatic and non-aggressive. 

They require little to no treatment unless significant growth 

occurs, which can lead to bone weakening or pathological 

fractures [7, 8]. Although, chondrosarcomas require 

aggressive treatment due to their potential to metastasize, 

highlighting the importance of accurate early diagnosis [9]. 

To detect the bone tumor automatically, doctors and 

researchers have recently focused machine learning (ML)-

based approaches [10-12]. ML-based computer aided models 

can detect the unseen patterns and to improve the detection 

accuracy [13]. ML-based model can extract the hidden 

patterns of the tumors [14, 15]. In this point, the ML models 

are valuable for automatic disorder detection [16]. Therefore, 

a deep learning (DL) model has been presented to detect 

enchondroma in this research. 

1.1 Literature review 

Many machine learning techniques have been developed in 

the literature to detect different diseases [17, 18]. However, 

there are limited studies in the literature on machine learning-

based enchondroma detection. Current studies available in the 

literature are presented below. 
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Erdem et al. [19] proposed using radiomics and ML to 

differentiate chondrosarcoma from enchondroma by analyzing 

MRI data from 88 patients. The study extracted 1888 radiomic 

features per patient from T1 and PD (proton density) MRI 

sequences and employed various ML models, with the neural 

network showing the best performance. Their model achieved 

an area under the curve (AUC), accuracy, and F1 score of 

97.90%, 98.40%; 92.00%, 93.20%; and 88.90, 90.30%, 

respectively. Cilengir et al. [20] assessed the diagnostic 

performance of MRI-based texture analysis for differentiating 

enchondromas and chondrosarcomas by segmenting tumor 

volumes from FS-PD and T1-weighted images and extracting 

861 radiomic features. They found that the k-neighbors 

classifier performed best for FS-PD images. They attained an 

AUC of 1.00, accuracy of 80.00%, recall of 80.00%, precision 

of 100%, and F1 score of 89.00%. Anttila et al. [21] proposed 

a study to detect enchondromas from hand radiographs using 

a deep learning (DL) segmentation tool. Their study involved 

training a DL model with 414 enchondroma radiographs and 

testing it on a separate set of 131 radiographs, where 47% 

contained enchondromas. Their model obtained an AUC of 

0.95 and an F1 score of 69.5%. Gitto et al. [22] proposed using 

MRI radiomics and ML to classify low-to-high grade 

cartilaginous bone tumors. They analyzed MRI data from 58 

patients and used a Random Forest wrapper with the 

AdaboostM1 classifier and achieved an accuracy of 85.7% in 

the training set and 75.00% in the test set. Yoon et al. [23] 

suggested using SPECT/CT radiomics to tell enchondromas 

from grade I chondrosarcomas in long bones. They looked 

back at SPECT/CT data from 49 patients and analyzed 42 

radiomics parameters. Using LASSO regression, they found 

that zone-length non-uniformity and coarseness were key 

features. These features showed 85.0% sensitivity and 58.3% 

specificity in the training set, and 83.3% sensitivity and 90.9% 

specificity in the test set. Their study showed that SPECT/CT 

radiomics could accurately distinguish between 

enchondromas and ACTs. Lisson et al. [24] suggested using 

3D texture analysis from MRIs to tell apart low-grade 

chondrosarcoma from enchondroma. They evaluated MRIs 

from 22 patients, extracting texture features like kurtosis and 

entropy, and found significant differences between the two 

tumor types. The kurtosis in contrast-enhanced T1 images 

showed the highest discriminatory power with an AUC of 

0.876, 82.00% sensitivity, 91.00% specificity, and 86.00% 

accuracy. Manganelli Conforti et al. [25] proposed a method 

to classify chondrogenic tumors using DL and wavelet 

transform of Raman spectra. They analyzed Raman spectra 

obtained from bone tissues of patients, using a technique 

called CLARA. Their method achieved high accuracy, 

recognizing and grading tumors with 97.00% accuracy. Gitto 

et al. [26] suggested using radiomics and ML on X-ray images 

to tell apart unusual cartilaginous tumors from high-grade 

chondrosarcomas in long bones. They looked back at X-rays 

from 150 patients at two centers. Their method separated the 

tumor types with 80% accuracy in both test groups, matching 

the accuracy of radiologists. von Schacky et al. [27] suggested 

using ML on X-ray data to tell apart benign from malignant 

bone tumors. They studied X-rays from 880 patients, with 213 

having malignant and 667 benign tumors. Their approach 

achieved 80% accuracy, with an AUC of 0.79 for the internal 

test set and 0.90 for the external set. 

 

 

 

1.2 Literature gaps and motivations of recommended 

model 

 

In this section, we have first detected literature gaps, and 

based on these gaps, the motivation for this research has been 

provided. 

Based on the reviewed literature, the identified literature 

gaps are: 

- Most researchers have used well-known DL models 

such as ResNet [28], vision transformers (ViT) [29], 

DenseNet [30], etc. This has led to stagnation in the 

generation of new DL models [31-33], which are 

generally proposed by technology giants such as Meta, 

OpenAI, Google Brain, etc. 

- There are various feature engineering models in the 

literature [34, 35]. However, these models have limited 

innovations due to the popularity of DL [36]. 

- There are a large number of automatic biomedical 

models based on ML [37, 38], but there are limited 

bone-based or orthopedic research studies based on ML 

[39-41]. 

Based on these gaps in the literature, our main motivations 

are as follows: 

Firstly, we have proposed a next-generation CNN [42] 

model named DoubleSENeXt. In this model, two SE blocks 

are incorporated into the main stage to extract more 

meaningful features. Additionally, the presented CNN is a 

lightweight model, addressing the fact that most recent deep 

learning models tend to be large and computationally intensive. 

From this perspective, we have contributed to the development 

of lightweight CNN methodologies. 

By introducing DoubleSENeXt, this research has made a 

contribution to the deep learning (DL) field. Additionally, we 

aimed to contribute to feature engineering. Therefore, we 

proposed a new Exemplar Deep Feature Engineering (EDFE) 

model. In this EDFE model, we drew inspiration from patch-

based models such as Vision Transformer (ViT) and MLP 

Mixer [43]. Furthermore, three innovative machine learning 

(ML) methods were employed in the EDFE: Cumulative 

Weighted Iterative Neighborhood Component Analysis 

(CWINCA) for feature selection and t-algorithm-based k-

nearest neighbors (tkNN) for classification. By proposing this 

EDFE, we successfully increased the test classification 

performance of the DoubleSENeXt model. 

Finally, our motivation includes bridging the gap between 

bone imaging and machine learning models. Therefore, we 

collected a new enchondroma image dataset and used it as a 

testbed. Both proposed models were applied to this dataset, 

and the ability of the ML models to detect enchondroma was 

thoroughly investigated. 

 

1.3 Contributions 

 

- In this work, a new CNN model named DoubleSENeXt 

has been proposed. By introducing DoubleSENeXt, we 

have contributed to the CNN research area and 

presented a new lightweight model. Furthermore, this 

CNN model is scalable, and by adjusting parameters 

and repetitions, larger CNN models can be developed. 

- To contribute to feature engineering, a next-generation 

EDFE model has been proposed. In this EDFE, we have 

utilized next-generation methods, including (i) 

CWINCA and (ii) tkNN. 
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- Both proposed models have been applied to the newly 

collected enchondroma MRI image dataset, achieving 

over 92% test classification accuracy (the proposed 

DoubleSENeXt attained 92.15%, while the 

recommended EDFE reached 97.67%). 
 

 

2. DATASET 
 

A new enchondroma MRI image dataset was collected from 

a single medical center. This dataset was gathered 

retrospectively, and the diagnoses were validated by both a 

radiologist and a physician. The dataset consists of two classes: 

(i) enchondroma and (ii) control. In this research, we proposed 

a new deep learning (DL) model. Therefore, the dataset was 

divided into two folders: (i) train and (ii) test. The distributions 

of the collected enchondroma image dataset are shown in 

Table 1. 

Moreover, the example images have been demonstrated in 

Figure 1. 

These sample images (see Figure 1) showcase the types of 

images included in the dataset, providing a visual context for 

the classification tasks undertaken in this research. 
 

Table 1. The distribution of the collected MR image dataset 

 
No Class Train Test Total 

1 Enchondroma 549 139 688 

2 Control 613 205 818 

Total 1162 344 1506 
 

 
 

Figure 1. Sample images of the collected dataset 

 

 

3. THE PROPOSED DOUBLESENEXT 

 

The central focus of this research is the proposed 

DoubleSENeXt model. This work aimed to investigate the 

impact of double squeeze-and-excitation (SE) blocks on 

computer vision tasks, and we have developed a scalable 

version of this CNN model. A base version of the CNN was 

used in this research to demonstrate the classification 

capabilities of the proposed model. The graphical outline of 

the DoubleSENeXt model is shown in Figure 2. 

 

 
 

Figure 2. The graphical outline of the proposed DoubleSENeXt. Herein, F: number of filters, C: depth concatenation function, 

BN: batch normalization, GELU: Gaussian Error Linear Unit, GAP: global average pooling, FC: fully connected 
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The stages of this model are explained below. 

Stem: The first stage of the proposed DoubleSENeXt is the 

stem block. We used two convolution operators: 4×4 and 7×7 

convolutions. The 4×4 convolution defines the patchify block, 

while the 7×7 convolution is used as in ResNet50. By using 

both, we aimed to extract meaningful features. To integrate the 

features from these convolutions, an addition block was 

employed. The mathematical definition of the stem block in 

the proposed DoubleSENeXt is provided below: 

 

𝑆1 = 𝐺𝐸𝐿𝑈(𝐵𝑁(𝐶96,𝑆𝑡𝑟𝑖𝑑𝑒=4
7×7 (𝐼𝑚))

+ 𝐵𝑁(𝐶96,𝑆𝑡𝑟𝑖𝑑𝑒=4
4×4 (𝐼𝑚))) 

(1) 

 

𝑆2 = 𝐵𝑁(𝐶384
1×1(𝑆1)) (1a) 

 

𝑆𝑜𝑢𝑡 = 𝐺𝐸𝐿𝑈(𝐶96
1×1(𝑆2)) (1b) 

 

Herein, 𝑆 : output of the stride block,  𝐼𝑚 : image, 𝐶(. ) : 

convolution, 𝐵𝑁(. ) : batch normalization and 𝐺𝐸𝐿𝑈(. ) : 

Gaussian Error Linear Unit. In this stage, a tensor with a size 

of 56×56×96 has been created from an image with a size of 

224×224×3. 

Main: The essential feature extraction block of the 

proposed DoubleSENeXt is the main block. In this block, 

double SE blocks have been added to a ConvNeXt-like block. 

We used concatenation, multiplication, and addition operators 

in this block. The mathematical definitions of this block are as 

follows: 

 

𝑂𝑢𝑡𝑖 = 𝐺𝐸𝐿𝑈 (𝐵𝑁(𝐶𝐹
3×3(𝑂𝑢𝑡𝑖−1))) (2) 

 

𝐹𝑙𝑎𝑡 = 𝐺𝐴𝑃(𝑂𝑢𝑡𝑖) (2a) 

 

𝑆𝐸1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝐹
1×1 (𝐺𝐸𝐿𝑈(𝐶4𝐹

1×1(𝐹𝑙𝑎𝑡))))

× 𝑂𝑢𝑡𝑖 
(2b) 

 

𝑆𝐸2 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝐹
1×1 (𝐺𝐸𝐿𝑈 (𝐶𝐹/4 

1×1(𝐹𝑙𝑎𝑡))))

× 𝑂𝑢𝑡𝑖 

(2c) 

 

𝑂𝑢𝑡𝑖+1 = 𝐵𝑁(𝐶𝑜𝑛𝑐𝑎𝑡(𝑆𝐸1, 𝑆𝐸2)) (2d) 

 

𝑂𝑢𝑡𝑖+2 = 𝐺𝐸𝐿𝑈(𝐶4𝐹
1×1(𝑂𝑢𝑡𝑖+1)) (2e) 

 

𝑂𝑢𝑡𝑖+3 = 𝐵𝑁(𝐶𝐹
1×1(𝑂𝑢𝑡𝑖+2)) + 𝑂𝑢𝑡𝑖−1 (2f) 

 

where, 𝑂𝑢𝑡: output of the operations, 𝐺𝐴𝑃(. ): global average 

pooling function, 𝐹𝑙𝑎𝑡: flatten output, 𝑆𝐸: output of the SE 

blocks. Herein, two SE blocks with different parameters have 

been used, and the outputs of these SE blocks have been 

concatenated to utilize their combined outputs. Specifically, 

we have enhanced the ConvNeXt block by using double SE 

blocks and reduced the number of parameters by using 3×3 

sized convolutions instead of 7×7 sized convolutions. 

Downsampling: In this stage, we used a patchify operation 

to decrease the size of the tensor and increase its depth. 

Therefore, a 2×2 convolution with a stride of 2 was applied. 

 

𝐷𝑜𝑢𝑡 = 𝐺𝐸𝐿𝑈(𝐶2𝐹
2×2(𝑂𝑢𝑡𝑘)) (3) 

 

Herein, 𝐷𝑜𝑢𝑡: output of the downsampling stage. 

Table 2. Transition of the proposed DoubleSENeXt 

 
Layer Input Operation Output 

Stem 224×224×3 

(4×4, 96, BN, stride: 4)+(7×7, 96, BN, stride: 4)+GELU 

1×1, 384, BN 

1×1, 96, GELU 

56×56×96 

Main 1 56×56×96 

[
 
 
 
 

3 × 3,96
1 × 1,384, 1 × 1,24
1 × 1,96, 1 × 1,96

1 × 1,384
1 × 1,96 ]

 
 
 
 

 56×56×96 

Downsampling 1 56×56×96 2×2, 192, stride: 2, GELU 28×28×192 

Main 2 28×28×192 

[
 
 
 
 

3 ×  3,192
1 × 1,768, 1 × 1,48
1 × 1,192, 1 × 1,192

1 × 1,768
1 × 1,192 ]

 
 
 
 

 28×28×192 

Downsampling 2 28×28×192 2×2, 384, stride: 2, GELU 14×14×384 

Main 3 14×14×384 

[
 
 
 
 

3 × 3,384
1 × 1,1536, 1 × 1,96
1 × 1,384, 1 × 1,384

1 × 1,1536
1 × 1,384 ]

 
 
 
 

 14×14×384 

Downsampling 3 14×14×384 2×2, 768, stride: 2, GELU  7×7×768 

Main 4 7×7×768 

[
 
 
 
 

3 × 3,768
1 × 1,3072, 1 × 1,192
1 × 1,768, 1 × 1,768

1 × 1,3072
1 × 1,768 ]

 
 
 
 

 7×7×768 

Output size 7×7×768 1×1, 1024, BN, GELU, GAP, FC, Softmax Number of classes 

Total learnable parameters 8.9 Million 

 

Output: The classification stage of the proposed model is 

the output stage. In this stage, we used a 1×1 convolution with 

a filter of 1024 to increase the number of features. Following 

that, Global Average Pooling (GAP), fully connected, and 

SoftMax blocks were applied to obtain the classification result. 

The mathematical explanations of this stage are as follows: 
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𝑓𝑚 = 𝐺𝐸𝐿𝑈(𝐵𝑁(𝐶1024
1×1 (𝑂𝑢𝑡ℎ))) (4) 

 

𝑂𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐹𝐶(𝐺𝐴𝑃(𝑓𝑚))) (4a) 

 

where, 𝑓𝑚: feature matrix, 𝐹𝐶(. ): fully connected layer and 

𝑂𝑢𝑡: the output of the presented network. 

Per the explained stages, the transition table of the proposed 

DoubleSENeXt is tabulated in Table 2. 

 

 

4. THE PROPOSED EXEMPLAR DEEP FEATURE 

ENGINEERING MODEL 

 

To investigate the transfer learning ability of the proposed 

DoubleSENeXt, a new EDFE model has been proposed. This 

model consists of three phases: 

 

- Exemplar deep feature extraction deploying the 

pretrained DoubleSENeXt. 

- Feature selection by deploying CWINCA [44, 45]. 

- Classification by deploying tkNN with 10-fold cross-

validation [44]. 

 

In the first phase, the pretrained DoubleSENeXt was 

utilized as a feature extractor, and the final GAP layer of this 

model was used as the feature extraction layer. To extract 

features in detail, we employed a semi-overlapping block 

approach, with each block sized at 56×56×3 and a stride of 28. 

This generated 49 semi-overlapping patches. Additionally, the 

features of the raw image were extracted as the 50th feature 

vector. These feature vectors were merged to create the final 

feature vector with a length of 51,200(=50×1024). 

For feature selection, the CWINCA feature selector was 

applied to the generated 51,200 features. The main advantage 

of CWINCA is its ability to automatically detect the range of 

iterations by using the cumulative weights of the features. 

In the final phase, the selected features were used as input 

for the tkNN classifier, an iterative ensemble classifier. 

To further explain the proposed EDFE model, a graphical 

outline is shown in Figure 3. 

 

 
 

Figure 3. Block diagram of the proposed EDFE. Herein, P: Patch, f: feature vectors with a length of 1024 
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To better explain the proposed EDFE model, the steps of 

this model are as follows: 

Feature extraction: The first phase of this EDFE model is 

feature extraction, during which 51,200 features were 

extracted for each image. These features were derived from 

semi-overlapping blocks. Consequently, this deep feature 

engineering model is considered an exemplar deep feature 

engineering model. The steps of this phase are as follows: 

Step 1: Train the training phase of the collected dataset 

deploying the recommended DoubleSENeXt. 

Step 2: Read each test image. 

Step 3: Create the semi-overlapped patches from the test 

image. 

 

𝑝𝑎𝑡𝑐ℎ𝑞,𝑡 = 𝐼𝑚(𝑖: 𝑖 + 56𝑞 − 1, 𝑗: 𝑗 + 56𝑡 − 1), (5) 

 

𝑖 ∈ {1,29, …224 − 28}, 𝑗 ∈ {1,29, …224 − 28}, 
𝑞 ∈ {1,2,… ,7}, 𝑡 ∈ {1,2, … ,7} 

(5a) 

 

𝑃𝑤 = 𝑝𝑎𝑡𝑐ℎ𝑞,𝑡 , 𝑤 ∈ {1,2, … ,49} (5b) 

 

where, 𝑝𝑎𝑡𝑐ℎ : created patches, 𝑃 : patch array and 𝐼𝑚 : test 

image. 

Step 4: Extract features deploying the pretrained 

DoubleSENeXt. 

 

𝑓1 = 𝐷𝑜𝑢𝑏𝑙𝑒𝑆𝐸𝑁𝑒𝑋𝑡(𝐼𝑚, 𝐺𝐴𝑃) (6) 

 

𝑓𝑤+1 = 𝐷𝑜𝑢𝑏𝑙𝑒𝑆𝐸𝑁𝑒𝑋𝑡(𝑃𝑤 , 𝐺𝐴𝑃) (6a) 

 

where, 𝑓: individual feature vector with a length of 1024. 

Step 5: Merge the generated individual feature vectors. 

 

𝐹 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓1, 𝑓2, … , 𝑓50) (7) 

 

Here 𝐹: in the final feature vectors with a length of 51,200. 

Step 6: Repeat Steps 1-5 for each image until all images 

have been processed and a complete feature matrix is obtained. 

Feature selection: The main feature selection function used 

is CWINCA [44], a developed version of the INCA [46] 

feature selector. By utilizing cumulative weights, the range of 

the loop is determined, and within this range, iterative feature 

selection is performed. This feature selector is greedy-based, 

as it selects the feature vector with the minimum 

misclassification ratio. 

CWINCA was selected as the feature selection method for 

its ability to iteratively select the most informative features 

from a large feature set, which is crucial for high-dimensional 

data such as MRI images. Unlike traditional feature selection 

techniques, which focus on global variance or separability, 

CWINCA leverages the cumulative weights of the features to 

iteratively refine the selection. This method is an enhancement 

over standard NCA as it automatically determines the range of 

iterations, making it more adaptive to the data. Its cumulative 

weighting approach ensures that only the most relevant 

features are retained, improving the overall classification 

performance while reducing computational complexity. 

 

The steps of the CWINCA selector used are as follows: 

Step 7: Create the qualified indexes of the and generated 

weights of the features by utilizing NCA [47] feature selector. 

NCA feature selector is a distance-based feature selector. Thus, 

minimum and maximum normalization has been utilized to the 

feature matrix. 

𝑋𝑁(: , 𝑖) =
𝑋(: , 𝑖) − 𝑋(: , 𝑖)𝑚𝑖𝑛

𝑋(: , 𝑖)𝑚𝑎𝑥 − 𝑋(: , 𝑖)𝑚𝑖𝑛

, 𝑖

∈ {1,2, … ,51200} 

(8) 

 

[𝑖𝑛𝑑, 𝑤𝑔] = 𝑁𝐶𝐴(𝑋𝑁, 𝑦) (8a) 

 

Herein, 𝑋𝑁 : the normalized feature matrix, 𝑋(: , 𝑖)𝑚𝑎𝑥 : 

maximum value of the used feature column, 𝑋(: , 𝑖)𝑚𝑖𝑛 : 

minimum value of the used feature column, 𝑖𝑛𝑑: the sorted 

indices, 𝑤𝑔 : weight of the features, 𝑁𝐶𝐴(. ) : NCA feature 

selection function and 𝑦: actual outputs. 

Step 8: Compute the start and stop values of the loop by 

utilizing cumulative weights. 

 

𝑖𝑑 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑤𝑔) (9) 

 

𝑤𝑔𝑐𝑢𝑚 =
∑ 𝑤𝑔𝑖𝑑(𝑖)

𝑘
𝑖=1

∑ 𝑤𝑔𝑗
𝑛
𝑗=1

, 𝑘 ∈ {1,2, … , 𝑛} (9a) 

 

𝑠𝑡𝑎𝑟𝑡 = {
min {𝑖|𝑤𝑔𝑐𝑢𝑚 ≥ 0.95

10
 (9b) 

 

𝑠𝑡𝑜𝑝 = {
min {𝑖|𝑤𝑔𝑐𝑢𝑚 ≥ 0.999

𝑆𝑖𝑧𝑒(𝑋, 2)
 (9c) 

 

where, 𝑖𝑑: the indices of the features sorted by their weights in 

descending order, 𝑤𝑔𝑐𝑢𝑚 : cumulative weights, 𝑠𝑡𝑎𝑟𝑡 : start 

value of the loop and we have used 0.95 as threshold value, 

𝑠𝑡𝑜𝑝: stop value of the loop and 0.999 has been utilized as the 

threshold value. 

Step 9: Select features iteratively using start and stop values. 

 

𝑓𝑠𝑟−𝑠𝑡𝑎𝑟𝑡+1(𝑑, ℎ) = 𝑋𝑁(𝑑, 𝑖𝑛𝑑(ℎ)), (10) 

 

𝑟 ∈ {𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑎𝑟𝑡 + 1, … , 𝑠𝑡𝑜𝑝}, 𝑑 ∈ {1,2, … , 𝑁𝐼}, 
ℎ ∈ {1,2, … , 𝑟} 

(10a) 

 

Herein,  𝑓𝑠 : selected feature vector and 𝑁𝐼 : number of 

images. 

Step 10: Compute the misclassification rate of each selected 

feature vector by utilizing kNN classifier and select a feature 

vector with the minimum misclassification ratio. 

 

𝑚𝑐𝑟(𝑟 − 𝑠𝑡𝑎𝑟𝑡 + 1) = 𝑘𝑁𝑁(𝑓𝑠𝑟−𝑠𝑡𝑎𝑟𝑡+1, 𝑦) (11) 

 

𝑖𝑥 = min (𝑚𝑐𝑟) (11a) 

 

𝑓𝑠𝑒𝑙 = 𝑓𝑠𝑖𝑥 (11b) 

 

where, 𝑚𝑐𝑟: misclassification ratio, 𝑘𝑁𝑁(. ): kNN classifier, 

𝑖𝑥: index of the minimum misclassification ratio and 𝑓𝑠𝑒𝑙 : 

final selected feature vector. 

Classification: In the classification phase, an iterative 

ensemble classifier named tkNN has been used, which 

employs the t algorithm. In the t algorithm, by changing the 

parameters of kNN [48], multiple classification outputs are 

generated, referred to as parameter-based outputs. Then, the 

Iterative Majority Voting (IMV) [49] algorithm is applied to 

these parameter-based outputs, generating voted outputs. In 

the final phase, the output with the highest classification 

accuracy is selected as the final result. 

The tkNN classifier was chosen for its iterative nature and 

ability to generate multiple classification outputs by varying 
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key parameters such as distance metrics, weighting schemes, 

and the number of neighbors (k). Traditional kNN methods 

can be limited by sensitivity to parameter selection, which can 

affect classification accuracy. tkNN addresses this limitation 

by generating an ensemble of outputs, which are then refined 

using Iterative Majority Voting (IMV). This approach 

enhances robustness and accuracy, particularly in cases where 

class distributions may vary, or noise is present. Compared to 

other classifiers, tkNN provides a more flexible and adaptive 

framework for classification in biomedical datasets, where 

small differences in features can have a significant impact on 

the results. 

 

The steps of the tkNN classifier are as follows: 

Step 11: Generate parameters-based outputs. 

 

𝒟 ∈ {"𝑐𝑖𝑡𝑦𝑏𝑙𝑜𝑐𝑘", "𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛", "𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖", 
"𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛", "𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛", "𝑐𝑜𝑠𝑖𝑛𝑒"} 

(12) 

 

𝒲 ∈ {"𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐼𝑛𝑣𝑒𝑟𝑠𝑒", "𝐼𝑛𝑣𝑒𝑟𝑠𝑒", "𝐸𝑞𝑢𝑎𝑙"} (12a) 

 

𝒦 ∈ {1,2, … ,5} (12b) 

 

𝑃𝑜𝑢𝑡𝑞 = 𝑘𝑁𝑁(𝑓𝑠𝑒𝑙, 𝒟𝑖 ,𝒲𝑗 , 𝒦𝑡), 𝑖 ∈ {1,2,… ,6} (12c) 

 

𝑗 ∈ {1,2,3}, 𝑡 ∈ {1,2, … ,5}, 𝑞 ∈ {1,2, … ,90} (12d) 

 

Herein 𝑃𝑜𝑢𝑡: parameters-based outcomes and 90 outcomes 

have been created by utilizing the given parameters. 

Step 12: Apply IMV to the generated parameters-based 

outputs and generated voted outputs and select the best output 

per the classification accuracies. 

 

𝑎𝑐𝑐𝑞 = 𝛽(𝑃𝑜𝑢𝑡𝑞 , 𝑦) (13) 

 

𝑥 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑎𝑐𝑐) (13a) 

 

𝑉𝑂𝑢𝑡ℎ−2 = 𝜛(𝑃𝑂𝑢𝑡𝑥(1), 𝑃𝑂𝑢𝑡𝑥(2), … , 𝑃𝑂𝑢𝑡𝑥(ℎ)), 

ℎ ∈ {3,4, … ,90} 
(13b) 

 

𝑎𝑐𝑐90+𝑐 = 𝛽(𝑉𝑜𝑢𝑡𝑐, 𝑦), 𝑐 ∈ {1,2, … ,88} (13c) 

 

𝑚𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑎𝑐𝑐) (13d) 

 

𝐹𝑂𝑢𝑡 = {
𝑃𝑂𝑢𝑡𝑚𝑥, 𝑚𝑥 ≤ 90

𝑉𝑂𝑢𝑡𝑚𝑥−90, 𝑚𝑥 > 90
 (13e) 

 

where, 𝑎𝑐𝑐 : classification accuracies, 𝛽(. ) : classification 

accuracy calculation function, 𝑉𝑂𝑢𝑡: voted outcomes. In this 

research, the range of iteration of the IMV has been selected 

from 3 to 90. Therefore, 88(=90-3+1) voted outcomes have 

been created. 𝑚𝑥: index of the maximum accuracy and 𝐹𝑂𝑢𝑡: 

final outcome. 

 

The 12 steps given above define the proposed EDFE model. 

In the presented EDFE model, CWINCA and tkNN were 

selected for their complementary strengths in feature selection 

and classification. CWINCA effectively reduces the feature 

space while retaining discriminative power, and tkNN ensures 

robust and accurate classification by using an ensemble-based 

approach. Moreover, both methods are self-organized since 

they generate more than one output and select the best 

outcome. 

 

5. EXPERIMENTAL RESULTS 

 

Two novel methods have been proposed in this research, 

with the primary model being the DoubleSENeXt CNN. First, 

we designed the DoubleSENeXt using MATLAB Deep 

Network Designer. We utilized 108 layers and 124 

connections to develop DoubleSENeXt. Afterward, the 

proposed CNN was trained on the training set of the collected 

enchondroma dataset, and the trained DoubleSENeXt was 

stored as a mat file, which was then used as the feature 

extraction function in the proposed EDFE model. To train the 

DoubleSENeXt, we used the following parameters: 

Solver: SGDM (stochastic gradient descent momentum) 

Initial learning rate: 0.01 

Mini-batch size: 128 

Maximum epoch: 100 

L2 Regularization: 0.001 

Gradient threshold method: L2 Norm 

Learning rate drop factor: 0.1 

Testing and validation split ratio: 80:20 

Using the parameters listed above, the obtained training and 

validation curves are demonstrated in Figure 4. 

As shown in Figure 4, the proposed DoubleSENeXt 

achieved 100% training accuracy, 0 training loss, 91.38% final 

validation accuracy, and 0.2811 final validation loss. Using 

this pretrained DoubleSENeXt, the test classification 

accuracies of both the recommended DoubleSENeXt and the 

recommended EDFE were evaluated. The confusion matrices 

of these models are presented in Figure 5. 

 

 
 

Figure 4. Training and validation curve of the proposed 

DoubleSENeXt model 

 

 
 

(a) 
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(b) 

 

Figure 5. Test confusion matrices of the proposed models (a) 

DoubleSENeXt, (b) DoubleSENeXt-based EDFE. Herein, 1: 

Control, 2: Enchondroma 

 

As shown in Figure 5, the proposed EDFE has improved the 

test classification performance of the DoubleSENeXt. 

Moreover, to comprehensively evaluate these test results, 

sensitivity, specificity, geometric mean, and accuracy values 

were computed. These values are listed in Table 3. 

Table 3 shows that the proposed EDFE model increased the 

test classification accuracy of the DoubleSENeXt by 5.52 

percentage points. Moreover, this EDFE model improved the 

geometric mean by 7.08 percentage points. These results 

clearly demonstrate the classification capabilities of the 

CWINCA and tkNN models. Additionally, the recommended 

EDFE model achieved this high classification performance 

using only 141 features out of the generated 51,200 features. 

To illustrate the explainable attributes of the proposed 

DoubleSENeXt, sample images and Gradient-weighted Class 

Activation Mapping (Grad-CAM) were used. By utilizing 

these methods, heat maps of the images were generated to 

highlight the regions of interest identified by the proposed 

model. These results are demonstrated in Figure 6. 

Figure 6 clearly demonstrates that the proposed 

DoubleSENeXt can focus on the region of interest. By using a 

patch-based model, we have increased the classification ability 

of the proposed DoubleSENeXt. 

 

Table 3. Transition of the proposed DoubleSENeXt 

 
DoubleSENeXt 

Performance metric Class Result 

Sensitivity 

Enchondroma 82.01 

Control 99.05 

Overall 90.53 

Specificity 

Enchondroma 99.05 

Control 82.01 

Overall 90.53 

Geometric mean Overall 90.13 

Accuracy Overall 92.15 

DoubleSENeXt-based EDFE 

Sensitivity 

Enchondroma 94.96 

Control 99.51 

Overall 97.24 

Specificity 

Enchondroma 99.51 

Control 94.96 

Overall 97.24 

Geometric mean Overall 97.21 

Accuracy Overall 97.67 

 

    
 

(a) Enchondroma 

 

    
 

(b) Control 

 

Figure 6. Heat maps generated by Grad-CAM activation 

 

 

6. DISCUSSION 

 

We have introduced two novel models along with a newly 

collected enchondroma MR image dataset. Both proposed 

models achieved over 92% test classification accuracy on the 

collected dataset. Additionally, explainable results have been 

demonstrated using Grad-CAM, providing insights into the 

regions of interest that contributed to the classification 

decisions. 

The recommended DoubleSENeXt model is a lightweight 

model as it has fewer than 10 million parameters. Moreover, 

the presented EDFE model aims to increase test classification 

accuracy. The presented EDFE uses pretrained 

DoubleSENeXt, CWINCA, and tkNN. Therefore, its time 

complexity is 𝑂(𝑁𝐷 + 𝐶 + 𝑡), where D, C, and t represent the 

time complexity coefficients of the pretrained 

DoubleSENeXt-based deep feature extractor, CWINCA, and 

tkNN, respectively and N is number of patches. 

First, we conducted an ablation study on the proposed 

DoubleSENeXt. In this CNN model, two SE blocks were 

incorporated: the first SE block is termed SE 0.25, and the 

second is SE 4. To assess their individual contributions, we 

tested the model with each SE block configuration, and the 

corresponding validation accuracies are as follows: 

CNN 1: SE 0.25-based CNN. 

CNN 2: SE 4-based CNN. 

CNN 3: The proposed DoubleSENeXt (which combines 

both SE blocks). 

The computed validation accuracies for these 

configurations are shown in Figure 7. 

 

 
 

Figure 7. Validation accuracies of the defined CNNs 
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Figure 8. Classification accuracies of the defined cases 

 

 
 

Figure 9. Test classification results of the CNNs on the used 

dataset 

 

Table 4. Comparative results 

 
Study Methods Classifier Split Ratio Data Result(s) % 

Jabber et al. [50] 

Fuzzy C-Means, Back 

Propagation Neural 

Network 

SVM 70:30 
Cancer: 100 

Normal: 100 

Acc: 92.00 

Sen: 93.00 

Spe: 91.00 

Anand et al. [51] 
Deep convolutional 

extreme ML 

Ensemble 

classifier 
10 fold CV 

Necrotic Tumor: 263 

Non- Tumor: 536 

Viable- Tumor: 345 

Acc: 97.27 

Sen: 98.20 

Spe: 99.57 

Our method 

DoubleSENeXt 

tkNN 10 fold CV 
Control: 205 

Enchondroma: 139 

Acc: 92.15 

Sen: 90.53 

Spe: 90.53 

GM: 90.13 

DoubleSENeXt-based 

EDFE 

Acc: 97.67 

Sen: 97.24 

Spe: 97.24 

GM: 97.21 

Figure 7 demonstrates that the SE 0.25 block performs 

better than the SE 4 block. Therefore, the SE 0.25 block has 

been widely adopted in the literature. However, our proposed 

DoubleSENeXt outperforms both configurations. 

On the other hand, to illustrate the classification impact of 

the CWINCA and tkNN classifier, ablation cases for the 

proposed EDFE have been defined as follows: 

Case 1: Feature extraction with pretrained DoubleSENeXt 

and classification with kNN. 

Case 2: Feature extraction with pretrained DoubleSENeXt, 

feature selection using CWINCA, and classification with kNN. 

Case 3: Our proposed EDFE model (which combines 

feature extraction, CWINCA, and tkNN). 

The test accuracy of these models is shown in Figure 8. 

Figure 8 demonstrates that the recommended model (our 

proposed EDFE) achieved the highest classification accuracy, 

clearly highlighting the effectiveness of the CWINCA and 

tkNN methods. 

To showcase the position of the proposed model within the 

existing literature, the comparative results have been presented 

in Table 4. This table provides a comparison of the 

classification performances of various methods, emphasizing 

the advantages of the proposed EDFE model in terms of 

accuracy and efficiency. 

According to Table 4, the proposed model attained 

satisfactory classification performance for enchondroma MR 

image classification. 

Furthermore, the computed results of the EDFE model have 

been demonstrated using other commonly used CNNs. In this 

regard, we changed the feature extractor to obtain comparative 

results. The CNNs utilized as feature extractors in the 

recommended EDFE are: (1) MobileNetV2, (2) ResNet50, (3) 

DarkNet53, (4) AlexNet, (5) ShuffleNet, (6) DenseNet201, (7) 

InceptionV3, (8) InceptionResNetV2, (9) GoogLeNet, and (10) 

the presented DoubleSENeXt. The computed test 

classification accuracies on the presented self-organized 

EDFE model are shown in Figure 9. 

Figure 9 clearly demonstrates that the best-performing CNN 

among the 10 used CNNs is the presented DoubleSENeXt, 

which achieved 97.67% classification accuracy with the 

recommended EDFE structure. The worst-performing CNN is 

DarkNet53, as the DarkNet53-based EDFE reached 90.12% 

test accuracy. The best of the others (excluding the 

recommended DoubleSENeXt) is DenseNet201, as this CNN-

based EDFE attained 95.93% test classification accuracy on 

this dataset. 

This results (see Figure 9) highlights the effectiveness of the 

dual SE blocks integrated into the ConvNeXt-like structure of 

DoubleSENeXt. The dual SE blocks likely contribute to a 

better feature extraction by emphasizing informative features 

and suppressing irrelevant ones. 

The results presented in Figure 9 provide a roadmap for 
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future work in biomedical image classification. First, the 

strong performance of DoubleSENeXt suggests that future 

models for tasks like enchondroma detection should 

incorporate mechanisms for recalibrating feature importance, 

such as SE blocks or attention mechanisms. Second, the 

efficiency of lightweight models like DoubleSENeXt 

demonstrates that there is no need for excessively large 

architectures to achieve high performance, which is critical for 

deployment in environments with limited computational 

resources, such as hospitals or clinics. 

 

6.1 Test of the additional dataset 

 

In order to show the general classification ability of the 

recommended model, we have used an additional dataset and 

this dataset is the blood cell image dataset. This dataset 

contains 17,092 blood cell images with eight categories and 

the distribution of this dataset is: basophils (1218), eosinophils 

(3117), erythroblasts (1551), immature granulocytes (2895), 

lymphocytes (1214), monocytes (1420), neutrophils (3329), 

and platelets (2348). The training and test split ration is 

defined as 75:25. Moreover, the training process is shown in 

Figure 10. 

According to Figure 10, the recommended DoubleSENeXt 

achieved a final validation accuracy of 95.35% and a final 

validation loss of 0.0983. Furthermore, the test classification 

accuracy of the recommended DoubleSENeXt was calculated 

to be 96.59%. The corresponding test confusion matrix for the 

presented DoubleSENeXt is displayed in Figure 11. 

 

 
 

Figure 10. The training and validation curve of the 

recommended DoubleSENeXt 

 

 
 

Figure 11. The test classification accuracy of the 

recommended DoubleSENeXt on the blood cell image 

dataset 

 
 

Figure 12. The comparative results. The cases are explained 

as follows. 1: VGG16+ SVM, 2: InceptionV3 + SVM, 3: 

VGG16 + Softmax, 4: InceptionV3 + Softmax, 5: The 

presented DoubleSENeXt 

 

The computed test classification result was compared to the 

method of Acevedo et al. [52] and the computed results have 

been compared in Figure 12. 

In Figure 12, cases 1-4 correspond to Acevedo et al.'s 

method, where their best-performing model, 

VGG16+Softmax (Case 3), achieved 96.2% accuracy. In 

comparison, our proposed DoubleSENeXt attained a higher 

classification accuracy of 96.59%. Despite being a lightweight 

model, the recommended DoubleSENeXt outperformed other 

non-lightweight CNNs in terms of classification accuracy. 

 

6.2 Highlights 

 

The important points of this research are also discussed 

below: 

- In this research, a new lightweight CNN model has 

been proposed, termed DoubleSENeXt, which 

integrates double SE blocks into a modified 

ConvNeXt block. 

- The proposed DoubleSENeXt is a scalable model, 

allowing larger CNN models to be developed by 

adjusting its parameters. 

- ConvNeXt-inspired modifications were incorporated 

into the model to balance simplicity and performance. 

- By using the recommended DoubleSENeXt, an 

EDFE model has been proposed. In our proposed 

EDFE model, we used two novel ML methods: (i) 

CWINCA and (ii) tkNN. 

- The introduced EDFE model has linear time 

complexity due to its use of transfer learning. 

- The self-organizing capabilities of CWINCA and 

tkNN enable the model to generate multiple outputs 

and automatically select the best one. 

- Both presented models (DoubleSENeXt and EDFE) 

achieved high classification performance on the 

newly collected enchondroma dataset, with test 

accuracies exceeding 92%. 

- The recommended EDFE model improved the test 

classification accuracy of DoubleSENeXt by 5.52 

percentage points and the geometric mean by 7.08 

percentage points, using only 141 selected features 

and the tkNN (iterative ensemble classifier). 

- Ablation studies comparing the performance of 

different SE block configurations showed that the SE 

0.25 block outperforms the SE 4 block, and 
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DoubleSENeXt surpasses both. Additionally, the 

combination of methods in the EDFE model proved 

to be the best for achieving high test classification 

accuracy. 

- Grad-CAM was used to generate heat maps, 

highlighting the regions of interest (ROI) that the 

DoubleSENeXt model focused on during 

classification. 

- The results clearly demonstrate that the proposed 

models can be applied in real-world environments to 

detect bone abnormalities. 

- The recommended DoubleSENeXt outperformed 

nine commonly used CNNs on this dataset. 

- The blood cell image dataset, used to test the 

generalizability of DoubleSENeXt, further 

demonstrated the model's versatility across different 

biomedical image classification tasks, achieving 

96.59% accuracy in blood cell image classification. 

 

 

7. CONCLUSIONS 

 

The main motivation of this research is to introduce 

DoubleSENeXt, a new CNN, and to demonstrate its 

performance on a biomedical image dataset. To enhance the 

visibility of the proposed deep learning (DL) model, a new 

enchondroma MRI image dataset was collected, and the results 

from this dataset are presented in the article. An Exemplar 

Deep Feature Engineering (EDFE) model is also proposed to 

demonstrate the transfer learning capabilities of 

DoubleSENeXt. In this regard, this article contributes to both 

DL and feature engineering research areas. 

Both models were applied to the collected enchondroma 

dataset, with DoubleSENeXt achieving a test accuracy of 

92.15%, while the DoubleSENeXt-based EDFE model 

achieved an even higher accuracy of 97.67%. These results 

show that the lightweight DL model and the EDFE method 

based on it possess high classification capabilities. 

Furthermore, the explainable features of DoubleSENeXt were 

demonstrated through Grad-CAM, providing visual insight 

into the areas of focus within the model. The architecture's 

performance was further validated through ablation studies. 

The primary reason for the 5.52% increase in accuracy 

using the EDFE model is attributed to the innovative 

CWINCA and tkNN methods. These findings, along with the 

results obtained, clearly highlight the effectiveness of the 

proposed methods. The study emphasizes that by further 

developing these models, intelligent enchondroma detection 

assistants could be created for real-world applications in 

hospitals. Future investigations will explore the classification 

capabilities of the proposed models on other biomedical 

images and public image datasets such as CIFAR and 

ImageNet. 
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