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Epilepsy is a complicated neurological disorder that causes rapid and frequent seizures in 

both adults and children. EEG signals are emerging as non-invasive methods for analyzing 

epilepsy. However, processing and analyzing large volumes of EEG data requires significant 

time and expertise from neurophysiologists. This research presents a novel method to 

effectively differentiate between focal EEG and non-focal EEG data using the DAGSVM 

classifier. The suggested method utilizes the Bern Barcelona dataset and applies the Discrete 

Fourier Transform to EEG signals to identify time-frequency characteristics. We use 7,000 

EEG signals, with 700 for testing and 6,800 for training. Results suggest that the DAGSVM 

classifier significantly exceeds existing approaches, achieving an accuracy of 99.71%. High 

accuracy improves patient results by facilitating the early diagnosis and care of epilepsy. 
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1. INTRODUCTION

Epilepsy is a complicated neurological condition marked by 

recurring seizures and has significant effects on brain growth. 

Approx 65 million people worldwide live with the condition. 

Alharthi et al. [1] analyzed epileptic seizure diagnosis using 

EEG data and apply advanced signal processing and machine 

learning methods. A study suggests that it is now easier to 

detect seizures, which could improve diagnosis and outcomes 

for people with epilepsy. Vandana and Nirali [2] explored the 

application of machine learning in EEG data analysis for 

neurological disease diagnosis, highlighting the annual impact 

on 2.4 million individuals. Their manuscript emphasizes the 

potential of machine learning classifiers to enhance diagnostic 

accuracy. Alturki et al. [3] diagnosed neurological disorders 

using discrete wavelet transform (DWT) and machine learning 

algorithms on EEG data. Their analysis examines how DWT 

separates EEG data into multiple frequency bands and extracts 

essential features for study. EEG signal analysis uses signal 

processing methods to observe and interpret neurological 

conditions by computing the electrical action of brain neurons. 

Alkawadri [4] summarized the benefits of iEEG and BCI 

procedures to improve the details of epilepsy seizure and its 

management. 

Abiri et al. [5] included extensive EEG studies based on 

BCI paradigms. This work examines BCI systems and 

highlights their weaknesses and challenges. Bera [6] pointed 

out the flexibility of EEG techniques in clinical environments 

and their compatibility with frontier technologies. Gao et al. 

[7] used Deep CNN on electroencephalography data to

improve the precision and efficacy of analysing epileptic

seizure episodes. Xu et al. [8] suggested a CNN architecture

for processing EEG signals to increase the quality and

reliability of diagnostic applications using EEG data. Jaya et

al. [9] investigated using a backpropagation neural network for

frequency-based epileptiform wave classification. Their main 

objective is to enhance the diagnostic accuracy of the EEG 

analysis for examining and identifying epilepsy. Subathra et 

al. [10] suggested splitting focal and non-focal EEG data using 

FWHT and ANN Techniques. 

Choubey and Pandey [11] proposed integrating a feature 

extraction method based on MFDFA and HFD with an ANN 

classifier to examine the EEG data for a more precise fractal 

features study. Miltiadous et al. [12] used online EEG datasets 

to study machine-learning classifiers for epileptic seizure 

detection. Molla et al. [13] used EEG signal processing 

techniques and a GEDFS approach to increase the accuracy of 

epilepsy detection. 

Al-Jumaili et al. [14] used computational approaches to 

increase the accuracy and efficacy of epilepsy diagnosis by 

classifying EEG seizure signals using supervised machine 

learning algorithms. Alturki et al. [15] examined the efficacy 

of combining discrete wavelet transform with support vector 

machine techniques to assess EEG data for epilepsy and 

autism. As shown in Figure 1, an EEG recording uses 

electrodes on the scalp to capture the brain's electrical activity. 

The signals show brainwave patterns from different regions 

during the recording. 

Figure 1. A visualization of an EEG recording [15]
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Abdolzadegan et al. [16] suggested using DBSCAN 

clustering in conjunction with feature selection to use EEG 

data for early detection of autism spectrum disorder. This 

technique enhances diagnostic precision by significant EEG 

patterns and organizing data effectively. de Filippis et al. [17] 

investigate machine learning methods for using structural and 

functional MRI datasets to diagnose schizophrenia and 

comprehend its neurobiological sources. 

Sharma et al. [18] utilized an automated method for 

identifying concentrated EEG signals. This method 

significantly improves the accuracy of feature extraction and 

classification. 

Fraiwan and Alkhodari [19] proposed an advanced 

diagnosis method for epilepsy that enhances EEG data 

processing through machine learning algorithms. Single-

channel EEG data and Long Short-Term Memory (LSTM) 

algorithms accurately classify epileptic patients into focal and 

non-focal categories. 

Srinath and Gayathri [20] proposed ML techniques to 

recognize and classify EEG data related to epilepsy diagnosis. 

Their investigation also focuses on improving diagnostic 

accuracy through advanced computational methods applied to 

EEG data. 

Saminu et al. [21] reported a study that uses deep learning 

and Wavelet Transform Synchro squeezing Transform (WT-

SST) algorithms to localize epileptogenic zones using 

electroencephalogram data. 

Xin et al. [22] presented a wavelet convolution neural 

network approach based on attention for classifying non-

epileptic and epileptic EEG data. This method decomposes 

EEG data using wavelet analysis and classifies the resulting 

CNNs using attention processes. This method achieves high 

accuracy rates of 99.70% and 98.89% on test datasets. 

Anuragi et al. [23] suggested using geometrical 

characteristics from an FBSE-EWT rhythm's second-order 

difference plot to differentiate between focal and non-focal 

EEG data. This method promotes the accuracy of epilepsy 

diagnosis more than standard approaches by addressing the 

complex and nonlinear nature of EEG signals. 

Andrzejak et al. [24] used statistical practices to determine 

detailed EEG signals and comprehend nonlinearity in EEG 

recordings from epileptic patients. Their study significantly 

advances epilepsy research and offers a deep knowledge of 

brain activity in people with epilepsy. 

 

1.1 EEG signal processing and analysis 

 

Alturki et al. [15] assessed EEG band power using DWT 

and SVM algorithms. This method enhances the rate and 

accuracy of diagnosing brain disorders and suggesting 

potential medical applications. de Filippis et al. [17] used 

structural and functional MRI data to study neurological 

illnesses using machine learning algorithms. Despite the 

challenges in the practical application of their study, it greatly 

enhances our understanding of the brain's substrates for these 

conditions and significantly improves diagnostic accuracy. 

They also offer an automated method to identify focal EEG 

signals by examining higher-order statistical moments, which 

can differentiate between focal and non-focal signals. The 

process involves four steps: preparation, feature extraction, 

processing, and analysis of the results. 

The study examines preprocessing techniques, including 

down-sampling and artifact handling. 

(1) Down-sampling: The data collected by EEG equipment 

is down-sampled to lower resolutions. Studies may down-

sample to lower sampling rates (16Hz, 64Hz, 512Hz, 256Hz, 

and 2400Hz to 600Hz) according to the application and its 

need. 

(2) Artifact Handling: Several human physiological signals 

may contaminate EEG data, leading to artifacts. We can 

categorize artifact signals into two groups based on their 

origin: (i) Extrinsic artifacts: Technical issues or external 

factors, such as incorrect electrode placement, cause these 

artifacts. (ii) Internal artifacts: These artifacts come from the 

muscular action, electrical noise and incorrect electrode 

placement [22-24]. 

 

This present study offers significant advances in two main 

domains. First, it presents preprocessing approaches that 

efficiently reduce noise artifacts using the Discrete Fourier 

Transform. Second, it develops detailed techniques for 

extracting features from EEG data, improving the diagnosis of 

epilepsy by using machine learning classifiers. These 

advances pledge to improve the accuracy and reliability of 

epilepsy diagnosis. 

The study ensures that the DAGSVM classifier is more 

effective than conventional machine learning models in 

detecting epilepsy. 

The study explains the introduction in Section 1 and the 

techniques and methods in Section 2. Section 3 presents the 

results, and Section 4 discusses the research conclusions. 

 

 

2. METHODOLOGY 

 

In this research, we analyze the EEG signal to diagnose 

epilepsy disorders. The following section explains the 

diagnosis procedure. 

 

2.1 Data acquisition and preprocessing 

 

We use the Bern-Barcelona EEG Dataset for both training 

and testing purposes. This dataset is publicly available online. 

Five patients' EEG signals, studied 80 hours at Bern University 

Department of Neurology, are included in this dataset, which 

consists of 7,500 EEG signal pairs categorized into non-focal 

and focal signals. All signals were sampled and tested at 

512Hz for 20 seconds, and 3750 focal and 3750 non-focal 

EEG data were utilized for the evaluation. For further analysis, 

we divided 3400 focal and 3400 non-focal EEG data into the 

training set and 350 focal and 350 non-focal EEG signals into 

the testing set. The major partitioning allows the evaluation of 

the proposed methodology for epilepsy diagnosis. We 

recorded the EEG signals during preprocessing and used the 

Discrete Fourier Transform (DFT) method to remove noise 

artifacts and interferences [25]. 

 

2.2 Feature extraction 

 

The present investigation used DWT since it is an 

appropriate method for analyzing nonlinear and non-stationary 

signals. This research examines the classification of epileptic 

EEG data and evaluates performance. This study compares 

multiple classifiers [26]. The DWT uses a single function 

known as the mother wavelet, to investigate signal features in 

the frequency and temporal domains [27]. 
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𝑥
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x and y represent the scaling and shifting parameters, while 

S represents the wavelet space parameter. We illustrate the 

Wavelet Transform as follows: 
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(3) 

 

where, Aj,k and Dn,k are the approximate coefficients, ψ is the 

scaling function, and n is the depth. EEG signal analysis 

involves descriptive coefficients at each phase and 

approximating coefficients at the final phase. We create 

feature vectors using the following signal: 

Logarithmic band power (LBP) 

 

𝐿𝐵𝑃 = log (
1

𝑁
∑|𝑆(𝑛)|2

𝑁

𝑛=1

) (4) 

 

where, number of signal samples implies by N whereas S(n) is 

a discrete signal with n=1,2, 3....N. 

Standard deviation (SD) 

 

𝑆𝐷 = √
1

𝑁
∑(𝑆(𝑛) − 𝜇)2

𝑁

𝑛=1

 (5) 

 

Variance (VAR) 

 

𝑉𝑎𝑟 =
1

𝑁
∑(𝑆(𝑛) − 𝜇)2

𝑁

𝑛=1

 (6) 

 

Kurtosis (KUR) 

 

𝐾𝑈𝑅 = 𝐸 [(
𝑆(𝑛) − 𝜇

𝜎𝑠

)

4

] (7) 

 

The predicted value shown by E[], We represent the Mean 

with µ, while σs denotes the standard deviation of the sample 

signal. 

Average energy (AE) 

 

𝐴𝐸 = ∑|𝑆(𝑛)|2

𝑁

𝑛=1

 (8) 

 

Root Mean Square (RMS) 

 

𝑅𝑀𝑆 = √∑|𝑆(𝑛)|2

𝑁

𝑛=1

 (9) 

Further, to extract spatial patterns, the common spatial 

filtering is applied using the below equations: 

 

𝐶𝑃𝐷 =
𝐸𝑃𝐷𝐸𝑃𝐷′

𝑡𝑟𝑎𝑐𝑒(𝐸𝑃𝐷𝐸𝑃𝐷′)
 

𝐶𝐻𝐶 =
𝐸𝐻𝐶𝐸𝐻𝐶′

𝑡𝑟𝑎𝑐𝑒(𝐸𝐻𝐶𝐸𝐻𝐶′)
 

(10) 

 

where, EPD EHC denote the EEG segments respectively. 

 

2.3 Feature selection 

 

In this work, features extracted by DWT are based on their 

linear correlation with the target variable, as defined by the 

Pearson correlation coefficient (PCC). Computing the Pearson 

correlation coefficient for each feature can help identify the 

most significant features with a strong linear link to the target. 

 

𝑃(𝑥, 𝑦) =
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

 (11) 

 

Cov(x,y) indicates a covariance between x and y, whereas 

𝜎𝑥 and 𝜎𝑦 are the corresponding standard deviations of x and 

y [28]. 

 

2.4 Classification model 

 

A support vector machine (SVM) is a supervised machine 

learning model used for regression and classification. It finds 

the feature space hyperplane that most successfully separates 

classes [29]. The approach adopted in SVM is to find relevant 

patterns and differentiate non-epileptic and epileptic patients 

using EEG dataset recordings. 

Decision DAG Classification Tree-DDAG tree has internal 

nodes that describe decision rules based on features, and leaf 

nodes indicate class labels. In their findings, Montanés et al. 

[30] suggested an outline of multiclass classification. 

DAGSVM Classifier- DAGSVM is a machine-learning 

classifier for epilepsy diagnosis. It uses directed acyclic 

networks, which are ideal for making complex relations in 

EEG patterns. The process for detecting epileptic seizures 

described in this paper assembles binary classifiers in a 

directed acyclic graph and employs layered multiclass SVM 

and fuzzy-rule-based sub-band features. This method 

increases classification processing efficiency and high 

accuracy [31]. 

In contrast to existing multiclass SVM algorithms, this 

approach has more rapid testing and training times. 

According to a power law 𝑇 = 𝑐𝑚𝛾 , where m is the 

iteration count 𝛾 ≈ 2  for decomposition-based algorithms, 

and c is a constant of proportionality. The training data 

generates all N classifiers using the conventional l-v-r 

multiclass SVM training technique. 

 

Training for l-v-r takes, 

 

𝑇l−v−r = 𝑐𝑁𝑚𝛾 (12) 

 

If the classes are all the same size, the number of training 

examples needed to train each l-v-I SVM is merely 2m/N. 

Therefore, training in K l-v-I SVMs would be needed. 
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𝑇l−v−r = 𝑐
𝑁(𝑁 − 1)

2
(

2𝑚

𝑁
)

𝛾

≈ 2𝛾−1 𝑐𝑁2−𝛾𝑚𝛾 (13) 

 

Training all 1-v-1 SVMs takes twice as long as training a 

solitary 1-v-r SVM, but this duration is independent of N. 

Therefore, we recommend a combination method for training 

one 1-v-1 SVM, where γ=2. 

The paper proposes large-margin Directed Acyclic Graphs 

(DAGs) for multiclass classification. Their technique uses big-

margin concepts to optimize classification accuracy while 

decreasing computational complexity by arranging SVM 

classifiers in a DAG framework [32]. 

Figure 2 represents the diagram of the three-layer 

classification decision DAG. The Decision DAG have internal 

and leaf nodes, each of which may belong to a distinct class. 

Until reaching a final diagnosis, the algorithm navigates 

through the Decision DAG, eliminating classifications along 

the way. 

 

 
 

Figure 2. Decision DAG classification tree [30] 

 

Figure 3 illustrates epilepsy diagnosis using Decision 

DAGs, and we provide the steps for this process. 

 

 
 

Figure 3. Epilepsy diagnosis using decision DAGs 

Execution of Epilepsy Diagnosis Using Decision DAG: 

(1) The flowchart begins by taking EEG data (input) as x 

for epilepsy diagnosis. 

(2) The data enters the root node of the Decision DAG, 

where we evaluate a binary function. 

(3) Depending on the outcome of the binary function 

evaluation, the algorithm proceeds either to the left edge 

or the right edge. 

(4) The internal nodes (internal node-1 and internal node-2) 

also perform binary function evaluations, and the 

algorithm navigates through the Decision DAG 

accordingly. 

(5) Every leaf node records the class connected with the 

leaf. 

(6) The function that makes the ultimate choice The class 

linked to the final leaf node in the evaluation route is 

D(x). 

(7) The result of the epilepsy diagnosis is determined based 

on the decision function, and the flowchart ends. 

Decision DAGs are part of DAGSVM, which provides an 

improved representation of decision trees by allowing for the 

removal of unnecessary repetitions and redundancies between 

nodes. These are especially helpful for issues involving 

numerous classes, such as epilepsy diagnosis and generalizing 

the class of Decision Trees. 

In Figure 4, the proposed methodology for EEG signal 

analysis and epilepsy disease diagnosis is shown. 

 

 
 

Figure 4. Proposed methodology 

 

2.5 Proposed algorithm for EEG signal analysis and 

epilepsy disease diagnosis 

 

Start 

Step 1: Read the Bern-Barcelona EEG dataset as input 

variable → X 

Step 2: Preprocessing (sampling, Noise artifact removal, 

Bandpass elliptic filtering, segmentation) using DFT (Discrete 

Fourier Transform): 
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𝑋𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑋) 

 

Step 3: Feature extraction using DWT (Discrete Wavelet 

Transform): 

 

𝐷𝑊𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝐷𝑊𝑇 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) 

 

Step 4: Feature selection using Pearson correlation 

coefficient (PCC): 

When comparing two characteristics, x and y, the PCC is 

considered as follows: 

 

𝑃(𝑥, 𝑦) =
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

 

 

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐷𝑊𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

Step 5: Classification using ML models (SVM, LS-SVM, 

DAGSVM, KNN, RF): 

 

𝑀𝑜𝑑𝑒𝑙 = 𝑇𝑟𝑎𝑖𝑛𝑀𝑜𝑑𝑒𝑙 (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

Step 6: Test the model by classifying the test data as focal 

and non-focal EEG signals: 

 

𝑇𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 = 𝐿𝑜𝑎𝑑𝑇𝑒𝑠𝐷𝑎𝑡𝑎() 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑀𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎) 

 

Step 7: Performance evaluation using (acc., press., recall, 

F-1 score): 

 

𝑇𝑟𝑢𝑒𝑙𝑎𝑏𝑒𝑙𝑠 = 𝐿𝑜𝑎𝑑𝑇𝑟𝑢𝑒𝐿𝑎𝑏𝑙𝑒𝑠() 

 

𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑀𝑜𝑑𝑒𝑙 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑇𝑟𝑢𝑒𝑙𝑎𝑏𝑒𝑙𝑠) 

 

where, 

X: Raw EEG signal dataset, 𝑋𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑: EEG data after 

preprocessing. 

𝐷𝑊𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: Feature set obtained from Discrete Wavelet 

Transform. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: Feature set after feature selection. 

Model: Trained ML model, 𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎: Unseen test data for 

validation. 

Predictions: Predicted labels (focal and non-focal) for the 

test data. 

𝑇𝑟𝑢𝑒𝑙𝑎𝑏𝑒𝑙𝑠: True labels for the test data. 

Metrics: Evaluation metrics, including accuracy, precision, 

specificity, and sensitivity 

End 

 

The proposed approach uses preprocessing, feature 

extraction, feature selection, and DAGSVM classification to 

enhance efficiency and address EEG data complexities. This 

novel method provides an accurate automated epilepsy 

diagnosis, which validates further real-time implementation 

and clinical validation for wider healthcare significance. 

 

 

3. RESULTS 

 

This section provides details about the dataset and the 

evaluation metrics we considered. We follow this with a result 

analysis, comparing the proposed model with other previously 

developed methods. 

 

3.1 Evaluation metrics 

 

In this analysis, we assessed the efficacy using the following 

performance evaluation metrics to gauge its effectiveness and 

accuracy: 

Accuracy-Accuracy measures the performance of the 

classification network, expressed as follows: 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (14) 

 

Precision-It refers to a performance metric that measures 

the accuracy of positive predictions as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

 

Specificity-Specificity measures the distinctions between 

the focal and non-focal regions of an epileptic seizure. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (16) 

 

Sensitivity-Sensitivity gauges how the network responds to 

EEG in focal areas and during seizures are as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

 

Positive Prediction Rate (PPR)-Proportion of correctly 

predicted positive instances in EEG signal classification. 

 

𝑃𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

 

Negative Prediction Rate (NPR)-NPR measures the rate 

of correct non-event predictions in EEG signal classification. 

 

𝑁𝑃𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (19) 

 

TP classifies as a correct outcome, TN classifies as an 

incorrect outcome, FP negatively classifies as a proper 

outcome, and FN negatively classifies as an incorrect outcome.  

 

3.2 Result analysis 

 

Feature extraction is a crucial step in classifying EEG 

signals. The DWT coefficients of the x and y time series EEG 

signal pairs make the features. Subsequently, we use these 

features to train the machine learning classifier, creating 

training patterns during the classifier training phase. ML 

classifiers categorize the extracted features from test EEG data 

based on these patterns. When run in classification mode, ML 

classifiers provide a binary result, indicating either a low or 

high-value. 

Test EEG signal is classified as focal EEG if the value is 

low and non-focal if it is high. Figure 5 illustrates the 

distinction between focal and non-focal EEG signals. 

Additionally, Figure 6 represents the 'x time series' of EEG 

signal pairs. And Figure 7 shows the 'y time series' 

respectively. These visualizations assist in understanding the 
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EEG signal characteristics used in the classification process. 

Each signal, denoted by "x" and "y," included 10,240 samples 

recorded at 512Hz. These recordings offer valuable insights 

into epilepsy-related brain activity for research and analysis. 

 

 
 

Figure 5. Comparison between focal with non-focal EEG 

signal 

 

 
 

(a) Focal EEG signal 

 

 
 

(b) Non-Focal EEG signal 

 

Figure 6. "y" time series plot (a) Focal EEG signal, (b) Non-

Focal EEG signal, depicting distinct patterns 

 
 

(a) Focal EEG signal 

 

 
 

(b) Non-Focal EEG signal 

 

Figure 7. "x" time series plot (a) Focal EEG signal, (b) Non-

Focal EEG signal, depicting distinct patterns 

 

Table 1 outlines the system specifications used for the 

analysis, describing the platform, operating system, RAM 

capacity, and GPU model necessary for effectively performing 

the proposed methods. 

 

Table 1. System specification 

 
Application Specification 

Platform Google Colab 

System Windows 10 pro with 16GB RAM 

GPU GeForce RTX 4070Ti 

 

3.3 Comparative assessment 

 

In this study, we estimate the DAGSVM classifier using 

accuracy, sensitivity, and specificity benchmarks and compare 

it with conventional machine learning classifiers. 

By comparing the DAGSVM classifier's performance with 

traditional classifiers. The DAGSVM model performs better 

than conventional techniques when improved by DWT for 

feature extraction and standard spatial filtering for noise 

reduction. In multiclass classification problems, this 

combination yields more significant accuracy and resilience to 

noise. 

This excellent performance of the DAGSVM machine 

learning classifier has meaningful implications for enhancing 

epilepsy diagnosis and patient cure. 
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4. CONCLUSION 
 

This study presents a novel machine-learning approach for 

classifying EEG signals. The EEG data is preprocessed using 

Discrete Wavelet Transforms to extract time and frequency 

domain features. With a 99.71% accuracy, 99.71% precision, 

99.43% sensitivity, 99.71% specificity, 99.71% positive 

predictive rate (PPR), and 99.42% negative predictive rate 

(NPR), the DAGSVM classifier achieves the most suitable 

results. It better classifies EEG signals from all the classifiers 

used in this study. 

Figure 8 shows the discrimination of features at different 

DWT (Discrete Wavelet Transform) decomposition levels. It 

illustrates the distinct behaviors and significance of the feature 

values for EEG signal analysis throughout the wavelet 

decomposition stages. 

 

 
 

Figure 8. Analysing feature discrimination across various 

DWT levels 

 

In Table 2, P-values were determined and displayed to 

assess the discriminative features and their effectiveness. The 

fifth-level approximation sub-band signal's log energy entropy 

shows the lowest p-value, representing superior discriminative 

power among all features. 

Table 3 contrasts the accuracy rates of several machine-

learning methods that classify EEG signals. The sample EEG 

signals consisted of 350 focal and 350 non-focal signals. RF, 

KNN, SVM, LSSVM, and DAGSVM classified the signals as 

342 focal and 345 non-focal, 347 focal and 345 non-focal, and 

349 focal and 349 non-focal, respectively. RF obtains the 

lowest accuracy at 98.1%, while DAGSVM gets the best 

accuracy at 99.71%. 

Figure 9 contrasts the accuracy rates of these models are as 

follows: DAGSVM (99.71%), KNN (98.80%), LSSVM 

(99.40%), RF (98.1%), and SVM (98.8%). 

Table 2. Analysing feature discrimination across various 

DWT levels 

 

Features Level Two 
Level 

Three 
Level Four Level Five 

Variance 5.265×10−4 8.415×10−8 2.575×10−7 8.548×10−7 

Average 

Energy 
2.332×10−6 8.760×10−5 6.565×10−5 1.092×10−5 

LBP 1.336×10−7 2.090×10−2 3.379×10−1 7.000×10−4 

Shannon 

Entropy 
2.890×10−2 1.901×10−6 1.638×10−1 2.690×10−2 

Log Energy 

Entropy 
2.510×10−2 5.766×10−1 1.026×10−7 3.254×10−10 

 

Table 3. Machine learning models for EEG signal 

classification 

 
Machine Learning 

Model 
EEG Signals 

Accuracy 

(%) 

 
Focal 

(350) 

Non-focal 

(350) 
 

RF 342 345 98.1 

KNN 347 345 98.8 

SVM 348 344 98.8 

LSSVM 347 349 99.4 

DAGSVM 349 349 99.71 

 

 
 

Figure 9. Machine learning models for EEG signal 

classification 

 

Table 4 compares the performance of several machine-

learning techniques for classifying EEG signals. It also 

displays PPR, NPR, accuracy, sensitivity, specificity, and 

precision. Table 4 illustrates that the DGSVM classifier attains 

the maximum sensitivity (99.43), specificity (99.71), precision 

(99.71), PPR (99.71), and NPR (99.42) among all the ML 

classifiers. 

Table 5 compares the DAGSVM model with conventional 

techniques, presenting accuracy, sensitivity, and specificity 

values for SVM, Bidirectional LSTM, and Random Forest 

classifiers from different references. 

 

Table 4. Machine learning models for performance analysis 

 
ML Model Sensitivity % Specificity % Accuracy % Precision % PPR % NPR % 

RF 98.55 97.73 98.1 97.71 97.71 98.47 

KNN 98.57 99.13 98.8 99.14 99.14 98.57 

SVM 98.30 99.42 98.8 99.42 99.42 98.28 

LSSVM 99.71 99.14 99.4 99.14 99.14 99.71 

DAGSVM 99.43 99.71 99.71 99.71 99.71 99.42 
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Table 5. DAGSVM model comparison with various traditional methods 

 
Reference Classifier Accuracy Sensitivity Specificity 

[17] SVM 99% 98.68% 99.32% 

[19] Bidirectional LSTM 99.6% 99.55% 99.65% 

[25] RF 99.4% 99.7% 99.65% 

[21] DCNN-WTSST 99.70% 99.5% 99.70% 

[22] WCNN 99.70% 99.79% 99.65% 

[23] KWS-VIKOR 98.70% 98.8% 98.4% 

Current Study DAGSVM 99.71% 99.43% 99.71% 

 

 
 

Figure 10. Machine learning models for performance analysis 

 

 
 

Figure 11. Performance metrics for different models 
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Figures 10 and 11 visually display the assessment of 

machine learning models using performance metrics such as 

accuracy, sensitivity, specificity, precision, positive predictive 

rate (PPR), and negative predictive rate (NPR). 
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NOMENCLATURE 

 

CP Common Spatial Patterns 

g Gamma (used in power law for training 

times of SVM algorithms, specifically in the 

DAGSVM context) 

N Number of signal samples or classifiers 

m Iteration count or number of training 

examples 

T Training time 

SD Standard Deviation 

Var Variance 

KUR Kurtosis 

AE Average Energy 

RMS Root Mean Square 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

 

Greek symbols 

 

ψ (Psi) Mother function in Discrete Wavelet 

Transform (DWT) 

µ (Mu) Mean of signal samples 

σ (Sigma) Standard deviation of signal samples 

γ (Gamma) Used in the power law for SVM training 

times 

E Expected value (used in the context of 

kurtosis calculation) 
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