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In retinal imaging, the Optic Disc (OD) is a key feature that indicates the characteristics of 

many eye illnesses, such as Diabetic Retinopathy (DR), glaucoma, and others. For a proper 

diagnosis, the accurate segmentation of OD is very much required but it is a challenging 

task due to several distractors like noises, contrast abnormalities and retinal vessels. Hence, 

this paper proposes new method for OD segmentation in two-fold; one is OD localization, 

and another is OD segmentation. The OD localization finds a sub-region from the retinal 

image through the OD pixel derived through three different methods namely Template 

matching methods, Maximum Entropy method and Vessel Density map method. Initially, 

three methods determine three OD candidate pixels and based on them the final OD pixel is 

determined. Next, the second fold removes the blood vessels first and then extracts the OD 

boundary through Circular Hough Transform (CHT). Experimental Investigations on two 

publicly available dataset such as MESSIDOR and DRIVE proves the superiority of 

proposed approach.  
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1. INTRODUCTION

Recently, Automated and early Diagnosis of eye related 

diseases through retinal images processing has gained great 

significance, especially for the life-threatening diseases like 

DR and Glaucoma [1-3]. Out of all these disorders, DR is the 

leading cause of blindness, affecting almost 415 million 

people. DR is most commonly caused by long-term diabetes 

and can lead to temporary or permanent visual loss [4]. The 

initial stages of DR can’t be recognized as it shows very least 

impact on the vision impairments, but it shows serious impact 

at its advanced stages and causes even permanent vision loss. 

Hence, there is a need of an early diagnosis to stop the adverse 

effect of DR. In this regard, Retinal image processing has 

acquired lead position because the manual diagnosis leads to 

an excess delay [5]. Analyzing the retinal image attributes 

helps in the earliest and fast diagnosis of DR. The major 

attributes of retinal images are shown in Figure 1, they are 

Retinal vessels, OD, Hard Exudates, and Neovascularization 

etc. Between these attributes, OD and retinal vessels are 

majorly employed for DR screening.    

Automatic Segmentation of OD from retinal images plays a 

very important role in the diagnosis of DR. Additionally, the 

OD segmentation is also utilised as a first step in several other 

methods for segmenting retina pictures. For example, during 

the identification of exudates from retinal images, the prior 

OD segmentation helps in reducing the false positive count 

because the OD and exudates has similar pixel intensity 

values. Further, the macula lies in a constant distance from 

OD, hence the OD segmentation helps in the accurate 

localization of macula [6]. OD segmentation is a difficult job 

because OD comes in many different sizes, shapes, and 

colours. However, it is very useful for research into eye 

diseases. Further, the boundary of OD suffers with uneven 

contrast and the blood vessels moves out from the center of 

OD. Such kinds of reasons are the major distractors of OD 

segmentation. Although supervised learning approaches can 

address these challenges, they give rise to significant computer 

complexity, making them unsuitable for practical applications. 

Figure 1. Retinal image attributes 
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Therefore, this research presents a novel framework for 

segmenting OD consisting of two phases: OD localization and 

OD segmentation. Our primary objective in the initial stage is 

to extract the OD area from the input retinal picture. Towards 

such localization, we employed three different methods 

namely Template matching methods, Maximum entropy 

method, and vessel density mapping method. The distance 

between each of the three OD candidate pixels and the centroid 

is used to select the final OD pixel. The OD region is extracted 

based on the OD pixel, in a dynamic fashion through the 

dimensions of input retinal image. Next in the OD 

segmentation, initially the blood vessels are removed and then 

we apply Circular Hough Transform (CHT) for OD boundary 

determination.   

The remaining portion of the study is structured as follows: 

section 2 presents an in-depth analysis of the existing 

literature. Section 3 outlines the specifics of the proposed OD 

segmentation scheme. Section 4 contains the specific 

information on the experimental research conducted, while 

section 5 serves as the conclusion of the study. 

 

 

2. LITERATURE SURVEY 

 

In the past, various methodologies have been proposed by 

various researchers due to the significant role of OD in DR 

diagnosis [7-9]. In order to analyze color retinal pictures, 

Wisaeng et al. [10] presented a new OD segmentation 

approach that makes use of mathematical morphology and a 

marker-controlled watershed algorithm. To improve the 

quality of the retinal image, they implemented colour image 

normalisation, image enhancement, and noise elimination as 

preprocessing methods. They tested their approach using two-

color retinal imaging datasets, the Thailand Dataset and the 

STARE dataset. To segment OD from retinal images, Gao et 

al. [11] implemented an adaptive level set-based contour 

extraction method that was predicated on saliency and 

threshold. In addition, they suggested a modified LIF method 

that incorporates shape priori information to address the 

unreliable information produced by abnormalities in pixel 

intensities. Experimental validation is conducted using the 

publicly accessible dataset name DIARETDB0. 

Civit-Masot et al. [12] developed a diagnostic tool to 

diagnose glaucoma using eye fundus pictures. The overall 

system consists of two subsystems. The initial subsystem 

extracts positional and morphological features from the retinal 

image and employs segmentation and machine learning 

techniques to independently identify the optic cup and disc. 

The second sub-system subsequently employs a pre-trained 

model based on Convolutional Neural Networks (CNNs) to 

diagnose glaucoma. The classification results are more precise 

when the results from two sub-systems are combined. The 

"Minimising Entropy and Fourier Domain Adaption Network 

(MeFDA)" was proposed by Xu et al. [13] to enhance the 

segmentation performance in OD segmentation. Initially, they 

conducted an adversarial optimisation on the entropy maps of 

the estimated segmentation results to mitigate the domain 

shift. Subsequently, they implemented optimisation of entropy 

minimization over the unlabeled target domain data to enhance 

the credibility of segmentation maps' predictions. 

Gao et al. [14] developed the "Locally Statistical Active 

Contour Model with the Information of Appearance and Shape 

(LSACM-AS)" and "Modified Locally Statistical Active 

Contour Model (MLSACM-AS)" for OD segmentation. 

LSACM addresses the generalised inhomogeneity issues that 

arise in images because of illumination variations. They also 

included data on the multi-dimensional feature space's local 

image probability surrounding the site of interest to reduce the 

effect of pathological change and vascular occlusions on OD 

segmentation. The DRISHTI-GS dataset is made publicly 

available for experimental validation. Using an active contour 

based on basic splines, Gagan et al. [15] developed a 

completely automated approach for OD segmentation from 

retinal images [16]. As part of the segmentation process, the 

active contour is scaled, rotated, and translated. Using 

Gradient Descent and Green's Theorem, they fine-tuned five 

parameters to obtain the optimal fit on the OD, and they 

optimized the active contour's energy by defining it through 

the local contrast [17]. The OD is identified using a normalised 

cross-correlation procedure that is based on multi-resolution. 

Experimental validation is conducted using MESSIDOR, 

DRISHTI-GS, and RIGA. 

U-net, a coarse-to-fine deep learning approach based on a 

CNN model, was proposed by Wang et al. [18] for the precise 

segmentation of OD from retinal images. The U-net model 

was trained separately for colour and grayscale images, 

resulting in the production of two distinct results. Next, the 

results are combined using an overlap strategy to identify the 

local image portion, which is the OD candidate region. The 

result is once again submitted to U-net for additional 

segmentation. An Improved U-net was proposed by Liu et al. 

[19] for the segmentation of OD from retinal images. The 

higher order consistency between the output and ground truth 

images was also improved by the addition of a patch level 

adversarial network. Furthermore, they implemented a novel 

loss function to resolve the class imbalance issue between 

pixels within a restricted targeted area. Validation is conducted 

using RIM-ONEv3 and DRISHTI. A domain adaption 

framework for the detection of OD from retinal images was 

proposed by Kadambi et al. [20] using a Wasserstein 

Generative Network (WGAN) [21]. The typical adversarial 

models are significantly inferior to WGAN in terms of their 

ability to achieve stability and convergence. 

OD was extracted from the fundus pictures using a Particle 

Swarm Optimization (PSO) augmented ensemble of Deep 

Neural Networks, as suggested by Zhang and Lim [22]. They 

implemented a six-search mechanism, diversified search 

process that was founded on an Improved PSO. Additionally, 

they implemented a mask R-CNN, a superior transfer learning 

mechanism for segmentation that was optimised through PSO. 

Specifically, PSO is used to optimize two parameters, the 

learning rate and the momentum, in transfer learning 

procedures. Jiang et al. [23] introduced a CNN model called 

Joint RCNN for object detection segmentation. The Joint 

RCNN is a hybrid of two models: the Cup Proposal Network 

(CPN) and the Disc Proposal Network (DPN). These models 

are designed to generate bounding boxes for optical cups and 

optical ODs, respectively. A disc attention module is 

suggested to integrate DPN and CPN, which will select the 

appropriate bounding box of OD and then continue the 

propagation for OD detection. 

For automatic OD segmentation, Fu et al. [24] combined a 

model-driven probability bubble model with U-Net. The 

positional relationship between the OD and vessel is the 

foundation of the former paradigm. Localization results are 

fused into the output layer of U-net through the computation 

of joint probability. Xiong et al. [25] also employed the U-net 

for OD segmentation and proposed a Bayesian U-Net-based 
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Hough Transform that is weak label-based. They constructed 

a probabilistic graphical model and investigated the Bayesian 

approach using the conventional U-net model. In order to 

optimise the Bayesian U-Net, they implemented the 

expectation maximisation algorithm to forecast the OD mask 

and revise its weights. 

Roychowdhury et al. [26] suggested an OD categorization 

system to find the OD to vessel origin border. Through the 

utilization of the Gaussian Mixture Model (GMM) and six-

region-oriented features, OD regions that were distinct from 

non-OD regions were categorized. An efficient ellipse method 

was employed to obtain the circular shape of the OD. A robust 

OD detection framework was proposed by Reddy et al. [27]. 

This framework commences with the identification of the OD 

pixel, which is the centre of the OD region. Subsequently, a 

sub-image extraction is performed using the ODP, and the 

resulting image is subjected to morphological processing to 

facilitate blood vessel elimination. A novel Edge Density 

Filter (EDF) separates the OD region in the blood vessel 

deleted, edge identified, and binarized sub-image. 

 

 

3. PROPOSED OD SEGMENTATION 

 

3.1 Overview 

 

The main intention of this approach is to extract the 

complete OD structure from retinal images. Towards such 

intention, we proposed a new method which segments the 

complete OD in two stages; they are (1) OD localization and 

(2) OD segmentation. The former stages intend to localize the 

OF rom the retinal image and it applies three different 

methods. The OD localization aims at determining the Region 

of Interest (RoI) where the OD resides in retinal image. 

Towards such process, we apply totally three different 

methods namely template matching method, Maximum 

Entropy method and vessel density mapping method. Three 

OD candidate pixels are identified through three methods, and 

one candidate is finalized based on their distance from 

centroid. Once the OD pixel is identified, and then the OD 

region is localized based a generalized mechanism. There are 

very few vessels in the localized OD picture, which was 

processed for OD segmentation further. First this work 

eliminates blood vessels next, using Circular Hough 

Transform (CHT) segmentation, finds the OD's border. Figure 

2 shows the block diagram of proposed of segmentation 

mechanism. 

 

3.2 OD localization 

 

During this stage, we isolate the OD region by utilizing the 

seed point of the OD. We utilized three distinct techniques on 

the green channel of the retinal picture for this specific 

objective. All the three methods follow different 

methodologies to determine the seed point of OD. For every 

method one pixel is identified as a seed point. Next, from the 

three OD candidate pixels, one pixel is measured as a final OD 

pixel. For this purpose, the centroid point is calculated based 

on the three OD candidate pixels. Then each candidate pixel is 

compared with the centroid and the pixel which was located 

nearby to the centroid is finalized as the OD pixel. If two 

candidate pixels identified that they are close to the centroid, 

then the final OD pixel is determined as the average of these 

two pixels. All the three methods are applied on the green 

plane only because it better visualizes the OD and retinal 

vessels. The details of three methods are discussed to here. 

 

 
 

Figure 2. Block diagram of proposed OD segmentation mechanism 

 

3.2.1 Template matching method 

This technique locates the OD pixel depending on picture 

grey level intensity. This proposal generates a template with 

dimensions of 21 by 21 and positions it on the area of picture 

so that every pixel serves as a center pixel [28]. For every 

template, we extract the maximum difference by computing 

the difference between maximum and minimum pixel 

intensities. Consider 𝑇𝑘
𝑚𝑎𝑥(𝑖, 𝑗)  and 𝑇𝑘

𝑚𝑖𝑛(𝑖, 𝑗)  are the two 

pixels with maximum and minimum intensities in the kth 

template, then the differences computed as follows 

 

𝑇𝑘(𝑖, 𝑗) = 𝑇𝑘
𝑚𝑎𝑥(𝑖, 𝑗) − 𝑇𝑘

𝑚𝑖𝑛(𝑖, 𝑗) (1) 

 

Then the candidate pixel through template matching method 

is completed as: 

𝑇𝑀𝐶 = argmax
(𝑖,𝑗)

𝑇𝑘(𝑖, 𝑗) (2) 

 

 
 

Figure 3. (a) original Color retinal image, (b) Green channel 

and (c) Candidate OD pixel located 

 

Since the OD is a brightest region in retinal image, it can be 

determined based on the maximum difference in the pixel 
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intensities which was the main theme behind the template 

matching method. Figure 3 shows the result of template 

matching method. 

 

3.2.2 Maximum entropy method 

The retinal image with OD region and vessels consists of 

larger gray level variations. The bright pixel of OD surrounded 

by dark pixel vessels introduces huge grey level variance in 

the OD region. Using this notion, we have suggested an 

Entropy-based algorithm that identifies the OD pixel by 

determining the highest variation in green levels. The variance 

is calculated statistically using a window where each pixel is 

positioned at the center. Let W(i,j) represent a window 

cantered on a pixel, and μw denote the mean of all pixels inside 

that window. The grey level variance is then calculated as 

follows:  
 

𝜎(𝑖, 𝑗) =
1

𝐿𝑒𝑛𝑔𝑡ℎ(𝑊) − 1
∑ ∑(𝑊(𝑖, 𝑗) − 𝜇𝑊)2

𝑄

𝑗=1

𝑃

𝑖=1

 (3) 

 

And  
 

𝑀𝐸𝐶 = argmax
(𝑖,𝑗)

𝜎(𝑖, 𝑗) (4) 

 

where, 𝜇𝑊 is computed as follows: 

 

𝜇𝑊 =
1

𝑃 ∗ 𝑄
∑ ∑ 𝑊(𝑖, 𝑗)

𝑄

𝑗=1

𝑃

𝑖=1

 (5) 

 

We set the size of the Windows to be 51×51 in order to 

calculate the gray level variance of each pixel. The pixel 

acquired using this approach is the pixel with the highest 

variance and it is surrounded by at least 10 brighter pixels in 

its vicinity. Figure 4 shows the result of maximum entropy 

method. 

 

 
 

Figure 4. (a) Original color retinal image, (b) Green channel 

and (c) Candidate OD pixel located 
 

3.2.3 Vessel density map method  

The main theme behind this method is that the vessel 

structure present within the vicinity of the OD has higher 

density than the vessels present in the other regions [29]. To 

Measure such density, the retinal vessels needs to be 

identified. For this purpose, we slide a window of size 21×21 

over retinal image an finds the vessels count [30]. After 

placing a window under particular region with a enter pixel, it 

is processed for Edge Detection. Since the retinal vessels are 

high frequency components, the edge filters identify them. 

Here we apply Prewitt edge detector for vessels determination 

and the edge pixels are represented with 1 and non-edge pixels 

are represented with zero. Based on the signs, the vessel 

density map is computed and the region which has maximum 

value is considered as OD region and the pixel located at its 

Centre is considered as the candidate of OD pixel. 

 

𝑉𝐷𝐶 = argmax
(𝑖,𝑗)

𝐷(𝑖, 𝑗) (6) 

 

where, 

 

𝐷(𝑖, 𝑗) = ∑ ∑ 𝑑𝑣(𝑖, 𝑗)

𝑄

𝑗=1

𝑃

𝑖=1

 ∀(𝑖, 𝑗) ∈ 1 (7) 

 

where, 𝑑𝑣(𝑖, 𝑗) is the vessel pixel which was designated with 

one. The pixels designated with one are only considered here 

to compute the vessel density map. The region which has more 

vessel density map is treated as region within the vicinity of 

the OD and the pixel located at its Centre is picked up as a 

candidate OD pixel. Figure 5 shows the result of vessel density 

map method. 

 

 
 

Figure 5. (a) Original color retinal image, (b) Green channel 

and (c) Candidate OD pixel located 

 

Once the OD candidate points are derived with the three 

methods, a centroid is calculated as:  

 
𝐶 = 

(
𝑇𝑀𝐶(𝑥) + 𝑀𝐸𝐶(𝑥) + 𝑉𝐷𝐶(𝑥)

3
,
𝑇𝑀𝐶(𝑦) + 𝑀𝐸𝐶(𝑦) + 𝑉𝐷𝐶(𝑦)

3
) 

(8) 

 

Then the distance is computed for each OD candidate point 

form the centroid, let they are denoted as 𝑑𝑐,𝑇𝑀𝐶
, 𝑑𝑐,𝑀𝐸𝐶

 and 

𝑑𝑐𝑉𝐷𝐶
, then the final OD pixel is derived as the one which is 

close to C. if two points are found to be close to C, then the 

OD pixel is the mean of those two points.  

 

3.2.4 Localization   

Once the OD pixel is obtained through the above process 

then it is utilized to get the OD region. At this phase, some of 

the earlier methods applied directly cropping over the image 

by fixing the row and column size, but it is not suitable for all 

the retinal images because some retinal images have more 

length and less with and some other images less length and 

more width. Hence, we propose a Generalize mechanism to 

localize the OD region with the help of OD pixel. Consider 

𝑀 × 𝑁 be the size of regional image, 𝐿𝑥 and 𝐿𝑦 be the x- and 

y-coordinates of OD pixel, 𝑥𝑚 and 𝑦𝑚 be the starting position 

of OD region to be cropped, they are obtained as: 

 

𝑥𝑚 = ‖𝐿𝑥 − (
𝑤𝑙

2
)‖ (9) 

 

𝑦𝑚 = ‖𝐿𝑥 − (
ℎ𝑙

2
)‖ (10) 

 

where, 𝑤𝑙  and ℎ𝑙  are the width and height of corresponding 
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localized region, they are computed from original image sizes 

as follows 

 

𝑤𝑙 =
𝑀

2
& ℎ𝑙 =

𝑁

2
 (11) 

 

Finally, the crop image is represented with four values in a 

rectangular Window as: 

 

𝑅𝑊 = [𝑥𝑚  𝑦𝑚  𝑤𝑙  ℎ𝑙] (12) 

 

Mostly this technique is used not to alter the OD shape as, 

if the system employs a constant size rectangular Window for 

all the data sets, the OD form would become shrined or 

dragged either horizontally or vertically. Such sort of damage 

to OD produces problems in the OD boundary determination. 

Therefore, we chose the half size of column and row of the 

input retinal picture for width and length of the rectangle 

window such that the variations in the form of the OD may be 

effectively managed. Our approach helps a lot for OD 

boundary determination using CHT as we employ a dynamic 

localization and it has no effect on the form of the OD. 

 

3.3 OD segmentation 

 

Once the optic disc region is localized from the input retinal 

image then it was subjected to segmentation. At this phase, the 

segmentation follows two stage processes. In the first stage, it 

removes blood vessels from the OD image and in a second 

stage it determines the boundary of the OD through CHT. 

 

3.3.1 Blood vessels removal 

Most of the objects that obstruct OD segmentation are blood 

vessels. Therefore, getting rid of them is crucial. Even in the 

middle of the OD, blood vessels can still originate; this is 

because the OD is considered the location of origin for these 

vessels. Hence our method intended to remove blood vessels 

from OD image we apply mathematical morphology. In 

general the retinal vessels are linear and elongated structures 

having longer lengths and shorter widths. Consider L be the 

length and W be the width ≪ 𝐿. Moreover the retinal vessel in 

the OD region looks much darker and maintains constant gray 

level intensities. Based on these attributes, we employee 

morphology through a linear structuring element in rotational 

basis on each pixel. The length of Structuring Element (SE) is 

considered as 𝑙𝑆𝐸 and width is considered as 1 and it is rotated 

with an angular deviation of 20°. At every rotation our method 

finds the maximum variance, mathematically it is described as 

follows 

 

𝐼𝑛(𝑖, 𝑗) = max
(𝑖,𝑗)

(𝐼𝑆𝐸
𝜃 (𝑖, 𝑗)) (13) 

 

In this case, SE is a structural element that rotates at θ. In is 

an OD picture that does not contain any vessels. The following 

is the formula for calculating the variance in this case, as the 

result is a pixel with the highest grey level variance at a certain 

rotation: 

 

𝜎𝑘(𝑖, 𝑗) = 𝑉𝑎𝑟 (𝐼𝑆𝐸
𝜃 (𝑖, 𝑗)) , 𝑘 = 1,2, … ,9 (14) 

 

With the help of above equation the final rotation with 

maximum gray level variance is identified as: 

𝜃 = arg
(𝑘)

(max (𝜎𝑘(𝑖, 𝑗)) (15) 

 

where, 𝜎𝑘(𝑖, 𝑗) denotes the pixels variance at kth rotation and k 

is varied from 1 to 9. Figure 6 shows the OD region before and 

after the blood vessels removal.  

 

 
 

Figure 6. OD image (a) before blood vessels removal and (b) 

after blood vessels removal 

 

3.3.2 CHT 

OD is considered as a bright region with circular shape in 

the retinal image. Hence we employed CHT [31] to find out 

the OD boundary from the localized OD image. At this phase, 

we kept the varying radius from 30 to 55. In general CHT is 

regarded as an extension of Hough Transform and used to 

detect the objects with circular shape in the image. The basic 

mathematical expression of CHT is expressed as 

 

(𝑋 − 𝐴)2 + (𝑌 − 𝐵)2 = 𝑅2 (16) 

 

where, A and B are the coordinates of centre point of the circle 

of every point X and Y and R is the circle’s radius. In our work, 

the radius is fixed in between 33 and 55 and it was obtained 

from the simulation experiments. In CHT, the circle shaped 

regions are voted in the accumulator and the local circle which 

got maximum voting is determined as the OD. Under this 

phase, initially the OD image is process to Gaussian blurring 

and then processed for edges extraction. For edges extraction, 

we employed Prewitt edge operator. In each circle the 

accumulator performs voting and the local maximum voted 

circles of accumulator gives the circular Hough space. Then 

the maximum voted circle is determined from the circular 

Hough space and it is considered as the optic disc boundary.  

 

 

4. EXPERIMENTAL INVESTIGATIONS 

 

Applying the suggested technique to several fundus photos 

allows us to examine its performance in the next section. A 

personal PC with a 1 TB hard drive and 4 GB of RAM is used 

to run the simulations using the MATLAB application. The 

specifics of the datasets utilised for simulation are originally 

explored here. We will next compare the outcomes after 

investigating the performance measures.  
 

4.1 Datasets   

 

In order to validate our experiments, we utilised two 

datasets, namely DRIVE and MESSIDOR. This text examines 

the specifics of these two datasets.  

The DRIVE dataset consists of a total of 40 fundus photos, 

which are divided into two groups. Each group has 20 images. 

The two groups are designated as the training group and the 

testing group. The fundus pictures were obtained using a 

Canon CR5 non-mydriatic 3CCD camera with a Field of View 

(FOV) of 450. The spatial resolution of each picture is 
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565×584 pixels. In addition, the DRIVE dataset includes 

vessel pictures that have been manually segmented by medical 

specialists. The photos in the two groups have been carefully 

split by two distinct observers, allowing for two different 

views to be observed. The manually segmented pictures can 

be referred to as Ground-truth images and are used to assess 

performance.  

MESSIDOR [32]: This dataset consists of a total of 1200 

retinal fundus pictures, making it the biggest dataset of its 

kind. All of the subjects were photographed with a "non-

mydriatic 3CCD camera (Topcon TRCNW6)" with a field of 

view (FOV) of 450. The photos in this collection have various 

resolutions, including 1440×960, 2240×1488, and 2304×1536. 

The collection exclusively consists of photos in the .TIFF 

format. Out of the 1200 retinal pictures, 800 were taken with 

pupil dilation and the remaining 400 were taken without pupil 

dilation. The offered standard reference includes the 

classification of DR as well as the assessment of the risk of 

Macular Edoema in each picture. 

 

4.2 Performance metrics  

 

Several performance measures have also been proposed for 

subjective examination. First, the segmentation results are 

used to assess several reference measures, such as False 

Positive (FP), False Negative (FN), True Positive (TP), and 

True Negative (TN).  

(i) TP: The sum of all OD pixels that have been labelled as 

such.  

(ii) Total Number of Non-OD Pixels (TN): Sum of all pixels 

that are not optically visible (OD).  

(iii) For each FP, add up all the non-OD pixels that are also 

marked as OD pixels.  

(iv) FN: The number of OD pixels incorrectly labeled as 

non-OD.  

From these secondary measures, we can derive the 

following equations for measuring sensitivity (true positive 

rate), specificity (precision), accuracy, dice coefficient (DC), 

and OD overlap (ODO). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑛) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (18) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (19) 

 

𝐷𝐶 =
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (20) 

 

𝑂𝐷𝑂 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (21) 

 

 

5. RESULTS AND DISCUSSION  

 

Figure 7 displays the outcomes of the suggested strategy 

applied to the MESSIDOR dataset, while Figure 8 displays the 

findings obtained from the DRIVE dataset. From the 

segmented results, we can see that the proposed approach has 

succeeded in the complete OD segmentation. Moreover, the 

OD region highlighted with black color mark is totally 

continuous in nature which denotes that the OD is segmented 

perfectly even at breakages due to vessels outage. Since the 

proposed approach employed CHT to determined OD 

boundary, it was succeeded in the determination of complete 

OD structure.  

Table 1 shows the Performance metrics calculated over 

retinal images of DRIVE and MESSIDOR datasets. Due to 

space limitation, here we mentioned the results of only 20 

images from both datasets. On an average, the proposed 

method gained sensitivity, specificity, ODO and DC on 

MESIDOR dataset is of 0.8988, 0.9272, 0.8619 and 0.9164 

respectively. Similarly, the average performance on DRIVE is 

observed as 0.8910, 0.8352, 0.8140 and 0.9097 of sensitivity, 

specificity, ODO and DC respectively.  

 

 
 

Figure 7. Results of MESSIDOR dataset (a) Input color 

retinal image, (b) Retinal Sub-image, (c) OD Image after the 

removal of blood vessels and (d) Segmented OD 

 

 
 

Figure 8. Results for DRIVE dataset (a) color retinal image, 

(b) OD image and (c) Segmented OD 
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Table 1. Performance metrics over retinal images of DRIVE and MESSIDOR datasets 

 

Image 
MESSIDOR DRIVE 

Sensitivity Specificity ODO DC Sensitivity Specificity ODO DC 

S1 0.8986 0.9310 0.8687 0.9233 0.8925 0.8425 0.8207 0.9164 

S2 0.8519 0.9345 0.8220 0.8766 0.8521 0.7948 0.7740 0.8697 

S3 0.8525 0.9221 0.8226 0.8772 0.8464 0.7954 0.7746 0.8703 

sS4 0.8735 0.9438 0.8436 0.8982 0.8674 0.8164 0.7956 0.8913 

S5 0.9009 0.9268 0.8710 0.9256 0.8948 0.8440 0.8230 0.9187 

S6 0.8592 0.9398 0.8293 0.8839 0.8531 0.8021 0.7813 0.8770 

S7 0.8522 0.9227 0.8223 0.8769 0.8461 0.7951 0.7743 0.8700 

S8 0.9286 0.9198 0.8987 0.9533 0.9225 0.8715 0.8507 0.9464 

S9 0.9335 0.9273 0.9036 0.9582 0.9274 0.8764 0.8556 0.9513 

S10 0.9110 0.9152 0.8811 0.9357 0.9049 0.8539 0.8331 0.9288 

S11 0.8616 0.9245 0.8317 0.8863 0.8555 0.8045 0.7837 0.8794 

S12 0.8910 0.9257 0.8611 0.9157 0.8849 0.8339 0.8131 0.9088 

S13 0.8680 0.9210 0.8381 0.8927 0.8619 0.8109 0.7901 0.8858 

S14 0.9419 0.9070 0.9120 0.9666 0.9361 0.8848 0.8640 0.9597 

S15 0.9486 0.9249 0.9187 0.9733 0.9399 0.8915 0.8707 0.9664 

S16 0.9012 0.9276 0.8713 0.9259 0.8951 0.8541 0.8233 0.9190 

S17 0.8716 0.9427 0.8417 0.8963 0.8655 0.8145 0.7937 0.8894 

S18 0.9111 0.9222 0.8812 0.9358 0.9050 0.8540 0.8332 0.9289 

S19 0.9737 0.9381 0.8638 0.9184 0.9405 0.8366 0.8159 0.9116 

S20 0.9444 0.9282 0.8545 0.9091 0.9281 0.8273 0.8103 0.9060 

 

 
 

Figure 9. Sensitivity at different OD localization methods 

 

Figure 8 and Figure 9 show the impact of OD localization 

on the OD segmentation performance with respect to 

sensitivity and Overlap score respectively. Unlike most of 

existing methods which use only one mechanism to find out 

the OD pixel, we employed three methods in three different 

scenarios for OD pixel determination. Such kind of integrated 

mechanism improves the accuracy of position of OD pixel; 

means identifies the perfect OD pixel. So, the fused 

mechanism has gained more sensitivity and overlap score than 

the individual methods. The average sensitivity of the fused 

mechanism is 0.8967, whereas for the separate approaches, it 

is 0.8741, 0.8566, and 0.8333 for Template matching, 

Maximum Entropy, and Vessel Density map, respectively. 

Additionally, the fused approach has an average Overlap score 

of 0.7810, whereas the separate techniques have scores of 

0.7555, 0.7436, and 0.7174 for Template matching, Maximum 

Entropy, and Vessel Density map, respectively. 

Figure 10 shows the impact of OD localization on the OD 

segmentation performance with respect to specificity. From 

the results, it can be noticed that the proposed fused 

mechanism had gained better specificity because it localizes 

the OD pixel with most precisely. Compared with the 

individual localization methods, the fused localization can 

give more options about the candidate OD pixels and hence 

shows better OD pixels center. The normal specificity of fused 

method is observed as 0.8368 while for individual methods, it 

is observed as 0.7506, 006638, and 0.6496 by Template 

matching, Maximum Entropy and Vessel Density map 

respectively. Next, Figure 11 shows the area under ROC curve 

for the proposed OD segmentation method. The ROC 

characteristics better performance as the coinciding point of 

sensitivity and specificity is observed at 0.9956. 

 

 
 

Figure 10. Overlap score at different OD localization 

methods 

 

Figure 11 compares the specificity of various OD 

localization methods in identifying true negatives. To check 

the effectiveness of proposed approach under different 

conditions like low contrast and Noisy, we applied the 

proposed method on a low quality image dataset named as 

High Resolution Fundus (HRF) database [33]. HRF images are 

contaminated with noise and are having abnormal contrast 

levels. Due to these disturbances, the OD extraction is very 

tough. A Canon CR-1 fundus camera with a 45° field of view 

and different capture settings was used to take pictures of 18 

sets of the same eye in 18 people. The examination had to be 
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done again because the first picture in each pair was not very 

good. The fields of view of the two pictures are pretty much 

the same, though small changes were made because the eyes 

moved between shots. For the performance review, the low-

quality pictures are looked at, and the suggested method is 

used on those images. Budai et al. [34] took a picture of this 

bad information. 

 

 
 

Figure 11. Specificity at different OD localization methods 

 

 
 

Figure 12. Area under ROC curve  

 

 
 

Figure 13. Sensitivity at different OD localization methods 

on HRF database 

 
 

Figure 14. Specificity at different OD localization methods 

on HRF database 

 

 
 

Figure 15. Accuracy comparison between different methods 

at different datasets 

 

Figure 12 shows the area under the ROC curve, illustrating 

the overall performance of the model in distinguishing 

between classes. For the HRF database, Figure 13 and Figure 

14 show the impact of OD localization on the OD 

segmentation performance with respect to sensitivity and 

specificity respectively. Compared with the results of 

MESSIDOR and DRIVE, the results of HRF are very less 

because due to the noisy and low contrast nature of retinal 

images. The typical Sensitivity of fused process is observed as 

0.6768 while for individual methods, it is observed as 0.4054, 

0.5296 and 0.5656 Template matching, Maximum Entropy 

and Vessel Density map respectively. Similarly, the average 

Specificity of proposed fused localization method is observed 

as 0.5450, while for other methods like Template matching, 

Maximum Entropy and Vessel Density map, it is observed as 

0.5247, 0.5165 and 0.4875 respectively. These values 

demonstrate the lower performance, they are better for HRF 

database because the images of HRRF are very abnormal and 

low quality.  

Figure 15 shows the comparison between proposed and 

existing OD segmentation methods such as OD through 

Gaussian Mixture Model (OD-GMM) and OD through Edge 

Density filter (OD-EDF). OD-GMM applied supervised 

learning-based pixel wise classification mechanism for 
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segmenting the OD from retinal images. In their methods, they 

described each pixel with different set of features and then 

classified through GMM algorithm. However, the pixel wise 

classification for OD segmentation is not practically viable 

solution because some retinal images have more number of 

pixels and they constitute more computation l burden on the 

segmentation system. On the other hand, the OD-EDF applied 

the mechanism similar to our proposed method, i.e., OD 

localization and OD segmentation. Additionally, they 

employed three techniques for OD localization; nonetheless, 

the OD pixel is not correctly detected, leading to restricted 

performance in some photos. Thanks to its improved 

efficiency, the suggested strategy outperformed the existing 

methods because it applied three efficient localization methods 

at OD pixel determination and CHT for OD boundary 

extraction. Moreover, our method also involves an effective 

blood vessel removal strategy in the OD image which helps in 

the clear identification of OD boundary.  

Sensitivity is computed based on the truly detect OD pixels 

to the total OD pixels. Here, for the computation of sensitivity, 

initially we measure TP as the accumulative count of detected 

OD pixels to the try OD pixels. As much as larger the TP, the 

sensitivity is that much larger. Next, the pixels those are 

grouped as non-OD pixels but originally OD pixels, then such 

kind of pixels are counted under False Negative. From the 

results, the proposed approach is observed to have better 

sensitivity than all the existing methods because it applies a 

pixel by pixel scanning over the binary image. On an average, 

the proposed approach has obtained an overlap score of 0.9200 

while the existing methods has gained 0.8852, 0.9150, 0.8990 

and 0.9023.  

To assess the proposed approach's performance, a 

sensitivity analysis measuring the proportion of correctly 

identified positive instances was conducted. Table 2 compares 

sensitivity values, showing that the proposed method 

consistently outperforms conventional approaches, 

highlighting its robustness and improved detection 

capabilities. 

 

Table 2. Sensitivity comparison between proposed and 

conventional approaches 

 

Method 
Sensitivity 

MESSIDOR DRIVE 

OD-EDF [32] 0.9333 0.8888 

OD-GMM [31] 0.9008 0.8485 

Proposed 0.9445 0.8996 

 

The computational complexity of proposed OD 

segmentation method is noticed as 𝑂(𝑁𝑑3 + 𝑚3) + 𝑂(𝑛) 

whereas the existing methiods complexity is observed as more, 

i.e., OD-EDF is observced as 𝑂(𝑁2) and for OD-GMM it is 

observed as 𝑂(𝑁2) + 𝑂(𝑁𝑙𝑜𝑔𝑁). 

 

 

6. CONCLUSION 

 

The primary focus of this work was on the process of 

separating out OD from retinal graphics. Towards such aim, a 

new method was proposed in two fold; in the first fold, the OD 

is localized from input color retinal images and in the second 

fold, the localized region is processed for OD segmentation. 

Three different methods are employed to localize the OD 

based on the seed point called as OD pixel which is regarded 

as the center point of OD. Prior to OD border identification 

with CHT, the localized OD zone undergoes processing to 

remove blood vessels. The simulation studies examine the 

superiority in terms of Dice coefficient, Sensitivity, 

Specificity, and Overlap score on two retinal image datasets, 

namely MESSIDOR and DRIVE. The results of the 

comparison with the existing approaches demonstrate that the 

suggested method is capable of correctly segmenting the OD 

from various fundus pictures. As the OD is major part for the 

diagnosis of Glaucom and DR, its proper and accurate 

extraction is major task in automized systems. Such major 

responsibility is taken by proposed approach and segmented 

OD from different types of images effectively.   

Since OD localization and segmentation is non-trivial 

process, they can be optimized through nature inspired 

algorithms and it is one of the possible future direction to 

reduce the complexity. For instance, tuning filter parameters 

for OD localization is one of iterative process at which we can 

apply nature inspired algorithms.  
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