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This paper explores the significance of embedded electronic systems, focusing particularly 
on the implementation of the Harris Corner Algorithm for computer vision applications. 
Embedded systems are pivotal in managing diverse machinery, vehicles, and environmental 
parameters as they are known for reliability and efficiency in real time processing in addition 
to their embedded features. The Harris Corner Algorithm stands out for its proficiency in 
object detection, image registration, and feature matching within the realm of computer 
vision. The study proposes a tailored approach of deploying the Harris Corner Algorithm on 
a Field Programmable Gate Array (FPGA) to enhance its efficiency for image processing 
tasks. The proposed algorithm is implemented and tested using VHDL language for a target 
Zedboard FPGA development board and an OV7676 camera module. Experimental results 
show an efficiency of the algorithm with minimal power consumption and high precision in 
detecting corners within images captured through the camera module with image resolution 
of 640×480. This study underscores the significance of embedded electronic systems in 
advancing computer vision capabilities, particularly through tailored algorithmic 
implementations on FPGA platforms. 
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1. INTRODUCTION

Recent technological advancements have had a significant
impact on image and video processing over the years. From 
object recognition to facial recognition, these technologies 
have evolved with greater accuracy, precision, and speed. One 
of the known techniques in computer vision applications is 
image segmentation. Image segmentation can be defined as the 
problem of dividing an image into multiple parts in order to 
get a visual understanding of the contained objects. It allows 
us to obtain a compact representation of the useful parts of an 
image. These parts may be used for two different perspectives, 
a high-level perspective, which is the recognition, and a low-
level perspective, which is the delineation. In general, 
segmentation is preceded by some image preprocessing steps 
that can be crucial for better results like enhancing contrast, 
improving quality, and reducing noise in images [1-3]. A good 
segmentation result allows images to be analyzed at different 
levels of detail, making it easy to identify particular features 
or regions within them. Image segmentation covers a large 
domain of applications such as object recognition [4, 5], facial 
recognition  [6, 7], motion tracking [8], image editing [9], 
image compression [10, 11], and medical imaging [12-14]. In 
medical imaging, image segmentation is used to identify 
abnormalities in the image, such as tumors [12, 13], cysts [14], 

and classifications [15]. It allows doctors and physicians to 
locate and analyze regions of interest in the image. Image 
segmentation also helps with neural network processing to 
diagnose and treat neurological conditions [16].  

As segmentation partitions an image into meaningful 
regions, this step helps group pixels with similar 
characteristics, such as color or texture into meaningful 
regions. Once the image has been segmented into regions, 
feature extraction algorithms will be used to extract features 
from these segments. Features could include attributes such as 
edges, texture patterns, color histograms, corners, or any 
characteristic according to a specific task. There exist many 
feature detection algorithms that differ from each other by the 
used method and the target application. We mention the Shi-
Tomasi corner detector [17, 18], Feature from Accelerated 
segment (FAST) [19], Scale Invariant feature transform 
(SIFT) [20, 21] and Speed Up Robust Feature (SURF) [22, 
23]. The choice of the right algorithm depends on various 
factors, such as available resources and the specific 
requirements of the application. The Shi-Tomasi algorithm 
computes a score for each pixel in an image based on the 
minimum eigenvalue of the structure tensor. It uses a scoring 
function to identify the most prominent corners. Although this 
algorithm has proved a high accuracy, it is noise-sensitive and 
is not a scale invariant. The FAST algorithm is considered as 
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a computationally efficient algorithm which is suitable for 
real-time applications. The algorithm compares the intensity 
of pixels around a candidate corner point with a threshold. It 
is characterized by a High computational efficiency and 
robustness to noise. Some of the common drawbacks are the 
generation of an enormous number of false positives in certain 
scenarios and being not scale-invariant. The SIFT is an 
algorithm that performs both feature detection and description. 
This algorithm detects corners and is robust to many image 
modifications like rotation, illumination, and scale. It's widely 
used in computer vision tasks such as object recognition and 
image stitching. One of the most important drawbacks of this 
algorithm is its computationally expensive nature, especially 
when used to match features for large datasets. It necessitates 
a large amount of memory to store the feature descriptors.  

The SURF algorithm is similar to the SIFT algorithm with 
the feature of being more computationally efficient which 
makes it suitable for real-time applications with limited 
resources. 

Harris Corner detector [24-26] is also a feature detection 
algorithm which works by detecting the local changes in the 
intensity of the image. The algorithm first calculates a gradient 
for each pixel in the image and then divides the image into 
small windows. Then, it constructs a matrix for each window, 
which is used to measure the intensity variation across the 
window. The algorithm identifies corners by calculating the 
variation in the matrix’s eigenvalues. These eigenvalues 
indicate that the intensity variation is higher at the corners of 
the image. The Harris Corner Algorithm is commonly used in 
numerous applications, such as facial recognition, object 
detection, and image registration. In medical imaging, the 
algorithm can detect the features of particular regions in an 
image, helping doctors diagnose and treat medical conditions 
more accurately and precisely. Compared to other algorithms, 
the Harris corner is preferred over the others for its rotational 
invariance, noise resilience, good localization accuracy, and 
stable corner detection. 

One of the key challenges in corner detection algorithms is 
their computational complexity. They require a high number 
of operations to analyze the image correctly. In medical 
imaging, corner detection algorithms can take a long time to 
process medical images, which can hinder patient care. As 
with other corner detection algorithms, the Harris corner 
detection algorithm represents a computationally intensive 
process as it requires processing gradient calculations, 
computing a second-moment matrix, applying a Gaussian 
smoothing, computing the corner response, and applying 
thresholding. Traditional available software-based 
implementations of the Harris Corner Algorithm often 
struggle to achieve real time processing constraints imposed 
by the high-resolution image and video data. In addition to its 
computational complexity, it is subjected to many other 
constraints. The algorithm may need to process large datasets 
containing high-resolution images or videos which can 
increase the computational load. In addition, tasks that must 
meet real-time processing constraints often face difficulties 
when optimized for general-purpose CPUs, as these letters are 
not inherently designed for parallel processing.  

Therefore, there is a need for an efficient implementation of 
the data processing techniques. To optimize the processing 
time for medical applications, several optimization strategies 
can be employed. For example, code optimization is critical in 
reducing processing times. By using efficient algorithms and 
an optimized code, processing times can be reduced more 

effectively. Additionally, using faster processors or more 
powerful computers can also help speed up processing times 
[27]. Cloud computing which is a distributed computing model, 
can also help reduce processing time by providing faster 
access to resources. Techniques such as parallel processing, 
caching, and hardware accelerators can also reduce processing 
time. One of the commonly used platforms for hardware 
acceleration are Field programmable gate array (FPGA). 
These platforms are used for real-time medical image 
processing [28, 29]. Their highly parallel architecture allows 
them to be used to implement algorithms with real-time 
constraints and high computational demands like 
segmentation, registration, and reconstruction in the medical 
field. FPGA platforms allow the implementation of complex 
algorithms in real-time, which is not achievable with standard 
processors. FPGA platforms reduce processing time, enabling 
applications to be executed more efficiently. Furthermore, 
FPGAs have low power consumption and heat dissipation, 
making them ideal for portable medical devices. 

Despite the advancements in hardware acceleration 
techniques, achieving both high performance and low power 
consumption remains an important gap in the literature for the 
FPGA-based implementation of this algorithm. 

The presented paper addresses this gap by proposing a novel 
FPGA implementation of the Harris Corner Algorithm which, 
compared to previous methods, the presented approach takes 
advantage of the parallel processing capabilities of FPGAs to 
enhance processing speed while reducing power consumption, 
making it well-suited for real-time applications.  

The contributions in this paper can be cited as: 
- The proposition of a hardware architecture of the

Harris corner algorithm.
- The Design of a low-power system that can be used

in several applications.
The remaining sections of this paper are organized as 

follows: Section 2 presents background information on Harris 
Corner systems and architectural designs, along with an 
overview of related research on FPGAs. Section 3 describes 
the Harris Corner Detector Algorithm. Section 4 explains the 
hardware implementation of FPGA. Section 5 showcases the 
implementation results and ensuing discussions. Finally, in 
Section 6, we conclude from our findings and outline potential 
future avenues of research. 

2. RELATED WORK

Nowadays, with the advances in imaging technology and
the availability of high-resolution cameras and sensors, image 
processing tasks have become highly complex and resource-
demanding tasks. These advances have led to large sizes of 
modern images with resolutions ranging from tens of 
megapixels to hundreds of gigapixels. These facts have led 
researchers to propose new methods to meet the computational 
demands of the applications. In this context, one of the 
commonly used solutions is hardware accelerators which are 
specialized computing devices that can be used to optimize 
and accelerate specific tasks, including image processing. The 
FPGA platforms are commonly used for this purpose. In the 
literature [30], the authors use the Zynq platform to implement 
the real-time application of the Canny edge detection 
algorithm on the ZC702 development board. The system is 
built using Vivado High Level Synthesis (HLS) and includes 
an in-house video library. The result is a system that can 
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achieve frame rates of 60 fps at 1080p resolution. A traffic sign 
image recognition and classification system are proposed 
utilizing 1920×1080 resolution images captured by an 
integrated camera on a Zedboard development board [31]. 
This study found that classifying traffic signs in the developed 
system took approximately 5 seconds. The optical flow 
algorithm was optimized in study [32]. Therefore, the same 
algorithm was tested on two different architectures, a PC with 
Core i7 processor and the ARM processing unit of the Zynq-
7000 chip without optimization, and then with a special 
Optimization of the Programmable Logic Unit architecture. 
The code of the system was synthesized in C language using 
the VIVADO HLS program. The results demonstrate that the 
performance of this algorithm running on Zynq is close to that 
of a PC with a Core i7 processor [32]. In their study [33], the 
authors presented a project situated at the convergence of 
embedded systems and image processing realms. The goal is 
to develop an embedded vision system tailored for video 
acquisition and processing. This involves the integration of 
hardware accelerators to facilitate the extraction of specific 
image characteristics. The utilization of reconfigurable 
platforms, including the latest All Programmable System on 
Chip (APSoC) platforms, together with advancements in high-
level Electronic Design Automation (EDA) tools for their 
configuration, have given rise to FPGA-SoC-based image 
processing. This approach has proven to be a viable and 
practical solution for addressing a myriad of computer vision 
challenges. The authors [34] proposed an FPGA acceleration 
for real-time classification of hyperspectral imagery (HIS) 
application. HSI applications are frequently used in several 
critical applications like disaster control, precision farming, 
industry and others. The support vector machine (SVM) is 
proposed as a classification algorithm. As this algorithm has a 
complexity that grows linearly with the number of support 
vectors, authors proposed a hardware implementation to reach 
real-time performances. The proposed architecture contains a 
software part on a host computer to receive HSI streams and a 
hardware application on Artix-7 35 T FPGA to perform the 
online classification. A prior offline classification using 
Matlab was performed in order to get statistics on memory 
usage and independent operations. The obtained results show 
a timing of 1.09 µs and 3.51 µ for the hardware 
implementation against a 31.5 µs, 15.6µ for software solutions. 

Corner detection algorithms are vital in various image 
processing and computer vision tasks as they are used to 
identify points, in an image, which are the areas where pixels’ 
intensity sharply changes in multiple directions. These corners 
are used in various applications like object detection, motion 
tracking, and 3D modeling. Multiple corner detection 
algorithms exist like Shi-Tomasi [17], SIFT, Harris corner and 
other hybrid algorithms where the authors make a mix of more 
than one method [35-37]. Each one of the presented algorithms 
is characterized by various trade-offs in terms of speed, 
accuracy, and computational complexity. The software 
implementations of these algorithms can be sufficient for less 
demanding applications. For the real-time image processing 
tasks and resource-constrained environments, there is a need 
for hardware implementations to meet performance levels. 
FPGAs are utilized for these implementations for their parallel 
processing and low latency. The comparison of the existing 
hardware implementations of the different corner detections 
can be done based on 3 main points, architecture, resource 
utilization, and efficiency. The authors [35] implement the 
proposed hardware architecture with reduced line buffers, 

using SRAM, and implement an interleaved memory access 
for better throughput. The obtained results achieve up to 33% 
line buffer savings and show support for 4K resolution at 60 
frames per second with an accuracy loss of 2.29%. The 
proposed design uses a 7×3 convolution buffer and logic 
folding to enhance resource sharing and to lower multiplexing 
overhead [36]. They achieve a 20% reduction in critical path 
delay and, 24% area reduction, and maintain high accuracy 
with only a 0.0588 difference in the repeatability rate. The 
supported resolution is 1080p with 60 frames per second. The 
proposed architecture is based on an early-stage pruning which 
aims to reduce the computational load in order to obtain a few 
pixels requiring full corner detection calculations [37]. The 
results show a 75% speedup on a Nios-II processor with a 
retained corner detection accuracy. However, the pruning can 
struggle with highly textured images, potentially missing 
corners in complex regions. The Harris Corner Algorithm is 
used with FPGA implementations in order to obtain a balance 
between computational efficiency and robustness. Unlike 
other algorithms which may be more computationally 
expensive or which sacrifice some accuracy for speed, the 
Harris corner represents an efficient solution for real-time 
processing applications. 

3. HARRIS CORNER DETECTOR ALGORITHM

The Harris corner detector is a popular algorithm used to
find corners in an image. It works by detecting the local 
changes in the intensity of the image. The algorithm looks for 
areas of the image where the intensity changes rapidly in all 
directions. These areas are likely to be corners. The algorithm 
then calculates a score for each point in the image, and this 
score is used to determine which points are corners. The higher 
the score, the more likely the point is to be a corner. The 
algorithm then returns the coordinates with the highest scores. 
The Harris detector works by first computing the derivatives 
of the image in two orthogonal directions. Then, it computes 
the second-moment matrix of the derivatives, which is a 
matrix of the products of the derivatives in each direction. 
Finally, it computes the corner response function, which is a 
measure of the corners of the image at each point. A picture’s 
corners are areas where the intensity changes significantly and 
where the image resists distortion. To correspond to wedges, 
Harris points are generated based on the pixel light intensity. 
It is suggested to use a detector based on the autocorrelation 
expression of the following intensity fluctuations: 

𝑀𝑀(𝑥𝑥,𝑦𝑦) = � 𝑤𝑤(𝑢𝑢, 𝑣𝑣).
𝑢𝑢,𝑣𝑣

�
𝐼𝐼𝑥𝑥2(𝑥𝑥, 𝑦𝑦) 𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦(𝑥𝑥, 𝑦𝑦)
𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦(𝑥𝑥, 𝑦𝑦) 𝐼𝐼𝑦𝑦2(𝑥𝑥, 𝑦𝑦)

� (1) 

where, 𝑤𝑤(𝑢𝑢, 𝑣𝑣) is a weighting on the window (𝑢𝑢, 𝑣𝑣), and 𝐼𝐼𝑥𝑥  
and 𝐼𝐼𝑦𝑦  are the local derivatives in x and y. One can ascertain if 
a point is an outline, a homogeneous region, or a corner by 
examining the eigenvalues of the matrix M. M is used to 
compute a final criterion that allows one to choose the kind of 
point found. The Harris detector’s multiple stages are depicted 
on the graph in Figure 1. The value K varies between 0.04 and 
0.06. the Gaussian convolution in Eq. (2). 

G(x, y) = � � H[u, v]F[x − u, y − v]
k

v=−k

k

u=−k

 (2) 
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where, x represents the horizontal distance from the origin, and 
y represents the vertical distance from the origin, H[u, v] is the 
Gaussian kernel of size (2k+1)×(2k +1) defined in Eq. (3). 

𝐻𝐻(𝑢𝑢, 𝑣𝑣) =
1

�2πσ²
𝑒𝑒
−(𝑢𝑢2+𝑣𝑣2)

2𝜎𝜎² (3) 

Figure 1. Stages of the Harris detector 

4. HARDWARE IMPLEMENTATION

The Harris corner detection algorithm has a
computationally intensive nature as it has iterative tasks and 
needs to compute derivatives and eigenvalues for every pixel 
in an image. The computation process contains a convolution 
of the image with derivative kernels, a computation of the 
structure tensor for each pixel, and a computation of the 
eigenvalues to determine corner responses. 

The various steps of the hardware implementation 
methodology are outlined in Figure 2 and described as follows: 
1. Image Capture: The image is captured using the

OV7670 image sensor module. The module provides
VGA resolution images, which are converted into an 8-bit
grayscale format for further processing.

2. Preprocessing: The grayscale image is passed through a
preprocessing step where a 6×6 window is created using
D flip-flops and line buffers implemented with block
RAM. This window is crucial for the subsequent gradient
calculations.

3. Gradient Calculation: The next step involves computing
image gradients in the X and Y directions. A 5×5 pixel
window is used, and an array of 50 subtractions is used to
perform these gradient calculations in parallel.

4. Structure Tensor Computation: From the computed
gradients, components of the structure tensor are
calculated in parallel using multipliers and adders. This
includes computing Gx

2, Gy
2, Gx Gy values for the matrix.

5. Harris Score Calculation: Using the structure tensor, the
Harris corner score is computed. The score is compared

to a threshold value, and if it exceeds this threshold, the 
point is marked as a corner. 

6. Non-Maximum Suppression: To ensure only the most
prominent corners are selected, a non-maximum
suppression technique is applied, where local maxima are
identified, and weaker responses are suppressed.

7. Display of Results: The processed image along with the
detected corner points are output to a VGA monitor for
visualization. A frame buffer separates the camera and
VGA signal domains.

8. FPGA Implementation: The design is synthesized using
VHDL/Verilog in the Xilinx VIVADO IDE, targeting the
ZedBoard's FPGA. The synthesized design includes logic
for the corner detection algorithm and interfaces for the
camera and display.

Figure 2. Step-by-step process flow of hardware 
implementation 

With the increase in image size and the accuracy levels that 
are required, the algorithm has a huge computational 
complexity. As a result, implementing Harris corner detection 
on hardware accelerators is of great significance. Hardware 
accelerators allow to benefit from parallel processing and 
specialized hardware resources to execute computationally 
intensive operations. In this work, we have chosen the 
ZedBoard. 

The ZedBoard is a development board designed by Digilent 
[38]. The ZYNQ Systems on Chip (SOC) from Xilinx 
incorporate:  
• The Processing System (PS) is powered by a dual-core

ARM Cortex-A9 processor, capable of running an
operating system like LINUX.

• The Programmable Logic (PL) system features an FPGA
from the XILINX-7 series, which includes essential logic
elements, RAM, DSPs, and standard I/O interfaces.

Figure 3. System block design 
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The system utilizes an OmniVision OV7670 image sensor 
and displays results on a VGA monitor. The FPGA component 
is based on the Xilinx Zedboard. A system block diagram is 
presented in Figure 3. 

The OV7670 module [39] is a compact image sensor with a 
low operating voltage that nevertheless provides all the 
functions of a single-chip VGA camera. The Serial Camera 
Control Bus (SCCB), allows displaying the entire under-
sampled image in a window with 8- bit data resolution. The 
VGA sampling rate is 30 frames per second. Image quality, 
data format, and transmission mode can be configured. 
However, functions related to image processing, including 
gamma curves, white balance, saturation, and chromaticity, 
cannot be programmed through the SCCB interface. The 
integrated OmniVision image sensor system enhances image 
quality by reducing or eliminating optical or electronic defects 

such as fixed pattern noise, color issues, and image clarity and 
stability. The divided data will be converted back to the 16-bit 
RGB565 format by the camera data capture module. 

The Harris corner detector provides the corner feature 
output, as illustrated in Figure 4. To address the timing 
mismatch between the camera and VGA signals, a frame 
buffer is utilized to isolate the two timing domains. However, 
this component can be eliminated to cut costs if a display is 
not needed. External DRAM can also be used to avoid 
consuming block RAM. RGB565 pixel data is converted to 8-
bit grayscale using the formula: 0.5 * G + 0.25 * R + 0.25 * B, 
where R, G, and B represent the red, green, and blue color 
components, respectively. The multiplication is performed 
using bit-shift operations. The pixels are then processed 
through D flip-flops and a line buffer to form a 6x6 window, 
with line buffers implemented using block RAM resources. 

Figure 4. Hardware architecture of Harris detector 

A set of 50 subtractions is used to calculate the image 
gradients in the X and Y directions, with a window size of 5×5 
pixels. Multipliers and adders work together in parallel to 
compute the components of the 2×2 matrix M. 

The components M1 and M2 are the same, while 3 
components are required for the calculation of Gx

2, Gy
2, Gx, Gy. 

The Harris score is calculated using the estimated equation 
and then compared against a predefined threshold. In the event 
that it is greater than the edge, it may be a corner including the 

candidate. The proposed method provides a corner feature 
counter at the end of the processing of every frame. Indeed, if 
the corner candidates at the end of the frame are out of the 
demanded values, the threshold (R) will be multiplied by 2 in 
order to fine-tune the sensitivity of corner detection to better 
match the specific requirements of the application or the 
characteristics of the image. 

However, if the corner value obtained is in the expected 
range, the threshold stays the same. The feature counter is 
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considered a corner feature when the Harris score (R) is 
greater than the threshold (Th). The feature candidate is 
transmitted as a 1-bit feature window across 35 windows. The 
local area should contain only a corner feature. Our approach 
uses a binary feature window based on traditional non-
maximum suppression, meaning that values outside the 
expected range (R¡ > Th) will be delayed through feedback. 
The chosen multiplication is based on the obtained features 
which are proportional to a polynomial function. The threshold 
should have minimum and maximum values. Our calculation 
method has the objective of finding the most useful value of 
the Harris detector in order to obtain the clearest image.  

5. RESULTS AND DISCUSSIONS

5.1 Test environment 

All tests were conducted in a laboratory environment with 
controlled temperature and appropriate lighting conditions to 
ensure a stable operation of the FPGA and the image sensor 
(Figure 5). We utilized:  

FPGA Board: The Harris Corner Detection algorithm was 
implemented on a Xilinx ZedBoard (Zynq-7000 SoC). 

Camera Module: The OV7670 image sensor was used to 
capture real-time images with a resolution of 640×480 pixels.  

Memory: 
• Block RAM (BRAM) within the FPGA was used for

temporary storage of image data during processing.
• External DRAM was utilized for storing the processed

image data before output.
Display: The processed images were output to a VGA 

monitor connected to the ZedBoard. 
Vivado Design Suite (Version 2017.2): We used the Xilinx 

Vivado Design Suite to write and synthesize the HDL 
(VHDL/Verilog) code for the FPGA implementation. This 
tool was also used for debugging and simulation. 

Test Images: Both static and dynamic scenes were used for 
testing. Static scenes involved simple objects like books or 
boxes, while dynamic scenes included movement and 
variations in lighting to test the robustness of corner detection. 

Real-time images have been successfully procured on a 
VGA screen by manually adjusting the camera in different 
directions. Figure 6 presents the results of the simulations. The 
images depict the object along with the detected key points for 
each object. The original grayscale image is shown, with white 
points marking the positions of the detected corner features. 
Colored points have manually been added to these images to 
enhance visualization.  

Figure 5. Sytem implementation 

(a) (b) 

(c) (d) 

Figure 6. Harris Corner detected by our proposed FPGA 
implementation 

5.2 Synthesis result 

To evaluate our proposed system, we utilized three key 
performance metrics: 
• Frame Rate: The system achieved a real-time frame rate

of up to 102 frames per second (FPS) at a resolution of
640×480 pixels, demonstrating its suitability for
applications that require high-speed image processing.

• Power Consumption: Power consumption was measured
during testing using VIVADO’s power analysis tools, and
the system operated at approximately 0.33W under full
load. This low power consumption makes it ideal for use
in energy-constrained environments or portable devices.

• Accuracy: The accuracy of corner detection was assessed
by visually inspecting the detected corners in the output
images, which were displayed on a VGA monitor. The
high precision of detected corners confirmed the hardware 
implementation reliability in identifying key points within
the images.

Table 1 outlines the synthesis and implementation outcomes 
for the proposed design. According to the VIVADO synthesis 
tool, the total power consumption was 0.33 W, consisting of 
0.203 W for dynamic power and 0.126 W for static power. 
Although high-level synthesis tools provide optimization 
techniques such as resource sharing and pipelining to improve 
performance, these optimizations are outside the scope of this 
work. 

Table 1. Implementation results of the proposed Harris 
corner detector 

Resource Utilization Available % 
LUT 8132 53200 15.92 

LUT RAM 7  17400 0.04 
Flip-Flops 4054  106400 3.81 

BRAM 46  140 32.86 
DSP 5  220 2.27 
I/O 35  200 17.50 

BUFG 14 32 12.5 
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Figure 7. Floorplan of proposed Harris design implemented 
in an FPGA 

Figure 7 illustrates the floor planning design 
implementation for the Xilinx Zedboard, performed using the 
VIVADO Design Suite. 

5.3 Comparison results 

The synthesis results of our proposed algorithm were 
compared with those of other algorithms. As shown in Table 
2, our implementation demonstrates superior area efficiency 
for the same target FPGA compared to other solutions. 
Specifically, our design utilized 46 BRAM, while Chao and 
Wong [30] used 64 BRAM. Additionally, in terms of 
input/output performance, our implementation outperforms 
others due to reduced design complexity. This is attributed to 
shorter critical paths, resulting in a higher operational 
frequency on the FPGA. 

Other authors have not shared power dissipation data; 
although, various implementations of the Harris corner 
detector have been developed on FPGA platforms, and in this 
study, we compare the results of our synthesis of the proposed 
algorithm with those of other reported algorithms, as shown in 
Table 2. The design presented in study [40] requires 69 
BRAMs, 4131 flip-flops, and 110 DSPs. The design in study 
[41] requires 37 BRAMs, 506 LUTRAMs, 10981 flipflops, 21
DSPs, 102 I/Os, and 1 BuFG.

Table 2. Proposed Harris corner detector implementation 
results 

Resource  Proposed [41] [40] [42] [30] [33]
LUT 8132 5917 9485 17555 NA 8425 

LUT RAM 7 506 NA 5443 1400 NA 
Flip-Flops 4054  10981   4131 2337 NA 4252 

BRAM 46  37  69 75 64 11 
DSP 5  21  110 55 110 44 
I/O 35  102  NA 48 NA NA 

BUFG 4 1  NA 7 NA 4 
LUT: Look Up Table 

Finally, the design in study [33] requires 11 BRAMs, 8425 
LUTs, 4252 flip-flops, 44 DSPs, and 4 BuFGs. In contrast, our 
proposed IP requires approximately 46 BRAMs, 8132 LUTs, 
7 LUTRAMs, 35 INPUT/OUTPUT, 5 DSPs, and 4252 flip-
flops, with a power consumption of 0.329W. Based on this 
comparison, our hardware architecture achieves high 
throughput performance, albeit with relatively large hardware 

resources compared to other implementations. 
The comparison between our FPGA-based Harris corner 

detection system and the approaches in the cited works 
highlights different trade-offs in terms of performance, 
accuracy, and resource utilization. In study [35], the FAST-C 
corner detection algorithm focuses on achieving high 
throughput, supporting 4K resolution at 60 frames per second 
through the use of SRAM and interleaved memory access. 
This approach sacrifices some accuracy for speed, whereas our 
Harris implementation emphasizes precision in corner 
detection at a lower resolution (640x480), with a focus on 
maintaining high accuracy while still achieving real-time 
processing. In study [36], the authors propose an FPGA-based 
FAST detector that optimizes area-time efficiency by using 
data-path unrolling and logic folding to reduce critical path 
delay and resource usage. While this design excels in 
minimizing resource consumption, our Harris implementation 
leverages the Zedboard's parallel processing capabilities to 
strike a balance between computational efficiency and 
detection accuracy, albeit with higher computational 
complexity. Finally, the method in study [37] uses low-
complexity pruning to speed up corner detection but risks 
missing corners in highly textured images, contrary to , our 
Harris corner detector which maintains robustness across a 
wide range of image textures, ensuring accurate corner 
detection, though at the cost of slightly increased 
computational load. Overall, our approach distinguishes itself 
by achieving low power consumption (0.33W) and real-time 
performance while maintaining high corner detection accuracy, 
making it ideal for embedded systems with stringent 
performance and power requirements. 

6. CONCLUSION AND FUTURE WORK

Our study successfully implemented the Harris Corner
Detection algorithm on an FPGA, achieving a real-time 
processing speed of 102 frames per second while maintaining 
low power consumption at 0.33W. This highlights the 
efficiency of using FPGA-based hardware for corner detection 
in real-time image processing applications, especially where 
power efficiency and speed are critical. Moreover, the design 
demonstrated resource efficiency, utilizing fewer hardware 
resources such as BRAMs and DSPs compared to other 
implementations in the literature, while still achieving high 
detection accuracy. These findings underscore the potential of 
our FPGA-based system for deployment in embedded vision 
applications, such as robotics, medical imaging, and 
autonomous systems, where real-time performance and low 
power consumption are essential. 

Future work, one immediate direction will be to optimize 
the design for higher-resolution images, such as 1080p or 4K, 
by refining memory management and parallel processing to 
maintain real-time performance. Additionally, while our 
implementation has proven accurate, we observed some 
sensitivity to noise, prompting us to explore the integration of 
noise-reduction techniques, such as adaptive thresholding, to 
improve robustness in noisy environments. Further, we plan to 
extend our work to include other corner detection algorithms, 
like FAST, SIFT, and SURF, to benchmark their performance 
on the same FPGA platform, enabling broader comparisons 
and applications. We also intend to explore the deployment of 
our system on edge devices with constrained resources, 
potentially targeting low-cost FPGA platforms or FPGA-SoC 
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architectures for even more power- and cost-sensitive 
applications. Finally, applying this system to real-world 
scenarios such as autonomous vehicle navigation and medical 
image analysis will allow us to validate its performance in 
dynamic environments and assess its practical benefits for end 
users. 

We have also highlighted the limitations of our current 
implementation. In terms of scalability, while our design 
performs efficiently with images of 640×480 resolution, 
processing higher-resolution images such as 1080p or 4K may 
necessitate further optimization of the memory architecture 
and processing pipeline to ensure real-time performance. 
Additionally, like other corner detection algorithms, our 
implementation is somewhat sensitive to image noise, leading 
to potential false positives in certain scenarios. To address this, 
future work will focus on integrating noise-reduction 
techniques to enhance the algorithm's robustness. 
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