
Design of Corner Detection System Based on FPGA

Hadj Fredj Amira1* , Kechiche Lilia2 , Mejbri Nesrine3 , Malek Jihene4,5

1 EPI Digital School, EPI - International Multidisciplinary School, University of Sousse, Sousse 4002, Tunisia
2 Department of Science and Technology, University College of Ranyah, Taif University, Taif 21944, Saudi Arabia
3 Department of Electrical Engineering, Higher Institute of Applied Technologies of Kairouan, Kairouan 3110, Tunisia
4 Department of Electronics, Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse
4002, Tunisia
5 Laboratory of Electronics and Microelectronics, LR99ES30, University of Monastir, Monastir 5000, Tunisia

Corresponding Author Email: amira.hadjfredj@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410636 ABSTRACT

Received: 10 May 2024
Revised: 30 September 2024
Accepted: 4 December 2024
Available online: 31 December 2024

This paper explores the significance of embedded electronic systems, focusing particularly
on the implementation of the Harris Corner Algorithm for computer vision applications.
Embedded systems are pivotal in managing diverse machinery, vehicles, and environmental
parameters as they are known for reliability and efficiency in real time processing in addition
to their embedded features. The Harris Corner Algorithm stands out for its proficiency in
object detection, image registration, and feature matching within the realm of computer
vision. The study proposes a tailored approach of deploying the Harris Corner Algorithm on
a Field Programmable Gate Array (FPGA) to enhance its efficiency for image processing
tasks. The proposed algorithm is implemented and tested using VHDL language for a target
Zedboard FPGA development board and an OV7676 camera module. Experimental results
show an efficiency of the algorithm with minimal power consumption and high precision in
detecting corners within images captured through the camera module with image resolution
of 640×480. This study underscores the significance of embedded electronic systems in
advancing computer vision capabilities, particularly through tailored algorithmic
implementations on FPGA platforms.

Keywords:
Harris corner detector, segmentation,
FPGA, Zedboard, OV7676 module

1. INTRODUCTION

Recent technological advancements have had a significant
impact on image and video processing over the years. From
object recognition to facial recognition, these technologies
have evolved with greater accuracy, precision, and speed. One
of the known techniques in computer vision applications is
image segmentation. Image segmentation can be defined as the
problem of dividing an image into multiple parts in order to
get a visual understanding of the contained objects. It allows
us to obtain a compact representation of the useful parts of an
image. These parts may be used for two different perspectives,
a high-level perspective, which is the recognition, and a low-
level perspective, which is the delineation. In general,
segmentation is preceded by some image preprocessing steps
that can be crucial for better results like enhancing contrast,
improving quality, and reducing noise in images [1-3]. A good
segmentation result allows images to be analyzed at different
levels of detail, making it easy to identify particular features
or regions within them. Image segmentation covers a large
domain of applications such as object recognition [4, 5], facial
recognition [6, 7], motion tracking [8], image editing [9],
image compression [10, 11], and medical imaging [12-14]. In
medical imaging, image segmentation is used to identify
abnormalities in the image, such as tumors [12, 13], cysts [14],

and classifications [15]. It allows doctors and physicians to
locate and analyze regions of interest in the image. Image
segmentation also helps with neural network processing to
diagnose and treat neurological conditions [16].

As segmentation partitions an image into meaningful
regions, this step helps group pixels with similar
characteristics, such as color or texture into meaningful
regions. Once the image has been segmented into regions,
feature extraction algorithms will be used to extract features
from these segments. Features could include attributes such as
edges, texture patterns, color histograms, corners, or any
characteristic according to a specific task. There exist many
feature detection algorithms that differ from each other by the
used method and the target application. We mention the Shi-
Tomasi corner detector [17, 18], Feature from Accelerated
segment (FAST) [19], Scale Invariant feature transform
(SIFT) [20, 21] and Speed Up Robust Feature (SURF) [22,
23]. The choice of the right algorithm depends on various
factors, such as available resources and the specific
requirements of the application. The Shi-Tomasi algorithm
computes a score for each pixel in an image based on the
minimum eigenvalue of the structure tensor. It uses a scoring
function to identify the most prominent corners. Although this
algorithm has proved a high accuracy, it is noise-sensitive and
is not a scale invariant. The FAST algorithm is considered as

Traitement du Signal
Vol. 41, No. 6, December, 2024, pp. 3203-3211

Journal homepage: http://iieta.org/journals/ts

3203

https://orcid.org/0000-0001-7218-2307
https://orcid.org/0000-0002-5259-4213
https://orcid.org/0009-0003-1726-6075
https://orcid.org/0000-0002-2588-3642
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410636&domain=pdf

a computationally efficient algorithm which is suitable for
real-time applications. The algorithm compares the intensity
of pixels around a candidate corner point with a threshold. It
is characterized by a High computational efficiency and
robustness to noise. Some of the common drawbacks are the
generation of an enormous number of false positives in certain
scenarios and being not scale-invariant. The SIFT is an
algorithm that performs both feature detection and description.
This algorithm detects corners and is robust to many image
modifications like rotation, illumination, and scale. It's widely
used in computer vision tasks such as object recognition and
image stitching. One of the most important drawbacks of this
algorithm is its computationally expensive nature, especially
when used to match features for large datasets. It necessitates
a large amount of memory to store the feature descriptors.

The SURF algorithm is similar to the SIFT algorithm with
the feature of being more computationally efficient which
makes it suitable for real-time applications with limited
resources.

Harris Corner detector [24-26] is also a feature detection
algorithm which works by detecting the local changes in the
intensity of the image. The algorithm first calculates a gradient
for each pixel in the image and then divides the image into
small windows. Then, it constructs a matrix for each window,
which is used to measure the intensity variation across the
window. The algorithm identifies corners by calculating the
variation in the matrix’s eigenvalues. These eigenvalues
indicate that the intensity variation is higher at the corners of
the image. The Harris Corner Algorithm is commonly used in
numerous applications, such as facial recognition, object
detection, and image registration. In medical imaging, the
algorithm can detect the features of particular regions in an
image, helping doctors diagnose and treat medical conditions
more accurately and precisely. Compared to other algorithms,
the Harris corner is preferred over the others for its rotational
invariance, noise resilience, good localization accuracy, and
stable corner detection.

One of the key challenges in corner detection algorithms is
their computational complexity. They require a high number
of operations to analyze the image correctly. In medical
imaging, corner detection algorithms can take a long time to
process medical images, which can hinder patient care. As
with other corner detection algorithms, the Harris corner
detection algorithm represents a computationally intensive
process as it requires processing gradient calculations,
computing a second-moment matrix, applying a Gaussian
smoothing, computing the corner response, and applying
thresholding. Traditional available software-based
implementations of the Harris Corner Algorithm often
struggle to achieve real time processing constraints imposed
by the high-resolution image and video data. In addition to its
computational complexity, it is subjected to many other
constraints. The algorithm may need to process large datasets
containing high-resolution images or videos which can
increase the computational load. In addition, tasks that must
meet real-time processing constraints often face difficulties
when optimized for general-purpose CPUs, as these letters are
not inherently designed for parallel processing.

Therefore, there is a need for an efficient implementation of
the data processing techniques. To optimize the processing
time for medical applications, several optimization strategies
can be employed. For example, code optimization is critical in
reducing processing times. By using efficient algorithms and
an optimized code, processing times can be reduced more

effectively. Additionally, using faster processors or more
powerful computers can also help speed up processing times
[27]. Cloud computing which is a distributed computing model,
can also help reduce processing time by providing faster
access to resources. Techniques such as parallel processing,
caching, and hardware accelerators can also reduce processing
time. One of the commonly used platforms for hardware
acceleration are Field programmable gate array (FPGA).
These platforms are used for real-time medical image
processing [28, 29]. Their highly parallel architecture allows
them to be used to implement algorithms with real-time
constraints and high computational demands like
segmentation, registration, and reconstruction in the medical
field. FPGA platforms allow the implementation of complex
algorithms in real-time, which is not achievable with standard
processors. FPGA platforms reduce processing time, enabling
applications to be executed more efficiently. Furthermore,
FPGAs have low power consumption and heat dissipation,
making them ideal for portable medical devices.

Despite the advancements in hardware acceleration
techniques, achieving both high performance and low power
consumption remains an important gap in the literature for the
FPGA-based implementation of this algorithm.

The presented paper addresses this gap by proposing a novel
FPGA implementation of the Harris Corner Algorithm which,
compared to previous methods, the presented approach takes
advantage of the parallel processing capabilities of FPGAs to
enhance processing speed while reducing power consumption,
making it well-suited for real-time applications.

The contributions in this paper can be cited as:
- The proposition of a hardware architecture of the

Harris corner algorithm.
- The Design of a low-power system that can be used

in several applications.
The remaining sections of this paper are organized as

follows: Section 2 presents background information on Harris
Corner systems and architectural designs, along with an
overview of related research on FPGAs. Section 3 describes
the Harris Corner Detector Algorithm. Section 4 explains the
hardware implementation of FPGA. Section 5 showcases the
implementation results and ensuing discussions. Finally, in
Section 6, we conclude from our findings and outline potential
future avenues of research.

2. RELATED WORK

Nowadays, with the advances in imaging technology and
the availability of high-resolution cameras and sensors, image
processing tasks have become highly complex and resource-
demanding tasks. These advances have led to large sizes of
modern images with resolutions ranging from tens of
megapixels to hundreds of gigapixels. These facts have led
researchers to propose new methods to meet the computational
demands of the applications. In this context, one of the
commonly used solutions is hardware accelerators which are
specialized computing devices that can be used to optimize
and accelerate specific tasks, including image processing. The
FPGA platforms are commonly used for this purpose. In the
literature [30], the authors use the Zynq platform to implement
the real-time application of the Canny edge detection
algorithm on the ZC702 development board. The system is
built using Vivado High Level Synthesis (HLS) and includes
an in-house video library. The result is a system that can

3204

achieve frame rates of 60 fps at 1080p resolution. A traffic sign
image recognition and classification system are proposed
utilizing 1920×1080 resolution images captured by an
integrated camera on a Zedboard development board [31].
This study found that classifying traffic signs in the developed
system took approximately 5 seconds. The optical flow
algorithm was optimized in study [32]. Therefore, the same
algorithm was tested on two different architectures, a PC with
Core i7 processor and the ARM processing unit of the Zynq-
7000 chip without optimization, and then with a special
Optimization of the Programmable Logic Unit architecture.
The code of the system was synthesized in C language using
the VIVADO HLS program. The results demonstrate that the
performance of this algorithm running on Zynq is close to that
of a PC with a Core i7 processor [32]. In their study [33], the
authors presented a project situated at the convergence of
embedded systems and image processing realms. The goal is
to develop an embedded vision system tailored for video
acquisition and processing. This involves the integration of
hardware accelerators to facilitate the extraction of specific
image characteristics. The utilization of reconfigurable
platforms, including the latest All Programmable System on
Chip (APSoC) platforms, together with advancements in high-
level Electronic Design Automation (EDA) tools for their
configuration, have given rise to FPGA-SoC-based image
processing. This approach has proven to be a viable and
practical solution for addressing a myriad of computer vision
challenges. The authors [34] proposed an FPGA acceleration
for real-time classification of hyperspectral imagery (HIS)
application. HSI applications are frequently used in several
critical applications like disaster control, precision farming,
industry and others. The support vector machine (SVM) is
proposed as a classification algorithm. As this algorithm has a
complexity that grows linearly with the number of support
vectors, authors proposed a hardware implementation to reach
real-time performances. The proposed architecture contains a
software part on a host computer to receive HSI streams and a
hardware application on Artix-7 35 T FPGA to perform the
online classification. A prior offline classification using
Matlab was performed in order to get statistics on memory
usage and independent operations. The obtained results show
a timing of 1.09 µs and 3.51 µ for the hardware
implementation against a 31.5 µs, 15.6µ for software solutions.

Corner detection algorithms are vital in various image
processing and computer vision tasks as they are used to
identify points, in an image, which are the areas where pixels’
intensity sharply changes in multiple directions. These corners
are used in various applications like object detection, motion
tracking, and 3D modeling. Multiple corner detection
algorithms exist like Shi-Tomasi [17], SIFT, Harris corner and
other hybrid algorithms where the authors make a mix of more
than one method [35-37]. Each one of the presented algorithms
is characterized by various trade-offs in terms of speed,
accuracy, and computational complexity. The software
implementations of these algorithms can be sufficient for less
demanding applications. For the real-time image processing
tasks and resource-constrained environments, there is a need
for hardware implementations to meet performance levels.
FPGAs are utilized for these implementations for their parallel
processing and low latency. The comparison of the existing
hardware implementations of the different corner detections
can be done based on 3 main points, architecture, resource
utilization, and efficiency. The authors [35] implement the
proposed hardware architecture with reduced line buffers,

using SRAM, and implement an interleaved memory access
for better throughput. The obtained results achieve up to 33%
line buffer savings and show support for 4K resolution at 60
frames per second with an accuracy loss of 2.29%. The
proposed design uses a 7×3 convolution buffer and logic
folding to enhance resource sharing and to lower multiplexing
overhead [36]. They achieve a 20% reduction in critical path
delay and, 24% area reduction, and maintain high accuracy
with only a 0.0588 difference in the repeatability rate. The
supported resolution is 1080p with 60 frames per second. The
proposed architecture is based on an early-stage pruning which
aims to reduce the computational load in order to obtain a few
pixels requiring full corner detection calculations [37]. The
results show a 75% speedup on a Nios-II processor with a
retained corner detection accuracy. However, the pruning can
struggle with highly textured images, potentially missing
corners in complex regions. The Harris Corner Algorithm is
used with FPGA implementations in order to obtain a balance
between computational efficiency and robustness. Unlike
other algorithms which may be more computationally
expensive or which sacrifice some accuracy for speed, the
Harris corner represents an efficient solution for real-time
processing applications.

3. HARRIS CORNER DETECTOR ALGORITHM

The Harris corner detector is a popular algorithm used to
find corners in an image. It works by detecting the local
changes in the intensity of the image. The algorithm looks for
areas of the image where the intensity changes rapidly in all
directions. These areas are likely to be corners. The algorithm
then calculates a score for each point in the image, and this
score is used to determine which points are corners. The higher
the score, the more likely the point is to be a corner. The
algorithm then returns the coordinates with the highest scores.
The Harris detector works by first computing the derivatives
of the image in two orthogonal directions. Then, it computes
the second-moment matrix of the derivatives, which is a
matrix of the products of the derivatives in each direction.
Finally, it computes the corner response function, which is a
measure of the corners of the image at each point. A picture’s
corners are areas where the intensity changes significantly and
where the image resists distortion. To correspond to wedges,
Harris points are generated based on the pixel light intensity.
It is suggested to use a detector based on the autocorrelation
expression of the following intensity fluctuations:

𝑀𝑀(𝑥𝑥,𝑦𝑦) = � 𝑤𝑤(𝑢𝑢, 𝑣𝑣).
𝑢𝑢,𝑣𝑣

�
𝐼𝐼𝑥𝑥2(𝑥𝑥, 𝑦𝑦) 𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦(𝑥𝑥, 𝑦𝑦)
𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦(𝑥𝑥, 𝑦𝑦) 𝐼𝐼𝑦𝑦2(𝑥𝑥, 𝑦𝑦)

� (1)

where, 𝑤𝑤(𝑢𝑢, 𝑣𝑣) is a weighting on the window (𝑢𝑢, 𝑣𝑣), and 𝐼𝐼𝑥𝑥
and 𝐼𝐼𝑦𝑦 are the local derivatives in x and y. One can ascertain if
a point is an outline, a homogeneous region, or a corner by
examining the eigenvalues of the matrix M. M is used to
compute a final criterion that allows one to choose the kind of
point found. The Harris detector’s multiple stages are depicted
on the graph in Figure 1. The value K varies between 0.04 and
0.06. the Gaussian convolution in Eq. (2).

G(x, y) = � � H[u, v]F[x − u, y − v]
k

v=−k

k

u=−k

 (2)

3205

where, x represents the horizontal distance from the origin, and
y represents the vertical distance from the origin, H[u, v] is the
Gaussian kernel of size (2k+1)×(2k +1) defined in Eq. (3).

𝐻𝐻(𝑢𝑢, 𝑣𝑣) =
1

�2πσ²
𝑒𝑒
−(𝑢𝑢2+𝑣𝑣2)

2𝜎𝜎² (3)

Figure 1. Stages of the Harris detector

4. HARDWARE IMPLEMENTATION

The Harris corner detection algorithm has a
computationally intensive nature as it has iterative tasks and
needs to compute derivatives and eigenvalues for every pixel
in an image. The computation process contains a convolution
of the image with derivative kernels, a computation of the
structure tensor for each pixel, and a computation of the
eigenvalues to determine corner responses.

The various steps of the hardware implementation
methodology are outlined in Figure 2 and described as follows:
1. Image Capture: The image is captured using the

OV7670 image sensor module. The module provides
VGA resolution images, which are converted into an 8-bit
grayscale format for further processing.

2. Preprocessing: The grayscale image is passed through a
preprocessing step where a 6×6 window is created using
D flip-flops and line buffers implemented with block
RAM. This window is crucial for the subsequent gradient
calculations.

3. Gradient Calculation: The next step involves computing
image gradients in the X and Y directions. A 5×5 pixel
window is used, and an array of 50 subtractions is used to
perform these gradient calculations in parallel.

4. Structure Tensor Computation: From the computed
gradients, components of the structure tensor are
calculated in parallel using multipliers and adders. This
includes computing Gx

2, Gy
2, Gx Gy values for the matrix.

5. Harris Score Calculation: Using the structure tensor, the
Harris corner score is computed. The score is compared

to a threshold value, and if it exceeds this threshold, the
point is marked as a corner.

6. Non-Maximum Suppression: To ensure only the most
prominent corners are selected, a non-maximum
suppression technique is applied, where local maxima are
identified, and weaker responses are suppressed.

7. Display of Results: The processed image along with the
detected corner points are output to a VGA monitor for
visualization. A frame buffer separates the camera and
VGA signal domains.

8. FPGA Implementation: The design is synthesized using
VHDL/Verilog in the Xilinx VIVADO IDE, targeting the
ZedBoard's FPGA. The synthesized design includes logic
for the corner detection algorithm and interfaces for the
camera and display.

Figure 2. Step-by-step process flow of hardware
implementation

With the increase in image size and the accuracy levels that
are required, the algorithm has a huge computational
complexity. As a result, implementing Harris corner detection
on hardware accelerators is of great significance. Hardware
accelerators allow to benefit from parallel processing and
specialized hardware resources to execute computationally
intensive operations. In this work, we have chosen the
ZedBoard.

The ZedBoard is a development board designed by Digilent
[38]. The ZYNQ Systems on Chip (SOC) from Xilinx
incorporate:
• The Processing System (PS) is powered by a dual-core

ARM Cortex-A9 processor, capable of running an
operating system like LINUX.

• The Programmable Logic (PL) system features an FPGA
from the XILINX-7 series, which includes essential logic
elements, RAM, DSPs, and standard I/O interfaces.

Figure 3. System block design

3206

The system utilizes an OmniVision OV7670 image sensor
and displays results on a VGA monitor. The FPGA component
is based on the Xilinx Zedboard. A system block diagram is
presented in Figure 3.

The OV7670 module [39] is a compact image sensor with a
low operating voltage that nevertheless provides all the
functions of a single-chip VGA camera. The Serial Camera
Control Bus (SCCB), allows displaying the entire under-
sampled image in a window with 8- bit data resolution. The
VGA sampling rate is 30 frames per second. Image quality,
data format, and transmission mode can be configured.
However, functions related to image processing, including
gamma curves, white balance, saturation, and chromaticity,
cannot be programmed through the SCCB interface. The
integrated OmniVision image sensor system enhances image
quality by reducing or eliminating optical or electronic defects

such as fixed pattern noise, color issues, and image clarity and
stability. The divided data will be converted back to the 16-bit
RGB565 format by the camera data capture module.

The Harris corner detector provides the corner feature
output, as illustrated in Figure 4. To address the timing
mismatch between the camera and VGA signals, a frame
buffer is utilized to isolate the two timing domains. However,
this component can be eliminated to cut costs if a display is
not needed. External DRAM can also be used to avoid
consuming block RAM. RGB565 pixel data is converted to 8-
bit grayscale using the formula: 0.5 * G + 0.25 * R + 0.25 * B,
where R, G, and B represent the red, green, and blue color
components, respectively. The multiplication is performed
using bit-shift operations. The pixels are then processed
through D flip-flops and a line buffer to form a 6x6 window,
with line buffers implemented using block RAM resources.

Figure 4. Hardware architecture of Harris detector

A set of 50 subtractions is used to calculate the image
gradients in the X and Y directions, with a window size of 5×5
pixels. Multipliers and adders work together in parallel to
compute the components of the 2×2 matrix M.

The components M1 and M2 are the same, while 3
components are required for the calculation of Gx

2, Gy
2, Gx, Gy.

The Harris score is calculated using the estimated equation
and then compared against a predefined threshold. In the event
that it is greater than the edge, it may be a corner including the

candidate. The proposed method provides a corner feature
counter at the end of the processing of every frame. Indeed, if
the corner candidates at the end of the frame are out of the
demanded values, the threshold (R) will be multiplied by 2 in
order to fine-tune the sensitivity of corner detection to better
match the specific requirements of the application or the
characteristics of the image.

However, if the corner value obtained is in the expected
range, the threshold stays the same. The feature counter is

3207

considered a corner feature when the Harris score (R) is
greater than the threshold (Th). The feature candidate is
transmitted as a 1-bit feature window across 35 windows. The
local area should contain only a corner feature. Our approach
uses a binary feature window based on traditional non-
maximum suppression, meaning that values outside the
expected range (R¡ > Th) will be delayed through feedback.
The chosen multiplication is based on the obtained features
which are proportional to a polynomial function. The threshold
should have minimum and maximum values. Our calculation
method has the objective of finding the most useful value of
the Harris detector in order to obtain the clearest image.

5. RESULTS AND DISCUSSIONS

5.1 Test environment

All tests were conducted in a laboratory environment with
controlled temperature and appropriate lighting conditions to
ensure a stable operation of the FPGA and the image sensor
(Figure 5). We utilized:

FPGA Board: The Harris Corner Detection algorithm was
implemented on a Xilinx ZedBoard (Zynq-7000 SoC).

Camera Module: The OV7670 image sensor was used to
capture real-time images with a resolution of 640×480 pixels.

Memory:
• Block RAM (BRAM) within the FPGA was used for

temporary storage of image data during processing.
• External DRAM was utilized for storing the processed

image data before output.
Display: The processed images were output to a VGA

monitor connected to the ZedBoard.
Vivado Design Suite (Version 2017.2): We used the Xilinx

Vivado Design Suite to write and synthesize the HDL
(VHDL/Verilog) code for the FPGA implementation. This
tool was also used for debugging and simulation.

Test Images: Both static and dynamic scenes were used for
testing. Static scenes involved simple objects like books or
boxes, while dynamic scenes included movement and
variations in lighting to test the robustness of corner detection.

Real-time images have been successfully procured on a
VGA screen by manually adjusting the camera in different
directions. Figure 6 presents the results of the simulations. The
images depict the object along with the detected key points for
each object. The original grayscale image is shown, with white
points marking the positions of the detected corner features.
Colored points have manually been added to these images to
enhance visualization.

Figure 5. Sytem implementation

(a) (b)

(c) (d)

Figure 6. Harris Corner detected by our proposed FPGA
implementation

5.2 Synthesis result

To evaluate our proposed system, we utilized three key
performance metrics:
• Frame Rate: The system achieved a real-time frame rate

of up to 102 frames per second (FPS) at a resolution of
640×480 pixels, demonstrating its suitability for
applications that require high-speed image processing.

• Power Consumption: Power consumption was measured
during testing using VIVADO’s power analysis tools, and
the system operated at approximately 0.33W under full
load. This low power consumption makes it ideal for use
in energy-constrained environments or portable devices.

• Accuracy: The accuracy of corner detection was assessed
by visually inspecting the detected corners in the output
images, which were displayed on a VGA monitor. The
high precision of detected corners confirmed the hardware
implementation reliability in identifying key points within
the images.

Table 1 outlines the synthesis and implementation outcomes
for the proposed design. According to the VIVADO synthesis
tool, the total power consumption was 0.33 W, consisting of
0.203 W for dynamic power and 0.126 W for static power.
Although high-level synthesis tools provide optimization
techniques such as resource sharing and pipelining to improve
performance, these optimizations are outside the scope of this
work.

Table 1. Implementation results of the proposed Harris
corner detector

Resource Utilization Available %
LUT 8132 53200 15.92

LUT RAM 7 17400 0.04
Flip-Flops 4054 106400 3.81

BRAM 46 140 32.86
DSP 5 220 2.27
I/O 35 200 17.50

BUFG 14 32 12.5

3208

Figure 7. Floorplan of proposed Harris design implemented
in an FPGA

Figure 7 illustrates the floor planning design
implementation for the Xilinx Zedboard, performed using the
VIVADO Design Suite.

5.3 Comparison results

The synthesis results of our proposed algorithm were
compared with those of other algorithms. As shown in Table
2, our implementation demonstrates superior area efficiency
for the same target FPGA compared to other solutions.
Specifically, our design utilized 46 BRAM, while Chao and
Wong [30] used 64 BRAM. Additionally, in terms of
input/output performance, our implementation outperforms
others due to reduced design complexity. This is attributed to
shorter critical paths, resulting in a higher operational
frequency on the FPGA.

Other authors have not shared power dissipation data;
although, various implementations of the Harris corner
detector have been developed on FPGA platforms, and in this
study, we compare the results of our synthesis of the proposed
algorithm with those of other reported algorithms, as shown in
Table 2. The design presented in study [40] requires 69
BRAMs, 4131 flip-flops, and 110 DSPs. The design in study
[41] requires 37 BRAMs, 506 LUTRAMs, 10981 flipflops, 21
DSPs, 102 I/Os, and 1 BuFG.

Table 2. Proposed Harris corner detector implementation
results

Resource Proposed [41] [40] [42] [30] [33]
LUT 8132 5917 9485 17555 NA 8425

LUT RAM 7 506 NA 5443 1400 NA
Flip-Flops 4054 10981 4131 2337 NA 4252

BRAM 46 37 69 75 64 11
DSP 5 21 110 55 110 44
I/O 35 102 NA 48 NA NA

BUFG 4 1 NA 7 NA 4
LUT: Look Up Table

Finally, the design in study [33] requires 11 BRAMs, 8425
LUTs, 4252 flip-flops, 44 DSPs, and 4 BuFGs. In contrast, our
proposed IP requires approximately 46 BRAMs, 8132 LUTs,
7 LUTRAMs, 35 INPUT/OUTPUT, 5 DSPs, and 4252 flip-
flops, with a power consumption of 0.329W. Based on this
comparison, our hardware architecture achieves high
throughput performance, albeit with relatively large hardware

resources compared to other implementations.
The comparison between our FPGA-based Harris corner

detection system and the approaches in the cited works
highlights different trade-offs in terms of performance,
accuracy, and resource utilization. In study [35], the FAST-C
corner detection algorithm focuses on achieving high
throughput, supporting 4K resolution at 60 frames per second
through the use of SRAM and interleaved memory access.
This approach sacrifices some accuracy for speed, whereas our
Harris implementation emphasizes precision in corner
detection at a lower resolution (640x480), with a focus on
maintaining high accuracy while still achieving real-time
processing. In study [36], the authors propose an FPGA-based
FAST detector that optimizes area-time efficiency by using
data-path unrolling and logic folding to reduce critical path
delay and resource usage. While this design excels in
minimizing resource consumption, our Harris implementation
leverages the Zedboard's parallel processing capabilities to
strike a balance between computational efficiency and
detection accuracy, albeit with higher computational
complexity. Finally, the method in study [37] uses low-
complexity pruning to speed up corner detection but risks
missing corners in highly textured images, contrary to , our
Harris corner detector which maintains robustness across a
wide range of image textures, ensuring accurate corner
detection, though at the cost of slightly increased
computational load. Overall, our approach distinguishes itself
by achieving low power consumption (0.33W) and real-time
performance while maintaining high corner detection accuracy,
making it ideal for embedded systems with stringent
performance and power requirements.

6. CONCLUSION AND FUTURE WORK

Our study successfully implemented the Harris Corner
Detection algorithm on an FPGA, achieving a real-time
processing speed of 102 frames per second while maintaining
low power consumption at 0.33W. This highlights the
efficiency of using FPGA-based hardware for corner detection
in real-time image processing applications, especially where
power efficiency and speed are critical. Moreover, the design
demonstrated resource efficiency, utilizing fewer hardware
resources such as BRAMs and DSPs compared to other
implementations in the literature, while still achieving high
detection accuracy. These findings underscore the potential of
our FPGA-based system for deployment in embedded vision
applications, such as robotics, medical imaging, and
autonomous systems, where real-time performance and low
power consumption are essential.

Future work, one immediate direction will be to optimize
the design for higher-resolution images, such as 1080p or 4K,
by refining memory management and parallel processing to
maintain real-time performance. Additionally, while our
implementation has proven accurate, we observed some
sensitivity to noise, prompting us to explore the integration of
noise-reduction techniques, such as adaptive thresholding, to
improve robustness in noisy environments. Further, we plan to
extend our work to include other corner detection algorithms,
like FAST, SIFT, and SURF, to benchmark their performance
on the same FPGA platform, enabling broader comparisons
and applications. We also intend to explore the deployment of
our system on edge devices with constrained resources,
potentially targeting low-cost FPGA platforms or FPGA-SoC

3209

architectures for even more power- and cost-sensitive
applications. Finally, applying this system to real-world
scenarios such as autonomous vehicle navigation and medical
image analysis will allow us to validate its performance in
dynamic environments and assess its practical benefits for end
users.

We have also highlighted the limitations of our current
implementation. In terms of scalability, while our design
performs efficiently with images of 640×480 resolution,
processing higher-resolution images such as 1080p or 4K may
necessitate further optimization of the memory architecture
and processing pipeline to ensure real-time performance.
Additionally, like other corner detection algorithms, our
implementation is somewhat sensitive to image noise, leading
to potential false positives in certain scenarios. To address this,
future work will focus on integrating noise-reduction
techniques to enhance the algorithm's robustness.

ACKNOWLEDGMENT

The authors would like to acknowledge Deanship of
Graduate Studies and Scientific Research, Taif University for
funding this work.

REFERENCES

[1] Chi, B., Yu, M., Jiang, G., He, Z., Peng, Z., Chen, F.
(2020). Blind tone mapped image quality assessment
with image segmentation and visual perception. Journal
of Visual Communication and Image Representation, 67:
102752. https://doi.org/10.1016/j.jvcir.2020.102752

[2] Li, K., Yu, L., Heng, P.A. (2022). Towards reliable
cardiac image segmentation: Assessing image-level and
pixel-level segmentation quality via self-reflective
references. Medical Image Analysis, 78: 102426.
https://doi.org/10.1016/j.media.2022.102426

[3] Sagheer, S.V.M., George, S.N. (2020). A review on
medical image denoising algorithms. Biomedical Signal
Processing and Control, 61: 102036.
https://doi.org/10.1016/j.bspc.2020.102036

[4] Ben Abdallah, M., Malek, J., Azar, A.T., Montesinos, P.,
Belmabrouk, H., Esclarín Monreal, J., Krissian, K.
(2015). Automatic extraction of blood vessels in the
retinal vascular tree using multiscale medialness.
International Journal of Biomedical Imaging, 2015(1):
519024. https://doi.org/10.1155/2015/519024

[5] Abdallah, M.B., Malek, J., Tourki, R., Monreal, J.E.,
Krissian, K. (2013). Automatic estimation of the noise
model in fundus images. In 10th International Multi-
Conferences on Systems, Signals & Devices 2013
(SSD13), Hammamet, Tunisia, pp. 1-5.
https://doi.org/10.1109/SSD.2013.6564014

[6] Meenpal, T., Balakrishnan, A., Verma, A. (2019). Facial
mask detection using semantic segmentation. In 2019 4th
International Conference on Computing,
Communications and Security (ICCCS), Rome, Italy, pp.
1-5. https://doi.org/10.1109/CCCS.2019.8888092

[7] Benini, S., Khan, K., Leonardi, R., Mauro, M., Migliorati,
P. (2019). Face analysis through semantic face
segmentation. Signal Processing: Image Communication,
74: 21-31. https://doi.org/10.1016/j.image.2019.01.005

[8] Jiang, S., Cui, R., Wei, R., Fu, Z., Hong, Z., Feng, G.
(2023). Tracking by segmentation with future motion
estimation applied to person-following robots. Frontiers
in Neurorobotics, 17: 1255085.
https://doi.org/10.3389/fnbot.2023.1255085

[9] Zhang, J., Yang, P., Wang, W., Hong, Y., Zhang, L.
(2020). Image editing via segmentation guided self-
attention network. IEEE Signal Processing Letters, 27:
1605-1609. https://doi.org/10.1109/LSP.2020.3022289

[10] Akbari, M., Liang, J., Han, J. (2019). DSSLIC: Deep
semantic segmentation-based layered image
compression. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, pp. 2042-2046.
https://doi.org/10.1109/ICASSP.2019.8683541

[11] Liu, Z., Meng, L., Tan, Y., Zhang, J., Zhang, H. (2021).
Image compression based on octave convolution and
semantic segmentation. Knowledge-Based Systems, 228:
107254. https://doi.org/10.1016/j.knosys.2021.107254

[12] Wadhwa, A., Bhardwaj, A., Verma, V.S. (2019). A
review on brain tumor segmentation of MRI images.
Magnetic Resonance Imaging, 61: 247-259.
https://doi.org/10.1016/j.mri.2019.05.043

[13] Jiang, H., Diao, Z., Yao, Y.D. (2022). Deep learning
techniques for tumor segmentation: A review. The
Journal of Supercomputing, 78(2): 1807-1851.
https://doi.org/10.1007/s11227-021-03901-6

[14] Abdolali, F., Zoroofi, R.A., Otake, Y., Sato, Y. (2016).
Automatic segmentation of maxillofacial cysts in cone
beam CT images. Computers in Biology and Medicine,
72: 108-119.
https://doi.org/10.1016/j.compbiomed.2016.03.014

[15] Malek, J., Tourki, R. (2013). Inertia-based vessel
centerline extraction in retinal image. In 2013
International Conference on Control, Decision and
Information Technologies (CoDIT), Hammamet, Tunisia,
pp. 378-381.
https://doi.org/10.1109/CoDIT.2013.6689574

[16] Alaeddine, H., Jihene, M. (2023). Wide deep residual
networks in networks. Multimedia Tools and
Applications, 82(5): 7889-7899.
https://doi.org/10.1007/s11042-022-13696-0

[17] Kaur, A., Kumar, M., Jindal, M.K. (2022). Shi-Tomasi
corner detector for cattle identification from muzzle print
image pattern. Ecological Informatics, 68: 101549.
https://doi.org/10.1016/j.ecoinf.2021.101549

[18] Bansal, M., Kumar, M., Kumar, M., Kumar, K. (2021).
An efficient technique for object recognition using Shi-
Tomasi corner detection algorithm. Soft Computing,
25(6): 4423-4432. https://doi.org/10.1007/s00500-020-
05453-y

[19] Jian, C., Xiang, X., Zhang, M. (2019). Mobile terminal
gesture recognition based on improved FAST corner
detection. IET Image Processing, 13(6): 991-997.
https://doi.org/10.1049/ietipr.2018.5959

[20] Chen, S., Zhong, S., Xue, B., Li, X., Zhao, L., Chang, C.I.
(2020). Iterative scale-invariant feature transform for
remote sensing image registration. IEEE Transactions on
Geoscience and Remote Sensing, 59(4): 3244-3265.
https://doi.org/10.1109/TGRS.2020.3008609

[21] Kasiselvanathan, M., Sangeetha, V., Kalaiselvi, A.
(2020). Palm pattern recognition using scale invariant
feature transform. International Journal of Intelligence

3210

and Sustainable Computing, 1(1): 44-52.
https://doi.org/10.1504/IJISC.2020.104826

[22] Jagadeeswari, M., Manikandababu, C.S., Aiswarya, M.
(2022). Integral images: Efficient algorithms for their
computation systems of speeded-up robust features
(Surf). In Pervasive Computing and Social Networking:
Proceedings of ICPCSN 2021, pp. 663-672.
https://doi.org/10.1007/978-981-16-5640-8_50

[23] Arora, P., Mehta, R., Ahuja, R. (2024). An adaptive
medical image registration using hybridization of
teaching learning-based optimization with affine and
speeded up robust features with projective
transformation. Cluster Computing, 27(1): 607-627.
https://doi.org/10.1007/s10586-023-03974-3

[24] Vasco, V., Glover, A., Bartolozzi, C. (2016). Fast event-
based Harris corner detection exploiting the advantages
of event-driven cameras. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea (South), pp. 4144-4149.
https://doi.org/10.1109/IROS.2016.7759610

[25] Glover, A., Dinale, A., Rosa, L.D.S., Bamford, S.,
Bartolozzi, C. (2021). Luvharris: A practical corner
detector for event-cameras. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(12):
10087-10098.
https://doi.org/10.1109/TPAMI.2021.3135635

[26] Haggui, O., Tadonki, C., Lacassagne, L., Sayadi, F.,
Ouni, B. (2018). Harris corner detection on a NUMA
manycore. Future Generation Computer Systems, 88:
442-452. https://doi.org/10.1016/j.future.2018.01.048

[27] Fredj, A.H., Malek, J. (2017). GPU-based anisotropic
diffusion algorithm for video image denoising.
Microprocessors and Microsystems, 53: 190-201.
https://doi.org/10.1016/j.micpro.2017.08.003

[28] Hadj Fredj, A., Malek, J. (2021). A fast and robust osrad
filter for telemedicine applications. International Journal
of Computers and Applications, 43(1): 70-79.
https://doi.org/10.1080/1206212X.2018.1512235

[29] Hadj Fredj, A., Malek, J. (2021). FPGA-accelerated
anisotropic diffusion filter based on SW/HW-codesign
for medical images. Journal of Real-Time Image
Processing, 18(6): 2429-2440.
https://doi.org/10.1007/s11554-021-01100-3

[30] Chao, T.L., Wong, K.H. (2015). An efficient FPGA
implementation of the Harris corner feature detector. In
2015 14th IAPR International Conference on Machine
Vision Applications (MVA), Tokyo, Japan, pp. 89-93.
https://doi.org/10.1109/MVA.2015.7153140

[31] Mestiri, H., Barraj, I., Machhout, M. (2021). AES high-
level SystemC modeling using aspect oriented
programming approach. Engineering, Technology &

Applied Science Research, 11(1): 6719-6723.
https://doi.org/10.48084/etasr.3971

[32] Rafiammal, S.S., Jamal, D.N., Mohideen, S.K. (2020).
Reconfigurable hardware design for automatic epilepsy
seizure detection using EEG signals. Engineering,
Technology & Applied Science Research, 10(3): 5803-
5807. https://doi.org/10.48084/etasr.3419

[33] Alsheikhy, A., Yahia, F.S. (2019). Design of embedded
vision system based on FPGA-SoC. International Journal
of Advanced Computer Science and Applications, 10(10):
91-98. https://doi.org/10.14569/IJACSA.2019.0101013

[34] Gyaneshwar, D., Nidamanuri, R.R. (2022). A real-time
FPGA accelerated stream processing for hyperspectral
image classification. Geocarto International, 37(1): 52-
69. https://doi.org/10.1080/10106049.2020.1713231

[35] Lee, Y.H., Chen, T.C., Liang, H.C., Liao, J.X. (2020).
Algorithm and architecture design of FAST-C image
corner detection engine. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 29(4): 788-799.
https://doi.org/10.1109/TVLSI.2020.3031294

[36] Lam, S.K., Lim, T.C., Wu, M., Cao, B., Jasani, B.A.
(2019). Data-path unrolling with logic folding for area-
time-efficient FPGA-based FAST corner detector.
Journal of Real-Time Image Processing, 16: 2147-2158.
https://doi.org/10.1007/s11554-017-0725-0

[37] Ramakrishnan, N., Wu, M., Lam, S.K., Srikanthan, T.
(2016). Enhanced low-complexity pruning for corner
detection. Journal of Real-Time Image Processing, 12:
197-213. https://doi.org/10.1007/s11554-014-0396-z

[38] Zedboard. Avnet. http://www.zedboard.org/overview-
zedboardkit.

[39] OmniVision. version 1.4. OmniVision Technologies, Inc,
2006. https://www.ovt.com/press-releases/omnivision-
launches-seventh-generation-vga-camerachip-for-
mobile-applications/.

[40] Komorkiewicz, M., Kryjak, T., Chuchacz-Kowalczyk,
K., Skruch, P., Gorgoń, M. (2015). FPGA based system
for real-time structure from motion computation. In 2015
Conference on Design and Architectures for Signal and
Image Processing (DASIP), Krakow, Poland, pp. 1-7.
https://doi.org/10.1109/DASIP.2015.7367241

[41] Sikka, P., Asati, A.R., Shekhar, C. (2021). Real time
FPGA implementation of a high speed and area
optimized Harris corner detection algorithm.
Microprocessors and Microsystems, 80: 103514.
https://doi.org/10.1016/j.micpro.2020.103514

[42] Liu, S., Lyu, C., Liu, Y., Zhou, W., Jiang, X., Li, P., Li,
Y. (2017). Real-time implementation of Harris corner
detection system based on FPGA. In 2017 IEEE
International Conference on Real-time Computing and
Robotics (RCAR), Okinawa, Japan, pp. 339-343.
https://doi.org/10.1109/RCAR.2017.8311884

3211

	1. Introduction
	acknowledgment

