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As a crucial component of modern transportation infrastructure, long-span bridges are 

subject to wind-induced vibrations that pose a key issue in structural safety studies. Wind-

induced vibrations not only lead to dynamic deformation of the bridge but may also cause 

structural fatigue and failure. Therefore, accurately predicting and monitoring the wind-

induced vibration responses is essential for ensuring the safe operation of bridges. With the 

rapid development of Digital Image Correlation (DIC) technology and machine learning 

algorithms, the integration of image processing and intelligent algorithms for monitoring 

and predicting wind-induced vibrations of long-span bridges has emerged as a promising 

research direction. Although significant progress has been made in monitoring and 

analyzing wind-induced vibrations, traditional methods often struggle with accurately 

capturing the evolution of minute deformations and achieving efficient predictions, thus 

limiting their practical application. This paper proposes a novel method for wind-induced 

vibration response prediction and structural monitoring of long-span bridges based on image 

processing. First, DIC technology is used to characterize the structural evolution of the 

bridge during wind-induced vibrations, capturing small deformations and local deformation 

features. Then, an image processing algorithm is applied to measure and calculate the 

structural evolution during the vibration response, enabling a quantitative analysis of the 

damage caused by wind load. Finally, by combining Whale Optimization Algorithm 

(WOA), Temporal Convolutional Network (TCN), and Self-Attention (SA) mechanism, a 

prediction model is developed to accurately forecast the bridge's dynamic response behavior 

under varying wind speeds. The study shows that this method effectively captures the 

spatiotemporal evolution characteristics of the wind-induced vibration process, enhancing 

the accuracy and reliability of the predictions, thus providing a scientific basis for the health 

monitoring and maintenance of long-span bridges.  
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1. INTRODUCTION

High-pier large-span rigid frame bridges, due to their 

characteristics of large span and high piers, have unique 

advantages when crossing rivers, valleys, and other complex 

terrains. Most of the western regions of China are mountainous 

and feature many valleys, where the canyon wind effect is 

significant. This special topography causes the airflow to be 

constrained as it passes through the canyon, resulting in a 

significant increase in wind speed and the formation of 

localized strong winds. For bridges that are not yet fully 

formed, due to insufficient stiffness and poor stability, their 

sensitivity to wind loads during construction is extremely high. 

In particular, phenomena such as buffeting and flutter can 

severely impact construction safety and may even cause 

structural disasters under extreme conditions. In this case, 

predicting the wind-induced vibration response of the bridge 

becomes a key technological means to ensure construction 

safety and the smooth progress of the project. 

With the increasing importance of large-span bridges in 

modern transportation, their vibration response under wind 

loads has become a research hotspot in the field of structural 

engineering [1-4]. Wind-induced vibration is a common 

dynamic effect of long-span bridges in high-wind 

environments. In severe cases, it may lead to structural fatigue 

or even catastrophic accidents [5, 6]. Therefore, real-time 

monitoring and accurate prediction of the wind-induced 

vibration response of large-span bridges, especially the 

structural evolution behavior under wind loads, is crucial for 

ensuring the safety and durability of the bridge [7, 8]. 

However, due to the complexity of large-span bridge 

structures and the variability of wind-induced effects, how to 

accurately assess and predict their wind vibration response 

remains a challenge that needs to be addressed. 

Although many studies on bridge wind-induced vibration 

response analysis and health monitoring have been conducted 

in recent years, existing prediction and monitoring methods 

still have certain limitations [9-11]. On one hand, traditional 

structural health monitoring methods often rely on sensors and 

physical models, which are often unable to effectively capture 

the early evolution of small deformations and the details of 

local deformations, leading to significant errors in the 
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prediction of wind vibration responses [12-16]. On the other 

hand, image processing-based monitoring methods can 

capture more detailed deformation information, but how to 

combine this image data with time-series data to improve the 

accuracy and efficiency of prediction models remains a 

technical challenge [17-22]. In addition, existing wind 

vibration response prediction models often overlook the 

structural evolution characteristics under wind load, making it 

difficult to accurately reflect long-term dynamic changes. 

The main research content of this paper includes three 

aspects: First, the structural evolution detection of the wind-

induced vibration response of large-span bridges based on DIC 

technology, extracting the small deformations and local 

deformation information during the wind vibration response 

process; Second, using image processing algorithms to 

precisely measure and calculate the structural evolution of the 

wind-induced vibration response of large-span bridges, 

obtaining the dynamic strain and displacement distribution 

under wind load; Finally, combining WOA with the TCN-SA 

model to predict the wind-induced vibration response, 

efficiently capturing the temporal evolution patterns of the 

bridge structure under wind load. This study not only provides 

a novel computational framework for predicting the wind 

vibration response of large-span bridges but also offers more 

accurate theoretical and technical support for bridge structural 

health monitoring and wind vibration protection, with 

significant academic value and practical application prospects. 

 

 

2. STRUCTURAL EVOLUTION AND WIND-INDUCED 

VIBRATION DETECTION IN LARGE-SPAN BRIDGES 

USING DIC 

 

Due to their complex structure, large spans, and significant 

wind load effects, the wind-induced vibration response of 

large-span bridges often presents nonlinearity and time-

varying characteristics. Traditional monitoring methods may 

not be able to comprehensively capture the dynamic behavior 

of bridges under different wind conditions. Therefore, this 

paper first performs structural evolution characterization and 

detection of the bridge’s wind-induced vibration response, 

which helps reveal the long-term changes in the bridge 

structure under wind loads, local damage, and other possible 

structural changes, thus providing more reliable initial data 

and model input for subsequent wind vibration response 

prediction. 

 

 
 

Figure 1. Schematic of large-span bridge before and after 

wind response 

 

In order to obtain the global and local displacement of the 

bridge surface under wind vibration, this paper uses DIC 

technology to measure the concrete surface of the large-span 

bridge. Specifically, random speckle patterns are applied to the 

bridge surface, and images are captured at different time 

points. By comparing the gray scale changes between the pre- 

and post-deformation speckle images, the displacement field 

of the structure is calculated. This method allows for accurate 

acquisition of the global deformation information of the bridge 

under wind load, including displacement vectors and 

deformation conditions in each local area. By comparing 

deformation data at different time points, the time-varying 

characteristics of the bridge’s wind vibration response are 

further revealed, especially capturing dynamic deformations 

and local vibration modes induced by wind loads. Figure 1 

shows a schematic diagram of the wind-induced vibration 

response of the large-span bridge specimen before and after 

deformation. Let the center points of the reference subregion 

and target subregion be points X and X', respectively. The 

displacement of the reference subregion is the coordinate 

difference between points X and X', denoted as (i0, n0). The 

coordinate differences from the center point X within the 

subregion are denoted as (△a, △b). The displacement of any 

point O is represented by i(△a, △b), n(△a, △b), which 

corresponds to the structural deformation information of the 

subregion. The gray scale value of each pixel in the reference 

subregion is denoted as d(au, bk), and the gray scale value of 

each pixel in the target subregion is denoted as h(au
’, bk

’). The 

size of the subset is denoted as (2L+1)×(2L+1), and the 

coordinates (au, bk) and (au
’, bk

’) of the subset are directly 

related to the deformation occurring between images. The 

average gray scale values of the reference and target 

subregions are denoted as dl and hl, respectively. The 

introduced DIC image algorithm can be represented by the 

sequence correlation operation function ZCVZZ as follows: 
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3. STRUCTURAL ANALYSIS AND WIND RESPONSE 

MEASUREMENT OF LARGE-SPAN BRIDGES VIA 

IMAGE PROCESSING 

 

The image processing-based structural evolution 

measurement and calculation of wind vibration response 

further improve the accuracy and measurement efficiency of 

the bridge’s wind vibration response. This paper achieves 

precise capture and real-time monitoring of the small 

deformations on the bridge surface using high-precision 

camera equipment and image analysis algorithms. Compared 

to traditional sensor technologies, this method offers higher 

flexibility and adaptability, enabling the acquisition of more 
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comprehensive and detailed wind vibration response data 

without contacting the bridge structure. Especially for large-

span bridges, image processing can effectively avoid 

measurement errors caused by sensor installation limitations 

or environmental interference, thus providing more valuable 

data support for accurate wind vibration response prediction. 

To extract the evolution characteristics of the bridge 

structure under wind loads, this paper uses machine vision and 

image processing techniques to analyze the principal strain 

cloud map of the bridge under wind-induced vibration. First, 

the DIC technology is used to obtain the full-field principal 

strain field images of the bridge surface, which reflect the 

deformation and stress distribution of the bridge under wind 

loads. After obtaining the strain cloud map, machine vision 

technology in MATLAB software is applied to perform 

binarization processing by setting appropriate thresholds, 

separating high-strain areas corresponding to major 

deformations caused by wind vibration from low-strain areas 

corresponding to regions unaffected by wind vibration. 

 

 
 

Figure 2. Calculation of displacement in wind-induced 

vibration of large-span bridges 

 

Next, based on the displacement difference method, the 

calculation of normal and tangential displacements of the 

structural evolution of wind-induced vibration response in 

large-span bridges is performed. The schematic diagram of the 

calculation details is shown in Figure 2. After obtaining the 

full-field strain cloud map of the bridge surface, the image 

processing technique mentioned above is used to extract the 

structural deformation regions and stress concentration areas 

caused by wind vibration. Then, several key points along the 

path are selected as starting points for calculating the normal 

and tangential displacements of the structural evolution of the 

wind vibration response of large-span bridges. Around these 

reference points, adjacent points are selected to construct local 

geometric relationships and, combined with displacement 

information from the principal strain field, calculate the 

relative displacement of the structural evolution. Specifically, 

based on the displacement difference method, the horizontal 

and vertical displacements between different position points 

are compared, and the deformation distribution along the 

normal and tangential directions of the large-span bridge's 

wind-induced vibration response is calculated. When 

calculating the normal and tangential displacements, 

especially in the study of wind vibration response of large-

span bridges, the displacement difference method can 

effectively handle local structural deformations and vibration 

modes caused by wind loads. The principal strain cloud map 

obtained by DIC technology can reflect the dynamic 

deformation information of the bridge surface due to wind 

vibration, while the displacement difference calculation 

method helps to further analyze the propagation trends of 

structural deformations by accurately capturing the relative 

displacements caused by the wind vibration response. 

The principles for establishing the correlation evolution and 

displacement variables of the wind-induced vibration response 

structure of large-span bridges are based on the changes in the 

strain field, especially the local deformation evolution process 

caused by wind load-induced vibration. Traditional structural 

evolution variables usually rely on changes in macro structural 

deformations, such as a reduction in effective load-bearing 

area. However, DIC technology can finely capture the 

evolution of small deformations during the wind vibration 

response process, even identifying structural damage 

information at the micro-deformation stage. To effectively 

establish the correlation evolution and displacement variables 

for the wind vibration response of large-span bridges, this 

paper proposes using the coefficient of variation Zn of the 

principal strain field as the damage variable. This is combined 

with the principal strain field of the wind vibration response 

obtained from DIC, and image processing and machine vision 

technologies are used to extract the evolution information of 

small deformations. The trend of changes in the coefficient of 

variation reflects the accumulation of structural damage under 

wind vibration. This allows for the gradual characterization of 

the deformation from small to significant during the wind 

vibration response process. Let the deformation area on the 

effective load-bearing area be represented by Xf, and the 

effective load-bearing area be represented by X. The initial 

deformation variable can be expressed as: 

 

fX
F

X
=  (2) 

 

Assume the standard deviation and mean of the data are 

denoted by T and A-, and the j-th maximum principal strain 

value in the maximum principal strain field of size l×v is 

denoted by Aj. By using Zn as the damage variable, we have: 
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Through this position difference-based calculation method, 

combined with the evolution of principal strain, 

multidimensional evolution data for the wind vibration 

response of large-span bridges can be obtained.
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4. WIND-INDUCED VIBRATION RESPONSE 

PREDICTION OF LARGE-SPAN BRIDGES BASED ON 

WOA-OPTIMIZED TCN-SA MODEL 

 

This paper further proposes a wind-induced vibration 

response prediction method for large-span bridges based on 

the WOA-optimized TCN-SA model. The principal strain 

field data of the wind vibration response extracted by the 

aforementioned image processing technology (e.g., DIC), 

along with details such as the evolution of small deformations 

during the structural evolution process, will serve as input 

features for the model. These input data typically include the 

principal strain field at different time points during the wind 

vibration response, the coefficient of variation, and 

displacement variables related to the evolution of structural 

deformations. In the WOA-based TCN-SA model, these input 

features will be processed using the TCN and SA mechanism 

to capture the temporal and spatial correlations in the wind 

vibration response. 

 

4.1 TCN 

 

TCNs are a type of deep learning model designed for time-

series data, particularly suitable for handling complex data 

with strong temporal dependencies, such as the wind vibration 

response of bridges. Unlike traditional recurrent neural 

networks (RNN) (e.g., Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU)), TCN uses the architecture 

of Convolutional Neural Networks (CNN) to capture temporal 

features within sequences. TCN has advantages such as fewer 

parameters and faster training speeds, and it performs 

exceptionally well in handling long-term dependencies. The 

main components of TCN include causal convolution, dilated 

convolution, and residual connections. 

 

 
 

Figure 3. TCN model structure diagram 

 

One of the key features of TCN is causal convolution, which 

ensures that the model’s predictions are not influenced by 

future information. As shown in Figure 3 causal convolution 

only considers past and current information when performing 

convolution operations on each time point in the time series, 

avoiding future information leakage. This design allows TCN 

to effectively model the natural sequence of time series data 

when processing temporal data, preventing information 

leakage and ensuring the causality and reliability of the data 

predictions. Additionally, zero padding is applied at the front 

of the input sequence to ensure data completeness. 

Let the input signal be X=(x1,x2,x3,…,xt-1,xt), the output 

signal be Y=(y1,y2,y3,…,yt-1,yt), and the convolution kernel be 

K=(k1,k2,k3,…,kw), then the output yt at time step t can be 

expressed as: 

 

1
( ) ( ) ( )

0

K
y t k i x t i

i

−
=  −

=
 (6) 

 

where, K is the size of the convolution kernel, k(i) is the i-th 

weight of the convolution kernel, and x(t-i) is the input value 

at time step t-i. 

Another core feature of TCN is dilated convolution, which 

introduces holes (also known as dilation rates) in the 

convolution kernel, enabling the model to handle longer 

sequences without significantly increasing computational 

complexity. The principle behind this is that by inserting zeros 

between elements of the convolution kernel, the input 

sequence undergoes spaced sampling, thus covering a wider 

input region during the convolution operation, effectively 

increasing the receptive field. 

Typically, the dilation rate increases exponentially with the 

network layer depth and can be expressed as: 

 
( 1)l

ld b −=  (7) 

 

where, l is the network layer number, dl represents the dilation 

rate of layer l, and b is the dilation factor. 

The receptive field Rl of the l-th layer can be expressed as: 

 

1 ( 1)l l lR R K d−= + −  (8) 

 

The dilated convolution operation can be expressed as: 
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Residual connections are key structures for enhancing the 

performance and stability of TCN models. By introducing 

residual links, TCN can more effectively capture long-term 

dependencies in time series and avoid the vanishing gradient 

problem. Specifically, residual connections provide a direct 

path for the input signal to pass to subsequent layers, forming 

a residual learning path that alleviates the vanishing and 

exploding gradient issues that can occur in deep networks 

during training. This not only improves training efficiency but 

also enhances the generalization capability of the model, 

making TCN more effective for complex time series data 
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tasks. 

Let the input be x, and the output after the convolution layer 

be F(x). Then the output of the residual block y can be 

expressed as (refer Figure 4): 

 

( ( ) )y F x x= +  (10) 

 

where, σ(*) represents the activation function. 

 

 
 

Figure 4. Residual block structure diagram 

 

4.2 SA mechanism 

 

The core idea of the SA mechanism is to establish global 

dependencies between elements in the input sequence, thus 

overcoming the limitations of local perception in traditional 

CNNs. Structural health monitoring data typically exhibit 

complex nonlinear patterns and long-distance dependencies. 

The SA mechanism, by evaluating the similarity or correlation 

between elements at different positions in the sequence, can 

adaptively adjust the importance weight of each element in the 

entire sequence. This mechanism effectively captures the 

intrinsic complex relationships in the data, helping to 

accurately understand and predict the changing trends of 

structural health states. 

 

 
 

Figure 5. SA mechanism 

The SA mechanism layer is shown in Figure 5. First, the 

input sequence X is linearly transformed into three new vector 

sequences: query Q, key K, and value V by applying three 

different weight matrices Wq, Wk, and Wv. The calculation 

formula is: 

 

q

k

v

Q W X

K W X

V W X

=


=
 =

 (11) 

 

Then, the similarity score between the Query matrix Q and 

the Key matrix K is computed using dot product. These scores 

are normalized by the softmax function to generate the SA 

weight matrix W, which indicates the importance of each 

position’s information in generating the output. The 

normalization formula is: 

 

max( )
T

K

QK
W Soft

d
=  (12) 

 

where, dk is the dimension of K, used as a scaling factor. 

Finally, by performing matrix multiplication between the 

SA weight matrix W and the value V, we obtain the output 

matrix H. This output matrix H integrates the information of 

all elements in the input sequence, but the representation of 

each element in H is the result of dynamically adjusting the 

weights based on its correlation with other elements in the 

sequence. 

 

( , , ) max( )
T

k

QK
H Attention Q K V Soft V

d
= =  (13) 

 

The SA mechanism achieves effective capture of the 

correlations between internal elements of sequence data in this 

way, allowing the model to dynamically adjust the weights of 

different features, thereby more accurately understanding and 

processing the sequence data. 

 

4.3 WOA 

 

TCN models often have a large number of hyperparameters, 

such as learning rate, network depth, kernel size, number of 

kernels, and dilation factors. The quality of these parameters 

directly affects the performance and convergence speed of the 

model. Traditional grid search or random search methods 

perform poorly in high-dimensional and complex optimization 

tasks, while the WOA can search for the optimal solution by 

simulating the self-organizing and adaptive hunting behavior 

of whale groups. The optimization process is as follows: 

Step 1: Encircle the prey 

The main goal of this stage is to gradually approach and 

encircle the prey, i.e., search for potential optimal solutions 

within the search space. This process can be expressed by the 

following formula: 
 

* ( )D C X X t =  −  (14) 

 
*( 1) ( )-X t X t A D+ =   (15) 

 

where, D' is the distance between the whale individual and the 

prey, t is the iteration number, Ẋ(t) is the position vector of the 
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whale at iteration t, and Ẋ*(t) is the best position vector after t 

iterations. The coefficient vectors A and C are calculated as: 

 

12A a r a=  −  (16) 

 

22C r=  (17) 

 

where, a is a coefficient that decays from 2 to 0 as the iteration 

progresses, and r1 and r2 are random variables within [0,1]. 

Step 2: Bubble net attack 

The whale surrounds the prey by releasing a spiral-shaped 

bubble net from the bottom up, thus roughly determining the 

location of the prey. Then, the whale group will continuously 

update their positions along the spiral bubble net to approach 

the target. This process can be expressed as: 

 
*( 1) cos(2 ) ( )blX t D e l X t+ =   +  (18) 

 
*( )- ( )D X t X t =  (19) 

 

where, Ḋ' is the current best distance between the whale and 

the prey, b is a constant defining the spiral turning, and l is a 

random number within [-1,1]. 

The whale continues to approach the prey by combining the 

strategies of shrinking the bubble net and spiraling upward 

along the bubble net. We simulate the probability of these two 

events both happening as 50%, expressed as: 

 
*

*

( )- 0.5
( 1)

cos(2 ) ( ) 0.5bl

X t A D p
X t

D e l X t p

 
+ = 

  + 
 (20) 

 

where, p is a random number within [-1,1]. 

Step 3: Random search 

To avoid getting stuck in local optima within the search 

space, the WOA introduces a random search mechanism, 

allowing the whale to jump out of the current area and explore 

a broader space. Specifically, when the coefficient vector ǀAǀ 

is greater than 1, the whale will adopt the random search 

strategy. In this case, the whale's next position will not directly 

depend on the current optimal solution, but rather randomly 

select another whale as the guide to update its position. The 

random search process can be expressed as: 

 

( 1) randX t X A D+ = −   (21) 

 

- ( )randD C X X t=   (22) 

 

where, Ẋrand is the position vector of a randomly selected whale 

individual. 

The overall process of WOA is shown in Figure 6. 

 

 
 

Figure 6. Flowchart of WOA 
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4.4 Model framework 

 

The framework for the wind vibration response prediction 

algorithm of large-span bridges is shown in Figure 7. In this 

paper, we propose a WOA-optimized TCN-SA model to 

predict the vibration response of bridges under wind load. This 

model combines the advantages of TCN and SA, while using 

the WOA to finely tune the model parameters to achieve 

optimal prediction performance. In terms of data collection, 

we placed 2D and 3D anemometers on both sides of the bridge 

to fully capture the wind field information, and four 

accelerometers were installed to monitor the vibration 

acceleration of the bridge in both the longitudinal and 

transverse directions. From the raw data sources, we selected 

the data subset closely related to the target task. These data 

provide rich inputs for the model, allowing it to learn the 

complex relationship between wind load and bridge vibration. 

During the model training phase, we first pre-train the model 

using the collected wind speed data and bridge vibration 

acceleration data to preliminarily establish the mapping 

relationship between wind load and bridge vibration. 

Subsequently, we start the WOA process. This process 

simulates the whale hunting behavior through strategies such 

as encircling, spiral updating, and random searching, and 

automatically searches for the optimal model parameter 

combinations in the parameter space. This optimization 

process not only reduces the manual tuning workload but also 

significantly improves the efficiency of parameter 

configuration, enabling the model to better adapt to the 

complex and variable wind field environment and bridge 

vibration characteristics. Through training and optimization, 

the TCN-SA model can accurately predict the vibration 

response of bridges under different wind conditions, providing 

strong support for the safety assessment and maintenance 

management of bridges. 

 

 
 

Figure 7. Large-span bridge wind vibration response prediction algorithm model framework 

 

 

5. EXPERIMENT AND DISCUSSION 

 

5.1 Experiment setup 

 

The experimental dataset used in this paper is the bridge 

wind vibration response dataset after preprocessing, with an 

8:2 ratio for training and testing. Additionally, three 

commonly used time series forecasting models are selected as 

comparison algorithms, namely RNN, LSTM, and GRU. 

 

5.2 Hyperparameter optimization 

 

In this study, the WOA is used to optimize the key 

hyperparameters of the model, including the number of 

convolutional kernels, kernel size, and dilation factor size. 

These hyperparameters significantly affect the model's 

performance, determining its complexity, receptive field size, 

and the level of detail in feature extraction. By using WOA for 

hyperparameter optimization, the best hyperparameter 

combination is automatically selected to achieve optimal 

performance for a specific prediction task. The optimization 

process is as follows: 

(1) Initialization: Set the population size to 20 and randomly 

generate a population, where each individual represents a 

different hyperparameter combination. Each individual 

contains three hyperparameters: the number of convolutional 

kernels, kernel size, and dilation factor size. All initial values 

are randomly selected within reasonable ranges. 

(2) Fitness Calculation: For each individual (i.e., 

hyperparameter combination), we construct the corresponding 

TCN model and train it. The model's prediction error on the 

validation set is calculated as the fitness value, measuring the 

performance of the hyperparameter combination for the 

current task. 

(3) Whale Optimization: Based on the fitness calculation, 

WOA simulates the bubble net strategy used by humpback 
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whales during hunting to update the position of each 

individual. This process includes whale encircling prey, 

bubble net attack, and exploration behaviors, progressively 

iterating to update the hyperparameter combination. In each 

iteration, individuals update their positions according to the 

fitness values, choosing the better direction for parameter 

adjustment until termination conditions are met. 

The specific hyperparameter optimization range and results 

are shown in Table 1. 

 

Table 1. Hyperparameter optimization results 

 
Parameter Name Optimization Range Optimized Result 

Number of kernels [8,128] 48 

Kernel size [1,5] 4 

Dilation factor [1,4] 2 

 

 
(a) Specimen 1 

 
(b) Specimen 2 

 
(c) Specimen 3 

 

Figure 8. Wind load - wind vibration response displacement 

curves for three specimens 

5.3 Experimental results 

 

This paper uses the WOA-optimized TCN-SA model, 

combined with DIC technology and image processing 

algorithms, to analyze the wind load and wind vibration 

response displacement data of three specimens. By analyzing 

the data shown in Figure 8, we can gain an in-depth 

understanding of the dynamic response behavior of bridge 

structures under wind load and their temporal evolution 

patterns.  

For Specimen 1, the data shows a trend where the wind 

vibration response displacement gradually increases with the 

increase in wind load. Specifically, the wind vibration 

response displacements of Samples 1-1, 1-2, and 1-3 show a 

clear nonlinear growth. Taking Sample 1-1 as an example, as 

the wind load increases from 0 to the maximum value, the 

displacement increases from 0 to 400mm. The standard 

deviation (SD) also increases with the wind load, particularly 

at higher wind loads, where the SD increases significantly 

(e.g., when the wind load is 2, SD is 5, and at the maximum, 

SD reaches 405). This indicates that under high load, the 

fluctuations and uncertainties in the wind vibration response 

also increase. 

Specimen 2's data also shows a gradual increase in the wind 

vibration response displacement as the wind load increases. 

For Sample 2-1, the displacement starts from 0 and gradually 

increases with the wind load, especially when the wind load 

reaches 2, where the displacement reaches a large value, with 

a maximum displacement of 540mm. The standard deviation 

increases with the wind load, reflecting the increased 

fluctuations in structural response under high wind loads. This 

suggests that an increase in wind load not only enlarges the 

bridge's vibration displacement but also amplifies the 

fluctuation in the structural response, highlighting the need to 

pay special attention to these response characteristics under 

high loads during design and monitoring. 

Specimen 3's wind vibration response data is more complex, 

with obvious periodic oscillations. Particularly, the wind 

vibration response data for Samples 3-1, 3-2, and 3-3 exhibit 

strong oscillatory characteristics, especially under high wind 

loads, where the displacement response shows a relatively 

stable growth trend. For Sample 3-1, the wind vibration 

response displacement increases from 0 to a maximum of 

850mm. As the wind load increases, the response 

displacement gradually reaches a saturation point, and when 

the wind load is 2, the displacement reaches the maximum and 

stabilizes in subsequent load increases. This suggests that 

Specimen 3’s response might stabilize after experiencing 

certain wind loads and is no longer increasing significantly. 

From the data in Figure 9, it can be observed that there are 

certain differences in the wind vibration response 

displacement values measured by physical measurements, 

deep learning methods, and the method used in this paper 

under different load conditions for Specimens 1-1, 1-2, and 1-

3. For Specimen 1-1, as the wind vibration load increases from 

0 to 1, the physical measurement data show a relatively steady 

downward trend, with the wind vibration response 

displacement decreasing from 1500 mm to 400 mm. The 

measurements from the deep learning method and the method 

in this paper are slightly lower, especially when the wind load 

is 0.5, where the displacement measured by deep learning and 

the method in this paper are 1300 mm and 1200 mm, 

respectively, clearly lower than the physical measurement of 

1500 mm. A similar trend is observed for Specimens 1-2 and 
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1-3, where the physical measurement method consistently 

gives higher displacement values, while the measurements 

from the deep learning method and the method in this paper 

exhibit some deviation, typically being slightly lower than the 

physical measurements under the same load. For example, the 

physical measurement value for Specimen 1-3 at a wind load 

of 1 is 2100 mm, while the values from deep learning and the 

method in this paper are 2050 mm and 2000 mm, respectively, 

indicating that the measurements from deep learning and this 

method are quite close under high wind loads. 

 

 
 

Figure 9. Wind vibration response displacement values based on DIC image results for different measurement methods 

 

 
 

Figure 10. Comparison of calculation errors for different measurement methods 

 

 
 

Figure 11. Comparison of calculation errors for different measurement methods with displacement less than 0.05 mm 
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According to the data in Figure 10, the error comparison 

results for Specimens 1-1, 1-2, and 1-3 under different 

measurement methods reveal the accuracy and consistency of 

different measurement methods. For Specimen 1-1, the 

difference between the measurement results from the deep 

learning method and the physical measurement increases 

gradually with the wind load. The difference ranges from 0 to 

0.5 for the wind vibration response displacement, with the 

maximum difference being 0.06. This suggests that the error 

from the deep learning method is relatively larger under higher 

loads, especially under higher wind load conditions, where the 

error shows a significant increase. In contrast, the 

measurement error of the method in this paper is clearly 

smaller, with the difference fluctuating less between 0 and 0.5 

for the wind load range, and the maximum difference is 0.05, 

demonstrating better measurement consistency and stability 

overall. For Specimen 1-2, the difference between the deep 

learning method and the method in this paper is relatively 

small, ranging from 0.001 to 0.02, indicating high accuracy 

under low wind loads. However, under higher loads, the 

difference for the method in this paper is slightly larger than 

that of the deep learning method, with the maximum 

difference being 0.045, but still within an acceptable range. 

For Specimen 1-3, the error for the deep learning method 

increases from 0.01 to 0.06, especially under high wind loads, 

where the error becomes more pronounced. In contrast, the 

error for the method in this paper remains smaller, with the 

maximum difference being only 0.01, and as the wind load 

increases, the error tends to stabilize, showing strong stability 

and high accuracy. 

According to the data in Figure 11, for Specimens 1-1, 1-2, 

and 1-3, when the wind vibration response displacement is less 

than 0.05 mm, the differences between the measurement 

results from the deep learning method, the method in this 

paper, and the physical measurements show different error 

trends. First, for Specimen 1-1, the error for the deep learning 

method is small, fluctuating between 0 and -0.004, and the 

error is relatively stable between 0.01 mm to 0.03 mm of wind 

load. In comparison, the error for the method in this paper is 

slightly larger, fluctuating between -0.0015 and -0.006, but 

overall the variation is small, indicating that the measurement 

error for the method in this paper remains at a low level within 

this range. For Specimen 1-2, the error for the deep learning 

method is also small, with a difference range from -0.0012 to 

-0.004, indicating higher measurement accuracy under low 

wind loads. The difference for the method in this paper is 

larger, with a maximum of -0.008, but the variation remains 

within an acceptable range. Finally, for Specimen 1-3, the 

deep learning method's error is relatively stable in the 0.01 mm 

to 0.03 mm wind load range, fluctuating between -0.003 and 

0.012. In contrast, the error for the method in this paper is more 

stable, fluctuating between -0.002 and -0.014, showing good 

consistency, especially where the error variation is relatively 

stable under most measurement conditions. 

Further, we use the TCN-SA model proposed in this paper 

to predict the bridge's wind vibration response acceleration 

and compare the prediction results with those from three other 

algorithm models to determine the model's prediction 

performance. Also, to more accurately understand the bridge’s 

wind vibration response, we predict the different responses of 

four types of bridges under wind load: longitudinal 

acceleration, transverse acceleration, vertical acceleration, and 

torsional acceleration. 

Figure 12 shows the scatter plot distribution of the predicted 

values versus the true values for the bridge's wind vibration 

response acceleration in different directions using the TCN-

SA model. It can be observed that there is a linear correlation 

between the predicted and true values, and the distribution 

pattern of the predicted values aligns well with the true values, 

with low dispersion. 

 

 

 
 

 

 
 

Figure 12. Scatter plot of true values and predicted values 
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(a) Transverse acceleration 

 
(b) Longitudinal acceleration 

 
(c) Vertical acceleration 

  
(d) Torsional acceleration 

 

Figure 13. Comparison of prediction results for different models 

 

Table 2. Evaluation metrics for different directions 

 
Acceleration Prediction Model MAE/10-5 RMSE/10-5 MAPE/% 

Transverse direction 

Proposed 15.84 22.46 12.8 

RNN 22.47 28.86 18.9 

LSTM 21.48 27.23 18.2 

GRU 20.1 26.99 17.1 

Longitudinal direction 

Proposed 9.71 13.3 12.9 

RNN 13.3 17.04 19.1 

LSTM 11.58 15.36 16.4 

GRU 11.06 14.86 15.2 

Vertical direction 

Proposed 10.68 17.49 4.8 

RNN 14.65 21.11 6.4 

LSTM 13.58 19.55 5.9 

GRU 13.03 18.94 5.7 

Torsional direction 

Proposed 1.22 1.96 4.9 

RNN 1.61 2.25 6.3 

LSTM 1.42 2.11 5.6 

GRU 1.41 2.17 5.6 
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(a) Transverse direction 

  
(b) Longitudinal direction 

  
(c) Vertical direction 

  
(d) Torsional direction 

 

Figure 14. Evaluation metrics for different models 

 

Figure 13 shows the comparison between the predicted and 

true values for bridge wind vibration response acceleration in 

four directions for each model. It can be observed that the 

TCN-SA model proposed in this paper consistently exhibits 

the best performance. 

In this paper, we compare the performance of three other 

typical time series prediction algorithms, namely RNN, 

LSTM, and GRU. RNN is a neural network model specifically 
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designed for sequence data, with a memory function that 

retains information from previous time steps and applies it in 

the current time step calculation. LSTM is a special type of 

RNN that introduces gating mechanisms (forget gate, input 

gate, and output gate) to capture and utilize long-term 

dependencies more effectively, thus alleviating the gradient 

vanishing and explosion problems that traditional RNNs face 

when processing long sequence data. GRU is also a type of 

recurrent neural network structure similar to LSTM but with a 

simpler design, containing only update and reset gates, 

resulting in fewer parameters and faster training speed. Figure 

13 and Table 2 present the evaluation metrics for each model's 

prediction of bridge wind vibration response acceleration in 

four directions. 

From Figure 14 and Table 2, it can be seen that for the 

evaluation metrics of bridge wind vibration response 

acceleration predictions in various directions, the TCN-SA 

model significantly outperforms the other three models, 

followed by the GRU and LSTM models, while the RNN 

model performs the worst. During training, the TCN-SA 

model uses a causal dilated convolution and residual 

connection structure. The causal dilated convolution 

introduces a dilation into the causal convolution, giving it a 

larger receptive field to capture long-term dependencies in the 

bridge wind vibration data. The residual connection adds the 

input from the previous layer directly to the current layer’s 

output, avoiding the loss of information between network 

layers and alleviating the vanishing gradient problem. 

Moreover, the SA mechanism can automatically identify the 

important parts of the features and focus on significant features 

between different time steps, thereby capturing the potential 

relationships between the bridge's wind vibration response 

data more comprehensively and accurately. This results in the 

TCN-SA model achieving the best performance. The LSTM 

and GRU models show similar predictive performance. 

Compared to the traditional RNN model, both LSTM and 

GRU introduce gating mechanisms, which allow them to more 

effectively capture long-term dependencies in time series. The 

GRU model has a simpler structure than LSTM, removing the 

output gate and memory cell from LSTM, which reduces the 

parameter count and speeds up model training while still 

maintaining performance. The RNN model, due to its 

recurrent network structure, suffers from gradient vanishing or 

explosion problems, making it difficult to capture long-term 

dependencies in the data effectively, thus performing poorly 

in bridge wind vibration response prediction. 

 

 

6. CONCLUSION 

 

This study proposed a comprehensive monitoring and 

prediction method for the wind vibration response of large-

span bridges under wind loads, combining DIC technology, 

image processing algorithms, and machine learning models. 

The research covers three main aspects: first, using DIC 

technology to characterize the structural evolution during the 

bridge's wind vibration response, accurately extracting small 

deformations and local deformation information; second, 

applying image processing algorithms to precisely measure the 

structural evolution during the wind vibration response, 

obtaining the dynamic strain and displacement distribution of 

the bridge under wind loads; and third, constructing a wind 

vibration response prediction model by combining WOA 

optimized TCN with SA, which efficiently captures the time-

sequential evolution characteristics of the bridge structure 

under wind loads. 

The study achieves significant progress in multiple areas. 

First, the DIC-based structural evolution characterization 

method effectively captures small deformations and local 

deformations of the bridge, filling the gap in traditional 

methods for early identification of small deformations and 

detection of local deformations. Second, the application of 

image processing algorithms enables more precise 

measurements of the dynamic strain and displacement 

distribution of the bridge's wind vibration response, providing 

rich data support for in-depth analysis of the structural impact 

of wind loads. Finally, the wind vibration response prediction 

method combining the WOA and TCN-SA model can 

accurately capture the time-sequential evolution 

characteristics under wind loads, significantly improving the 

accuracy and reliability of the wind vibration response 

prediction. 

Overall, the proposed monitoring and prediction framework 

provides a more accurate theoretical basis and technical means 

for the health monitoring, structural evaluation, and 

maintenance of large-span bridges, offering high academic 

value and practical application prospects. 

However, there are certain limitations in this study. First, 

although DIC technology and image processing algorithms 

can acquire fine strain fields and crack evolution information, 

challenges remain in processing image data at high speeds and 

applying these technologies in the complex environments of 

large-span bridges. Second, although the WOA-optimized 

TCN-SA model performs excellently in terms of prediction 

accuracy, the computational complexity during the model's 

training process is relatively high, which could create 

bottlenecks for the promotion of real-time monitoring and 

early warning systems. Therefore, future research could focus 

on improving the real-time performance and efficiency of 

image processing algorithms, optimizing the computational 

efficiency of machine learning models, and exploring the 

integration of more sensor and image data to form a more 

comprehensive and efficient monitoring and prediction 

system. Future research directions could include the 

following: (1) Strengthening multi-source data fusion 

techniques by combining traditional sensor data with image 

processing results to further improve the accuracy and real-

time performance of wind vibration response monitoring and 

prediction. (2) Exploring more efficient algorithm 

optimization methods, particularly for large-scale structural 

prediction problems, to reduce computational complexity and 

improve model operability. (3) Conducting more experimental 

studies based on actual bridges to verify the application effects 

of the methods proposed in this paper in real-world 

environments, and proposing more personalized and targeted 

maintenance and reinforcement plans based on the bridge's 

specific operational conditions. 
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