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Breast cancer classification using deep learning architectures plays a crucial role in assisting 

clinicians with early-stage diagnosis. In this study, we present a comprehensive evaluation 

of YOLO architectures-YOLOv2, YOLOv3, YOLOv4, and YOLOv5-for the classification 

of breast lesions in thermal breast images. By employing these architectures, we enhanced 

the identification of relevant regions of interest (ROIs) for lesion contouring. The dataset for 

this research was sourced from a publicly available repository, and divided on a patient-by-

patient basis. This patient-based split enhances the robustness and clinical relevance of the 

model’s performance compared to prior studies that relied on random data partitioning. 

Experimental results demonstrate that YOLOv5, trained with the Stochastic Gradient 

Descent with Momentum (SGDM) optimizer, achieved superior performance, with 0.83, 

0.66, 0.97 and 0.79 for the key metrics of accuracy, precision, recall and F1-score, 

respectively. These results underscore the model’s potential for reliable breast lesion 

classification and emphasize the importance of robust dataset partitioning to enhance clinical 

applicability. 
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1. INTRODUCTION

The most commonly diagnosed cancer in women 

worldwide and the second leading cause of cancer-related 

deaths after lung cancer, breast cancer is a major health 

concern [1, 2]. Breast cancer has an incidence rate of 11.7% 

and a mortality rate of 13.6% among cancer patients 

worldwide, according to the World Health Organization's 

(WHO) Global Cancer Observatory [3]. Early detection of 

breast cancer significantly enhances the efficacy of treatment, 

with the diagnostic process typically starting with routine self-

examinations and advancing to imaging techniques followed 

by biopsies if required [4]. While biopsy is the gold standard 

in diagnosis, it presents risks such as bleeding, infection, and 

bruising, making imaging modalities a critical step before 

invasive procedures. 

Imaging techniques are used before biopsy, with the 

technique chosen depending on the size of the suspected 

cancer and the size of the breast. Due to its ability to detect 

cancers in smaller breast volumes and its non-invasive nature, 

mammography is considered the gold standard for breast 

cancer screening [5]. However, mammography has limitations, 

including patient discomfort due to compression, difficulty in 

imaging large breasts, and the use of ionizing radiation (X-

rays). In addition, mammography is often supplemented by 

ultrasound and magnetic resonance imaging (MRI). 

Ultrasound is useful for imaging larger breasts, but has limited 

penetration for deep lesions. MRI, although more sensitive, is 

less preferred due to its high cost and longer examination times 

[4]. 

Thermal imaging, or thermography, presents a promising 

non-invasive alternative for breast cancer detection, offering 

the advantage of no exposure to ionizing radiation [6]. 

Thermography captures the thermal emissions of the body, 

producing temperature-based imaging of breast tissue. It can 

be divided into active and passive as two types [7]. In passive 

thermography, the natural heat emitted by the breast is 

captured without any external stimulation. Active 

thermography, on the other hand, introduces external stimuli 

(such as cold or hot) to elicit temperature changes in the region 

of interest, and the resulting thermal variations are analyzed 

over time to distinguish between healthy and abnormal tissue 

[8]. In this way, images obtained at different times can be 

analyzed and computerized systems can be used to make the 

most appropriate distinction between lesioned and healthy 

areas. 

The rapid evolution of artificial intelligence (AI), 

particularly with the advancement of hardware and 

computational capabilities, has led to widespread application 

in medical image recognition and classification [9]. AI 
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approaches to image analysis can be categorized into machine 

and deep learning. Traditional machine learning involves 

feature extraction followed by the application of algorithms to 

classify the images. However, this manual process can result 

in critical image information being overlooked, which can 

limit the model’s accuracy. Deep learning, on the other hand, 

automates the feature extraction process, allowing for more 

robust analysis. Recent studies have consistently shown that 

deep learning models, particularly convolutional neural 

networks (CNN), exceed traditional machine learning 

methods in image-based tasks [10-12]. 

Deep learning architectures stand out as a highly effective 

technology for detecting breast lesions from thermogram 

images. In thermograms, cancer tissue typically shows higher 

temperatures than healthy tissue [13]. By analyzing the 

temperature distributions contained in thermal images, these 

architectures can accurately and quickly detect anomalies such 

as cancerous lesions. Unlike other breast imaging techniques, 

thermography is non-invasive and does not use radiation [14]. 

This is a significant advantage, especially for frequent scans. 

Thermography integrated with deep learning architectures has 

the potential to further increase clinical use by providing more 

reliable and faster lesion detection results. 

Breast cancer diagnosis is an area where early detection 

significantly improves clinical outcomes. Among various 

imaging techniques, thermal imaging (thermography) has 

gained attention due to its non-invasive nature and ability to 

detect abnormal heat patterns associated with malignancies. 

This study investigates the use of advanced deep learning 

techniques, specifically YOLO architectures, to detect and 

classify breast regions on thermograms. A publicly available 

repository, the DMR-IR database [15], used in this study. In 

order to investigate the impact of different YOLO 

architectures on breast region classification, we experimented 

with different versions such as YOLOv2, YOLOv3, YOLOv4 

and YOLOv5. Each version was evaluated in terms of its 

ability to classify both breasts in each image, identifying 

which region was relevant for contouring and lesion detection. 

The choice of YOLO architectures also allowed the integration 

of different backbones, facilitating transfer learning and 

optimization of the models for better performance on the 

thermographic dataset. A summary of the study's contributions 

can be found in the following: 

• This study evaluates the impact of different YOLO 

architectures on the classification of breast regions. 

• YOLO’s single-shot detection system allows it to 

localize lesions with high precision in thermal 

images. 

• This study enhances the state-of-the-art in breast 

cancer diagnosis using thermography by 

addressing key limitations of existing methods. 

• Specifically, it ensures that both breasts are 

correctly classified before any further lesion 

analysis, significantly improving diagnostic 

accuracy. 

 

 

2. RELATED WORK 

 

The detection of breast cancer and other lesions by means 

of thermal imaging has gained increasing attention due to its 

non-invasive nature and the absence of ionizing radiation. 

Numerous studies have focused on improving breast cancer 

diagnosis using machine learning [16, 17] and deep learning 

[18] techniques. Over the past decade, deep learning 

techniques have advanced significantly and offer important 

advantages over machine learning algorithms in accurately 

diagnosing abnormal breast tissue [19, 20]. 

Machine learning techniques on thermal images have many 

applications in breast cancer diagnosis and classification. 

Schaefer et al. [21] proposed a fuzzy classification method 

using statistical features such as mean, standard deviation, 

median for temperature to diagnose breast cancer. Acharya et 

al. [22] used support vector machines (SVM) to identify breast 

cancer with high accuracy. In another study, Mookiah et al. 

[23] classified tissue features obtained from thermograms for 

the diagnosis of breast cancer using discrete wavelet transform 

(DWT). Their results showed that fuzzy sugeno and decision 

tree algorithms gave the best results. Milosevic et al. [24] 

evaluated breast cancer classification using machine learning 

algorithms such as SVM, k-nearest neighbors (k-NN). Bayes 

and k-NN had the greatest classification performance. In 

another study, Pramanik et al. [25] used a feed-forward 

multilayer perceptron network (MLP) algorithm to classify 

breast cancer. Karim et al. [7] applied to classify breast images 

using the SVM method with gray level co-occurrence matrix 

(GLCM) features and obtained high classification results. 

On the other hand, many studies have been proposed for the 

segmentation of breast lesions. Golestani et al. [26] 

investigated the segmentation of breast lesions using k-means, 

fuzzy c-means, and a level determination method and 

qualitatively characterized the achieved segmentation 

performances. Ghayoumi Zadeh et al. [27] studied the 

automatic segmentation processes on thermograms using 

semi-automatic and deep learning networks. 

Some previous studies have used DL architectures in 

addition to studies dealing with the detection and classification 

of thermal breast images. Baffa and Lattari [8] used a CNN 

model for breast cancer detection and achieved high 

classification accuracy in the static and the dynamic datasets. 

In another study, Fernández-Ovies et al. [28] studied breast 

cancer diagnosis using thermograms with CNN and they 

reported that ResNet34 and ResNet50 architectures achieved 

the best results using transfer learning. Tello-Mijares et al. [29] 

used machine learning algorithms such as decision trees, 

artificial neural networks (ANN), naïve bayes and CNN 

architectures for breast cancer diagnosis. Farooq and Corcoran 

[30] reported that they achieved high performance for breast 

cancer classification using transfer learning with the 

InceptionV3 architecture after preprocessing on thermograms. 

In their study, Zuluaga-Gomez et al. [11] investigated breast 

cancer detection using transfer learning architectures such as 

ResNet, InceptionV3, SeResNet, Xception VGG16, and 

InceptionResNetV2 in addition to the CNN architecture based 

on segmented thermograms. Civilibal et al. [31] employed 

Mask R-CNN technique for automatic detection, segmentation, 

and classification of breast lesions on thermograms and 

achieved high scores using Res-Net50 architecture. 

Although the previous studies provide higher accuracy 

values for breast lesion detection and classification, their 

convergence speed is relatively slower. Recent studies have 

focused on developing faster architectures for medical image 

recognition problems. Al-Antari et al. [32] investigated 

computer-aided identification of breast lesions using 

mammography images. As a result of their study, they 

obtained the higher results using InceptionResNet-V2 based 

YOLO architecture on the in a breast dataset [33] and DDSM 

dataset [34]. In their study, Baccouche et al. [35] proposed the 

2990



 

simultaneous diagnosis of breast lesions from mammograms 

using YOLO-based fusion models. Aly et al. [36] studied the 

identification and classification of breast cancer from 

mammography images using YOLO architectures. They 

achieved the highest performance of the three designs using 

InceptionV3. Hamed et al. [37] proposed YOLOv4-based 

breast lesion identification and classification on 

mammography images and reported that their proposed model 

achieved higher classification results on test datasets. Kolchev 

et al. [38] studied breast lesion detection using YOLOv4 

architecture on mammography images and performed 

classification. 

Despite these advancements in mammography and other 

imaging modalities, there has been limited exploration of 

YOLO architectures for breast lesion detection in thermal 

images. Existing studies on thermographic imaging have 

focused on segmentation and classification, but often lack 

specificity in identifying which breast contains the lesion. For 

example, even if breast cancer is diagnosed using whole-image 

categorization, the results may not specify which breast is 

malignant. Similarly, segmentation-based classification of the 

hottest region can be misinterpreted as a lesion due to 

temperature differences between different slices. Moreover, 

traditional segmentation approaches can misclassify hot 

regions as lesions due to temperature variations. The YOLO 

architecture, known for its speed and accuracy, addresses these 

limitations by detecting and classifying breast lesions in a 

single pass, reducing the risk of misinterpretation and 

improving clinical applicability. This study fills that gap by 

investigating YOLO architectures for lesion detection and 

classification in thermal images. By training the models on a 

patient-by-patient basis, this work aims to increase the 

reliability of the results and to avoid biases related to random 

image splitting as observed in previous studies. 

 

 

3. MATERIAL AND METHODS 

 

In this study, YOLO architectures are used to detect and 

classify breast lesions on thermogram images. The lesion 

detection process is followed that includes the steps of dataset 

creation, pre-processing, image annotation, detection and 

classification of the images with YOLO architectures. The 

training and test sets were processed separately after the 

resulting images were divided in different sets. In order to 

clearly illustrate this process, a block diagram in Figure 1 is 

presented that explains the lesion detection and classification 

processes on thermograms step by step. This diagram covers 

the training, testing and performance evaluation of the model. 

In methodology, the YOLO architectures were trained using 

the thermograms in training set and finally, the classification 

were applied to the test set. 

 

 
 

Figure 1. Flowchart diagram of the proposed detection and classification model for breast lesion on thermograms 

 

3.1 Dataset 

 

In this study, the publicly available Database for Mammal 

Research with Infrared Image (DMR-IR) database [15] was 

used to classify breast lesions from thermal images. The 

infrared images in this dataset were captured by a FLIR 

thermal imaging camera and are 640×480 pixels in size. In 

addition, the images in the dataset were collected from a total 

of 149 patients, with an average of 27 images per patient. In 

this study, a total of 1120 images from 19 healthy and 37 

patients were obtained from the DMR-IR dataset to classify 

breast lesions from thermal images using the proposed method. 

Thermograms of healthy individual (a), patient with lesion (b), 

patient with mastectomy (c), and patient with asymmetrical 

breast (d) sample from DMR-IR dataset are shown in Figure 

2. 

In preparing the dataset, the images from the '.txt' format 

dataset were first converted to '.png' format using a Python 

code. These images were then parsed and distributed to the 

training and test sets. The contouring and annotation processes 

for the images were saved with '.txt' and '.mat' extensions using 

Image Labeler [39] and Make Sense [40] software. Here, two 

different actual class labels, healthy and unhealthy, are created 

for each image. Finally, YOLO architectures were trained 

using thermograms and localization information after 

preprocessing for training. 
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(a) (b) (c) (d) 

 

Figure 2. Sample thermograms (a) healthy individual, (b) patient with lesion, (c) patient with mastectomy, and (d) patient with 

asymmetrical breast from DMR-IR database [15] 

 

3.2 YOLO architectures 

 

In this study, we compared YOLOv5 with YOLOv2, 

YOLOv3 and YOLOv4 to evaluate the performance 

improvements of different versions of the YOLO architecture 

in the context of breast lesion detection and classification 

using thermal images. By comparing these different versions, 

we aimed to determine which YOLO architecture provides the 

best balance between detection accuracy, precision, sensitivity, 

and computational efficiency for thermal breast images. This 

comparative analysis provides insights into the evolution of 

YOLO architectures and their suitability for medical imaging 

tasks. 

The You Only Look Once (YOLO) architecture is based on 

a CNN) and serves as a deep learning technique for tracking 

and detection objects in an image [41, 42]. Because it treats an 

object as a regression problem at once and only runs the image 

through the neural network once, it is faster than the other 

state-of-the-arts techniques. It uses CNNs as the basis for 

feature extraction and categorization. The architecture starts 

operations after resizing the input photographs. Double linear 

interpolation is used to adapt the resizing procedures by 

scaling the input image first to the intermediate image and then 

to the final image. Instead of working on the whole image, the 

YOLO architecture divides the image into equal parts. It 

creates box drawings, known as bounding boxes, that show the 

elements in each zone it divides. Confidence scores are then 

calculated, which indicate the percentage similarity of objects 

in boxes that can be drawn in different sizes [43]. In 

determining whether an object is present in the drawn boxes, 

it also determines whether the box is within the object's central 

point if an object is present there. It also predicts a vector 

containing the object's length, height and class details 

according to the controls. The YOLO architecture is 

inadequate when there is more than one object center in a 

drawn box. To address this issue, researchers created the 

YOLOv2 architecture, which incorporates the anchor box 

approach and eliminates the interconnected layers [44]. As a 

result, the boxes are constructed independently for each object, 

and a confidence score, Intersection over Union (IoU), class 

likelihood, and size information are computed accordingly. 

Although it can be possible to detect more than one object in 

the box in this situation, there would be numerous superfluous 

box drawings. The architecture uses the non-max suppression 

algorithm to overcome this problem. This technique reduces 

the number of boxes containing the objects to one by 

eliminating the boxes with a confidence value less than a 

certain threshold, the boxes with the highest confidence value 

and the boxes with a value greater than IoU=0.5. The 

architectural output is then created by drawing the bounding 

box and class information on the source image, which is finally 

condensed into a single box. The structure of the YOLOv2 

architecture is shown in Figure 3. 

 

 
 

Figure 3. The structure of the YOLOv2 architecture adopted from previous study [45] 
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Figure 4. YOLOv3 architecture adopted from previous studies [46, 47] 

 

 
 

Figure 5. The network structure of the YOLOv4 architecture adapted from previous study [47] 

 

The DarkNet-19 network architecture with 19 convolutional 

layers and 5 pooling layers is used in the YOLOv2 architecture 

[48]. Instead of using fully connected layers like its 

predecessor, YOLOv2 incorporates bulk normalization and 

uses connection boxes [49]. Although these changes increase 

the speed and accuracy of the model, they are insufficient for 

recognizing small objects. The YOLOv3 architecture avoids 

these shortcomings. Through the use of novel techniques and 

the Featured Pyramid Networks (FPN) it creates, YOLOv3 

makes it possible to recognize objects of different dimensions. 

The YOLOv3 architecture uses the DarkNet53 feature 

extractor and a 53-layer convolutional neural network [49]. It 

also uses three estimation scales at each location to extract 

feature maps on the input images, as shown in Figure 4. On 

the other hand, the YOLOv4 model was created by tweaking 

and increasing the number of mesh structures in the YOLOv3 

model, selecting the best hyperparameter and performing 

normalization operations on small groups. As a result, useful 

statistics could be collected over many training iterations using 

collective normalization techniques. Furthermore, in YOLOv4, 

CSPDarkNet53 is used instead of DarkNet53 in the backbone 

structure. The CSPDarkNet53 backbone consists of 29 

convolutional layers, 725.725 receiver regions, and 27.600 

parameters [50]. The network structure of the YOLOv4 

architecture is denoted in Figure 5. In addition, in YOLOv4, 

Spatial Pyramid Pooling (SPP) helps improve object detection 

performance, especially for objects of varying scales. 

When it was discovered that the YOLOv4 model had too 

many layers and was too slow, the YOLOv5 model was 

created, increasing the speed [51]. Figure 6 shows the network 

structure of the YOLOv5 architecture. The backbone is for 

feature extraction, the neck is for feature map generation, and 

the head is for detection and classification. The YOLOv5 

architecture uses CSPDarkNet53 as the backbone, which 

provides better detection accuracy than DarkNet53 in 

YOLOv3 [52]. The Path Aggregation Network (PANet) is 

used for the parametric polymerization mechanism in the neck 

section. In addition, In YOLOv5, Cross Stage Partial (CSP) is 

a block used to improve the efficiency and performance of the 

backbone and neck sections of the model and uses as 

BottleNeckCSP in YOLOv5. The final section, the head 

section, uses the same categorization and detection 

mechanisms as YOLOv3 and YOLOv4. 
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Figure 6. The network structure of the YOLOv5 architecture adapted from previous study [53] 

 

 

4. RESULTS AND DISCUSSION 

 

In this study, we performed comprehensive experiments 

using various versions of YOLO architectures to classify 

breast lesions from thermal images. A total of 1120 thermal 

images from the DMR-IR dataset were divided into 80% 

training and 20% test sets on a patient-by-patient basis. A total 

of 44 patients (15 healthy and 29 unhealthy) were selected for 

the training set and 12 patients (4 healthy and 8 unhealthy) 

were selected for the test set. As 20 images for the right and 

left breast were obtained from the DMR-IR database for each 

patient, there are a total of 880 thermal images in the training 

set and 240 thermal images in the test set. Furthermore, 

considering two breast images per patient, the training set 

contains 1180 healthy and 580 unhealthy breast images, while 

the test set contains 320 healthy and 160 unhealthy breast 

images. Thus, in the patient-by-patient approach, 20 images 

from each patient are either in the training set or in the test set. 

In other words, each patient does not have images in both the 

training and test sets. 

In the proposed study for classification of breast lesions 

from thermal images, images obtained from DMR-IR dataset 

are labelled with ground truth (actual class) labels for two 

different classes as healthy and unhealthy using labelling 

software. In the proposed approach, after the training of 

YOLO architectures, these labels are determined for thermal 

images. Firstly, breast detection with bounding box is 

performed using YOLO architectures. In the next step, the 

classification process is completed by predicting the labels for 

the corresponding breast. 

The experimental results in this study were achieved using 

the UHeM Altay [54] server with applications written in 

Python programming language. In the experimental studies, a 

total of 16 tests, denoted in Table 1, were performed according 

to different values of some hyperparameters to evaluate the 

performance of YOLO architectures. The tests were 

performed on different architectures, specifically YOLOv2, 

YOLOv3, YOLOv4 and YOLOv5, with different backbones 

such as SquezeeNet, Tiny YOLO, DarkNet and YOLOv5x. On 

the other hand, Adam and Stochastic Gradient Descent with 

Momentum (SGDM) optimizers have been used in YOLO 

architectures. While SGDM is reliable and generalizes well 

but may require more tuning of the learning rate, converges 

faster and is easier to fine-tune, it may not generalize. On the 

other hand, the experimental analyses evaluated the effect of 

three different values of batch size, 4, 16 and 64, on the results. 

The batch size is a crucial hyperparameter that affects both the 

training speed and the ability of the model to generalize. 

Finally, the effect of the number of epochs for 10, 20, 50, 100, 

200 and 500 is also observed. In all these performance tests, 

the learning rate for each of the YOLO architectures was set 

to 0.001. 

 

Table 1. Hyperparameters optimization in training YOLOv2, 

YOLOv3, YOLOv4 and YOLOv5 architectures for breast 

lesion classification on thermal images 

 
Test  

Number 
YOLO Architecture Backbone Optimizer 

Batch 

Size 
Epoch  

1 YOLOv2 SquezeeNet SGDM 64 100 

2 YOLOv3 SquezeeNet SGDM 64 100 

3 YOLOv4 Tiny YOLO Adam 16 50 

4 YOLOv4 Tiny YOLO Adam 16 100 

5 YOLOv4 Tiny YOLO Adam 16 100 

6 YOLOv4 Tiny YOLO SGDM 16 100 

7 YOLOv4 Tiny YOLO Adam 16 200 

8 YOLOv4 Tiny YOLO SGDM 16 200 

9 YOLOv4 Tiny YOLO Adam 16 500 

10 YOLOv4 DarkNet Adam 4 10 

11 YOLOv4 DarkNet Adam 4 20 

12 YOLOv4 DarkNet Adam 4 30 

13 YOLOv4 DarkNet Adam 4 50 

14 YOLOv5 YOLOv5x SGDM 4 100 

15 YOLOv5 YOLOv5x SGDM 16 100 

16 YOLOv5 YOLOv5x SGDM 16 200 

 

Table 2. The confusion matrix design for breast lesion 

classification on thermal images 

 
  Predicted Class 

  Unhealthy Healthy 

Actual 

Class 

Unhealthy 
TP 

True Positive 

FN 

False Negative 

Healthy 
FP 

False Positive 

TN 

True Negative 

 

In this study, which is proposed to classify breast lesions as 

healthy and unhealthy from thermal images, the classification 
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performances of YOLO architectures are evaluated using the 

key metrics of Accuracy, Precision, Recall and F1-score 

obtained from the confusion matrix. These metrics are given 

in Eqs. (1)-(4), respectively. The confusion matrix from which 

these equations are generated is shown in Table 2. Here, true 

positive (TP) predicts lesioned breasts as unhealthy and true 

negative (TN) predicts non-lesioned breasts as healthy. On the 

other hand, false negative (FN) indicates breast images with 

lesions but classified as healthy, while false positive (FP) is 

used for breast images without lesions but classified as 

unhealthy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Table 3. The confusion matrix results and breast lesion classification scores by key metrics for performance tests 

 
Test Number Architecture TP FP TN FN Empty Total Precision Recall F1-Score Accuracy 

1 YOLOv2 125 75 245 35 0 480 0.63 0.78 0.70 0.77 

2 YOLOv3 124 80 218 29 29 480 0.61 0.81 0.70 0.76 

3 YOLOv4 76 78 220 43 63 480 0.49 0.64 0.58 0.71 

4 YOLOv4 76 86 221 43 54 480 0.47 0.64 0.54 0.70 

5 YOLOv4 73 65 210 35 97 480 0.53 0.68 0.59 0.74 

6 YOLOv4 63 75 190 52 100 480 0.46 0.55 0.50 0.67 

7 YOLOv4 79 87 222 61 31 480 0.48 0.56 0.52 0.67 

8 YOLOv4 58 74 222 59 67 480 0.44 0.50 0.47 0.68 

9 YOLOv4 72 71 231 47 59 480 0.50 0.61 0.55 0.72 

10 YOLOv4 66 120 191 69 34 480 0.36 0.49 0.41 0.58 

11 YOLOv4 45 55 248 58 74 480 0.45 0.44 0.44 0.72 

12 YOLOv4 76 49 220 52 83 480 0.61 0.59 0.60 0.75 

13 YOLOv4 43 51 180 33 173 480 0.46 0.57 0.51 0.73 

14 YOLOv5 116 101 219 29 15 480 0.54 0.80 0.64 0.72 

15 YOLOv5 141 72 230 5 32 480 0.66 0.97 0.79 0.83 

16 YOLOv5 132 82 238 28 0 480 0.62 0.83 0.71 0.77 

 

 
 

Figure 7. Training and validation loss curves for the training set of the YOLOv5 architecture 

 

Table 3 shows the results obtained for 16 different 

performance tests conducted on the test set using YOLO 

architectures (YOLOv2, YOLOv3, YOLOv4 and YOLOv5) at 

different hyperparameter values for patient-by-patient 

detection and classification of breast lesions from thermal 

images. To evaluate the classification performance, 240 breast 

thermal images from 12 patients in the test set, 20 images from 

each patient, were used in the patient-by-patient approach. 

Since each breast in each patient has a separate class label as 

healthy or unhealthy, the results were obtained over a total of 

480 images for the test set, taking into account two breasts in 

each patient. Here, both the confusion matrix values obtained 

for each of the YOLO architectures and the Accuracy, 

Precision, Recall and F1-score key metric results are presented. 

On the other hand, in the event that breast detection could not 

be performed in thermal images with YOLO architectures, the 

relevant images were evaluated as Empty. In the patient-by-

patient approach proposed in this study, 20 thermal images 
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(480 breast images for 12 patients) of the same patient are 

included in the test set. Evaluating the results in Table 3, it can 

be seen that the most successful classification results are 

obtained with YOLOv5 in Test 15. For this test, results of 0.83, 

0.66, 0.97 and 0.79 were achieved for Accuracy, Precision, 

Recall and F1-score key metrics, respectively. The highest 

value was achieved for TP and the lowest for FN. On the other 

hand, 32 breast images were categorized as Empty, as no 

breast detection could be performed with YOLOv5. On the 

other hand, the highest accuracy score of 0.75 was achieved in 

the classification of breast lesions from thermal images using 

YOLOv4, while 0.77 and 0.76 accuracy scores were obtained 

for the YOLOV2 and YOLOv3 architectures, respectively. 

When the results of all architectures are compared, it is seen 

that either Empty responses or high FP values are common 

issues. On the other hand, this common issue shows that 

training with a low-dimensional dataset may lead to an 

inability to distribute the results proportionally or to choose 

the correct backbone. 

 

 
 

Figure 8. Areas under Precision-Recall curves for randomly 

(a), and patient by patient (b) approaches in the training set 

for YOLOv5 architecture 

 

Since the highest accuracy in breast lesion classification 

from thermal images was achieved with YOLOv5, Figure 7 

shows the training and validation loss curves for the training 

and validation sets. Here, box_loss, obj_loss and cls_loss 

graphs are shown for the training and validation sets. box_loss 

shows the accuracy of the coordinates of the ground truth 

bounding box and the predicted bounding box. obj_loss 

measures how confident the model is that an object exists 

within a predicted bounding box. On the other hand, cls_loss 

evaluates the accuracy of the predicted class label for each 

object within a bounding box. From these graphs it can be seen 

that the training of YOLOv5 is successful and generalizes the 

results. It can also be seen that the cls_loss graph for the 

validation set does not follow a regular decreasing trend and 

has a variable structure. 

In order to evaluate the accuracy of the patient-by-patient 

approach proposed in this study for the detection and 

classification of breast lesions from thermal images, 1120 

patient images in the prepared dataset were randomly divided 

into 80% (896 images) training set and 20% (224 images) test 

set. Thus, a total of 1792 breast images were randomly 

generated for evaluation in the training set for both breasts. 

Furthermore, for randomly approach, considering two breast 

images per patient, the training set contains 1182 healthy and 

610 unhealthy breast images, while the test set contains 298 

healthy and 150 unhealthy breast images. As a result of the 

training performed using the YOLOv5 architecture, Figure 8 

(a) shows the area under the Precision-Recall curves obtained 

with the randomly approach for the healthy and unhealthy 

classes, and Figure 8 (b) shows the area under the Precision-

Recall curves obtained with the patient-by-patient approach 

for the healthy and unhealthy classes. Although the area under 

the curves is larger for the random approach and YOLOv5 is 

considered to be more successful in classification, it is 

assumed that the network in this approach memorizes the 

images of the same patient from both training and test sets. 

Another important point supporting this is that the thermal 

images in the dataset were acquired at very close time intervals, 

so the images are very similar to each other. 

Breast cancer diagnosis using thermograms has been 

investigated in many machine learning and deep learning 

studies in the previous [7, 25, 28]. In addition, these studies 

typically use techniques such as direct classification or 

automatic segmentation of breast regions, segmentation of the 

hottest areas of the thermogram, classification using 

segmented breast images, and methods that combine 

segmentation and classification. In Table 4, previous studies 

proposed using thermal breast images from the DMR-IR 

database are categorized as machine learning and deep 

learning approaches, and performance comparisons are 

provided. In addition, these studies are categorized into 

detection, segmentation and classification. It is observed that 

deep learning-based methods are more successful than 

machine learning based methods in the previously proposed 

studies for breast lesion detection from thermal images. On the 

other hand, it is observed that the most of the previously 

proposed studies are based on a randomized approach and the 

studies based on a patient-by-patient approach, as in this study, 

are limited. In this study, the training and test sets were 

separated on patient basis, and the YOLOv5 model achieved 

83% accuracy for classification performance. 
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Table 4. The performance comparisons for previous studies proposed using thermal breast images from the DMR-IR dataset 

(NA: not applicable) 

 
Method Study Approach Model Data Split Technique Accuracy (%) 

Machine 

Learning 

Pramanik et al. [25] Detection & Classification MLP Randomly 90.48 

Karim et al. [7] Classification SVM NA 91.25 

Ghayoumi Zadeh et al. [27] Classification Autoencoder NA 94.87 

Deep 

Learning 

Baffa and Lattari [8] Classification CNN Randomly 
98.0 (static) 

95.0 (dynamic) 

Fernández-Ovies et al. [28] Classification CNN Randomly 100 

Tello-Mijares et al. [29] Detection & Classification CNN NA 100 

Civilibal et al. [55] Segmentation & Classification 
Mask R-CNN and 

transfer learning 
Randomly 100 

Zuluaga-Gomez et al. [11] Classification CNN Randomly 92.0 

Civilibal et al. [31] Detection & Classification Mask R-CNN Randomly 97.1 

Our study Detection & Classification  YOLOv5 On a patient-by-patient basis 83.0 

 

 

5. CONCLUSIONS 

 

In this study, YOLOv5 architecture based on patient-by-

patient basis was proposed for the detection and classification 

of breast lesions on thermal breast images. In addition, the 

performance results of YOLO architectures such as YOLOv2, 

YOLOv3, YOLOv4, and YOLOv5 were compared for breast 

lesion classification. In the study, breast lesion diagnosis was 

achieved by categorizing full thermograms, segmenting the 

hottest parts, manually or automatically segmenting the breast 

regions and then training on the segmented breasts. As a result, 

using YOLO-based deep learning architectures, this study 

adopted a patient-based strategy, investigating the detection of 

breasts one by one and then applying a specific categorization 

procedure for each breast. For the best performance result, we 

achieved for YOLOv5 trained with the SGDM optimization 

algorithm, 100 epochs and 16 batch size hyperparameters, in 

yielded scores of 0.83, 0.66, 0.97 and 0.79 for the key metrics 

of accuracy, precision, recall and F1-score, respectively. These 

findings underline the model’s ability to detect and classify 

lesions with high sensitivity, which is critical in clinical 

practice. The decision to divide the dataset on a patient-by-

patient basis is indeed a strong approach, as it enhances the 

study’s reliability by preventing data leakage-where similar or 

nearly identical images from the same patient could end up in 

both the training and test sets. This method ensures that the 

model does not unfairly benefit from memorizing features 

specific to individual patients, but rather learns to generalize 

across different individuals. 

Our study also contributes to the growing body of research 

by providing a detailed comparison of different YOLO models 

and showing that YOLO architectures, due to their speed and 

one-pass design, are highly suitable for real-time medical 

applications. Nonetheless, we acknowledge the need for 

additional work to further refine the models, improve 

generalizability, and reduce any biases introduced by the 

dataset or methodology. Future work may include larger 

datasets, a more detailed comparison with other state-of-the-

art deep learning models, and exploring different methods for 

improving precision. 
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