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Lung cancer remains a serious public health concern characterize by its alarming mortality 
rates. Timely detection and precise segmentation of lung nodules are pivotal in patient 
survival rates. However, lung nodule segmentation presents challenges due to its small size 
and resemblance to surrounding tissues in computed tomography (CT) scans. Manual 
segmentation by expert radiologists is prohibitively expensive and time-consuming. This 
study introduces a residual connection based encoder decoder (RCED) structure into the 
UNet3+ architecture for lung nodule segmentation. The main contribution includes 
integrating elements such as residual connections and deep supervision to enhance learning 
efficiency and overcome vanishing gradient issues in segmenting small, complex lung 
nodules. To evaluate the effectiveness of the proposed architecture the training and testing 
were conducted on the publicly available Lung Image Database Consortium - Image 
Database Resource Initiative (LIDC-IDRI) dataset. The results are highly promising, with 
the model achieving a Dice similarity coefficient (DSC) of 0.980 and an Intersection over 
Union (IoU) of 0.963. Augmentation techniques were employed not only to expand the 
dataset size but also to optimize model performance, further elevating the DSC and IoU 
scores to 0.984 and 0.979, respectively. The proposed RCED-UNet3+ architecture 
showcases remarkable potential for diagnosing and treatment of lung cancer. 
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1. INTRODUCTION

In recent years, there has been a noticeable increase in lung
cancer incidence, as reported by both the Global Cancer 
Observatory (GCO) [1] and the American Cancer Society 
(ACS). ACS data for 2024 reveals approximately 236,740 new 
cases of lung cancer, with 116,310 occurring in men and 
118,270 in women. Furthermore, lung cancer was responsible 
for approximately 125,070 fatalities, with 65,790 men and 
59,280 women affected [2]. The primary cause of lung cancer 
is the abnormal and uncontrolled growth of cells in lung tissue, 
commonly referred to as pulmonary or lung nodules. These 
nodules can be either benign or malignant [3] and may serve 
as indicators of cancer. Physicians often classify solitary 
pulmonary nodules (SPNs) as benign based on specific 
anatomical features, such as being well-defined, vascularized, 
adjacent to pleura, or possessing a pleural tail [4-6]. In 
contrast, malignant nodules tend to grow quickly and can 
potentially affect nearby organs. Thus, early detection of lung 
nodules and careful treatment planning may improve the five-
year survival rate for patients [7]. Standard diagnostic 
techniques, such as computed tomography (CT) scans and 
chest X-rays, are employed to identify lung cancer. 
Radiologists typically review numerous CT slices to manually 

identify lung nodules, which may lead to overlooking small, 
low-density nodules due to the fatigue associated with this 
demanding task. 

Computer-aided diagnosis (CAD) systems have been 
created to help radiologists detect nodules through advanced 
image analysis techniques. The goal of these systems is to 
accurately identify and outline nodules, thereby decreasing the 
time needed for detection. Their influence on the timely and 
precise diagnosis of lung cancer is considerable. 
Enhancements in CAD systems have significantly improved 
the classification, detection, and segmentation of nodules, 
which are vital components in the assessment of lung 
malignancy. 

Both traditional feature-based techniques and deep learning 
models have proven effective in identifying and segmenting 
nodules. However, feature-based techniques frequently 
depend on manual feature extraction, which can present 
difficulties, especially when segmenting nodules that are 
connected to the lung wall [8]. Recent advances in medical 
image processing using deep learning have transformed 
clinical applications. These methods automatically extract 
vital information from medical images, overcoming 
limitations of manual feature engineering [9]. 

Fully Convolutional Networks (FCNs), based on deep 
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learning, are being increasingly applied in biomedical image 
segmentation, with U-Net models gaining particular attention 
[10]. These models consist of an encoder, a central bottleneck 
component, and a decoder. The U-shaped structure, where the 
encoder extracts features, the bottleneck ensures information 
flow, and the decoder reconstructs segmented images, has 
proven effective for medical image segmentation [11]. 
Researchers continue to refine the U-Net architecture to 
enhance feature extraction capabilities, addressing specific 
challenges in Medical Image Analysis. These adjustments aim 
to boost model performance by capturing high-level features 
from complex images. The UNet framework and its advanced 
versions, such as UNet++ and UNet3+, have proven highly 
effective in medical image segmentation, particularly for lung 
nodules. These models utilize skip connections to preserve 
spatial information and facilitate better gradient flow during 
the training process. However, as the network deepens, 
optimization issue arises such as vanishing gradient problems, 
especially in the encoder, making it harder to accurately 
segment smaller lung nodules. 

This research addresses the issue by incorporating residual 
connections within the encoder to enhance the learning 
capability, particularly for small and complex nodules. The 
inclusion of residual blocks helps mitigate the vanishing 
gradient issue by ensuring continuous feature propagation and 
improving feature extraction. This adjustment enhances 
segmentation accuracy and accelerates network convergence 
while minimizing information loss during downsampling, 
outperforming the original UNet3+, which depends solely on 
skip connections. Furthermore, integrating the model into 
clinical processes could enhance medical imaging analysis, 
minimizing the time radiologists spend on manual 
segmentation. This automation could result in quicker, more 
uniform outcomes, supporting earlier diagnosis and timely 
treatment. 

This study makes the following contributions: 
1. An RCED-UNet3+ architecture is introduced for lung

nodule segmentation, improving both the encoder and decoder 
components by incorporating advanced features like residual 
and skip connections, along with deep supervision.  

2. The utilization of data augmentation techniques is
explored to enhance the model's performance in lung nodule 
segmentation, aiming to evaluate its effectiveness in 
improving results. 

3. A comprehensive comparative analysis is undertaken to
evaluate the performance and efficiency of the proposed 
architecture against other state-of-the-art methods in the field 
of lung nodule segmentation. 

The paper is organized into six sections. Section 2 provides 
a literature review of lung nodule segmentation. Section 3 
outlines the methodology for implementing the proposed 
RCED-UNet3+ architecture. Section 4 presents the 
experimental setup, and Section 5 discusses the results along 
with a comparative analysis of other architectures. Finally, the 
conclusion is presented in Section 6. 

2. LITERATURE REVIEW

Many State-of-the-art frameworks for precise nodule
identification, segmentation, and classification have been 
proposed by numerous researchers. Most extensive survey 
works on nodule detection and classification are available in 
studies [12, 13]. Before the rise of deep learning, researchers 

put forth a collection of conventional machine learning 
techniques for the segmentation of nodules. These encompass 
methodologies such as rule-based methods, intensity-driven 
methods, morphological operations, level-set methods, graph-
cut algorithms, threshold-based techniques, and region-
growing methods [14-18]. For nodule segmentation, an 
approach utilizing a rolling ball filter and rule-based analysis 
is present in study by Messay et al. [15]. Yuan and He [16] 
provides information on energy optimization techniques 
including level sets and graph cuts. Demeshki et al. [18] 
suggests a contrast-based region-growing approach. Kostis et 
al. [19] utilizing the morphological opening operator in 
conjunction with connected components serves to effectively 
delineate the lung nodule and separate it from the associated 
blood vessels. To facilitate the segmentation of the nodule 
through region-growing-based methods, users are required to 
provide an initial seed point. de Carvalho Filho et al. [20] 
process the lung parenchyma region with Gaussian and 
median filters. The segmentation of lung nodules and the 
extraction of shape and texture information are carried out 
using the quality threshold technique. Afterward, a Support 
Vector Machine accurately eliminates incorrectly segmented 
area. Jacobs et al. [21] designed twenty-one context features, 
which can greatly enhance classification performance, 
drawing from the grayscale characteristics, as well as from the 
structure of lung nodules. 

The drawback of the above-mentioned algorithms is that 
they depend on the manual feature extraction technique for the 
effective segmentation of the area of interest. Additionally, 
most methods cannot separate nodules connected to the lung 
wall. Features that are manually crafted are derived from the 
input image data, leading to a reduction in dimensionality 
through a process of summarizing the input. Deep learning, a 
subset of machine learning, has demonstrated greater 
effectiveness compared to traditional approaches. State-of-
the-art deep learning (DL) techniques deliver cutting-edge 
performance in image classification, segmentation, and object 
detection. In image classification, DL models are capable of 
autonomously learning complex patterns and features within 
the data, allowing for highly accurate categorization of images 
into various classes. For segmentation tasks, DL algorithms 
excel at identifying and labeling specific regions or objects 
within an image, enabling detailed and precise analysis of 
individual segments. Moreover, in object detection, DL 
approaches are highly effective at recognizing and locating 
multiple objects in an image, providing both class labels and 
highly accurate bounding box coordinates for each detected 
object. These methods significantly surpass the limitations of 
manual feature extraction, marking a major advancement in 
the field. 

Deep learning-based lung nodule segmentation and 
classification algorithms can be implemented on both 2D and 
3D images [22]. Among several deep learning architectures, 
convolutional neural network (CNN) is the most effective and 
commonly used method for analyzing medical images [23]. 
CNN is capable of classifying each pixel in an image 
independently by providing the surrounding regions of a 
specific pixel as input. For example, Ciresan et al. [24] 
proposed a method for segmenting neuronal membranes in 
microscopic images based on light patches and sliding 
windows. There are two issues because of the sliding window 
one is redundant calculation and the other is substantial input 
patch overlap with neighboring pixels. Long et al. [25] address 
these challenges by employing a fully convolutional network, 
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where the final fully connected layers of the CNN are replaced 
with transposed convolutional layers. Ronneberger et al. [26] 
introduced the U-Net architecture, a U-shaped network 
integrated with an end-to-end fully convolutional network 
(FCN) for medical image segmentation. U-Net has become a 
widely adopted FCN for segmentation applications. Ding et al. 
[27] present a lung nodule detection approach leveraging 
Faster Region-based Convolutional Neural Network (R-CNN) 
alongside deep convolutional neural networks (DCNN). The 
technique initially extracts features using Visual Geometry 
Group (VGG16), followed by deconvolution to recover the 
feature map's dimensions, and ultimately employs Faster R-
CNN and DCNN to identify lung nodules and eliminate false 
positives. Setio et al. [28] propose a multi-view CNN-based 
method for detecting lung nodules. After the initial detection 
stage, this method processes potential lung nodules by 
utilizing axial, sagittal, and coronal plane images. These 
images are then stored in a substantial residual network for 
further analysis. The predicted result is obtained by combining 
the outputs from the multi-view networks. Gong et al. [29] 
proposed an enhanced U-Net model for pulmonary nodule 
segmentation by incorporating squeeze-and-excite modules. 
This improvement embeds SE-ResNet modules into both the 
encoder and decoder of U-Net, allowing for a more effective 
fusion of high-level and low-level semantic features, thereby 
increasing the network's representational capability. 

Zhou et al. [30] introduced three distinct UNet network 
architectures. The first is UNete, which consists of an 
overarching architecture built of UNets of various depths that 
share some codifiers but have unique decoders for each. This 
suggests that the subsequent networks do not monitor the 
decoders of the preceding ones, and the skip connections only 
combine the decoder characteristic maps at the same 
resolution scale, which is too limited. The second is UNet+ 
which is a direct link between two neighboring nodes that 
solves the skip connection issue. Additionally, this resolves 
the issue of shallow and deep decoders not receiving a 

supervision signal. The third approach is UNet++, which 
introduces a notably useful fusion of capabilities within the 
decoder nodes. In this method, each decoder node undertakes 
two specific tasks: vertically integrating multi-scale functions 
from prior nodes with differing resolutions, and horizontally 
amalgamating features from all preceding nodes operating at 
the same resolution. Maps of the aggregate characteristics are 
created in this manner, leading to a more accurate training 
procedure with less loss of semantic information. 

A variant stemming from UNet is UNet3+, notable for its 
utilization of deep supervision extended across multiple scales 
during training. It further enhances the skip connections by 
incorporating multiscale features. Another innovation by 
Aversano et al. [31] known as GUNet3++, combines the 
strengths of UNet++ and UNet3+ networks. This architecture 
effectively conveys information across a wide range of sizes, 
spanning from shallower to deeper nodes, through the dense 
pyramidal transducer block. Furthermore, the multiscale skip 
connections enable the network to gather knowledge from 
various sources. Agnes et al. [32] introduce a novel approach 
known as Wavelet U-Net++ for precise lung nodule 
segmentation. This method combines the U-Net++ 
architecture with wavelet pooling to effectively capture both 
high and low-frequency details in images, thereby improving 
segmentation accuracy. The Haar wavelet transform is 
employed during the encoding phase's down-sampling 
process, ensuring the preservation of fine-grained details in the 
image. Gite et al. [33] evaluate the performance of four well-
known neural network architecture: U-Net, FCN, SegNet, and 
UNet++ using the Shenzhen and Montgomery datasets. The 
results reveal that the UNet++ architecture significantly 
outperforms the others, attaining a remarkable accuracy of 
98%. The U-Net model demonstrates flexibility in overcoming 
various challenges in medical image segmentation through its 
numerous extensions and enhancements. Table 1 highlights 
various improved models based on the U-Net architecture, 
aimed at achieving precise segmentation in medical images. 

 
Table 1. Summary of improved network structure for a few UNet variants. 

 
Model Structure Year Improved Structure Highlights 

UNet [34] 2020 Fully connected layer Fully connected layer changed to an up sampling layer. 
UNet++ [35] 2019 Skip connection Use dense blocks and in-depth Supervision. 
UNet 3+ [36] 2020 Skip connection Full-scale jump connection and deep Supervision. 

Context Encoder Network 
[37] 2019 Bottleneck between encoder and 

decoder DAC and RMP structure. 

nnU-Net [38] 2021 Network organization Multiple ordinary U-Nets form a network pool. 
Attention Net [39] 2018 Skip connection Add the attention module to the skip Connection. 

 
 

3. METHODOLOGY 
 

This section explains the proposed lung nodule 
segmentation model shown in Figure 1. The architecture 
modifies UNet3+ by adding residual connections to enhance 
the encoder's abstraction of high-level features, effectively 
addressing network degradation. Additionally, the hybrid loss 
function penalizes incorrect background and foreground pixel 
classification, ensuring accurate segmentation. The following 
subsections detail the step-by-step implementation of the 
proposed methodology. 
 
3.1 Dataset 
 

The dataset used in this study is the LIDC-IDRI database, 
which is a publicly available database of lung CT scans. The 

dataset comprises chest CT images accompanied by XML 
files, that have been already annotated by four certified 
medical experts. This dataset encompasses 1018 CT scans 
belonging to 1010 distinct patients. Each scan is represented 
in its original form through DICOM images alongside 
corresponding XML files. The CT scans are uniformly 
structured in DICOM format, quantified in Hounsfield Units 
(HU), possess a trichromatic composition, and exhibit 
dimensions of 512 × 512 pixels. The dataset is often used in 
the design and testing of deep learning algorithms for the 
segmentation and detection of lung cancer and is currently 
considered a benchmark dataset in this domain [40]. 
 
3.2 Preprocessing 
 

The preprocessing of CT scans involves isolating the lung 
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parenchyma from the surrounding tissues, such as bed frames, 
clothing, muscles, and bones, to eliminate any interference. 
Since lung nodules are located within the lung parenchyma, 
accurately segmenting this area from CT images is essential 
for reducing the chances of false positives and improving the 
accuracy of segmentation results. In CT images, the lung 
parenchyma appears as a continuous region with lower 
grayscale values, contrasted by higher grayscale values 
representing the chest muscles. The segmentation process for 
lung parenchyma is complex and comprises of multiple steps. 
Initially, the CT images undergo binarization, which generates 
a binary image of the lung region, typically by representing 
lung tissue as black and the rest as white through thresholding. 
Morphological dilation techniques are then utilized to fill gaps 
caused by denser tissues within the lung parenchyma. This 
method expands the boundaries of the lung regions, allowing 
small interruptions or breaks to be seamlessly filled. 
Consequently, this leads to a complete representation of the 
parenchyma. Figure 2 illustrates the various stages involved in 
the segmentation of lung parenchyma from CT images. 
 

 
 

Figure 1. Proposed methodology for lung nodule 
segmentation 

 

 
 

Figure 2. The steps involved in segmenting lung parenchyma 
from CT images 

 
3.3 Data augmentation 

 
After preprocessing, data augmentation is performed to 

increase the data size and evaluate the effectiveness of the 
model with and without data augmentation. A total of three 
augmentation techniques were implemented, extending each 
data sample to 4 samples, resulting in a total of 62,200 
samples. The three techniques for geometric transformation 

invariance, including horizontal flipping, vertical flipping, and 
rotation, are defined below and illustrated in Figure 3. 
 

 
 

Figure 3. Original image and three augmented variations 
 
3.3.1 Horizontal and vertical flipping  

These techniques are used to simulate changes in lung 
nodule orientation. Nodules can appear on either side or in 
multiple positions within the lungs, and flipping helps the 
model recognize consistent features regardless of orientation. 
 
3.3.2 Rotation 

It is designed to correct slight positional shifts that may 
occur during medical scans due to patient posture. By 
introducing rotations, the model becomes more adaptable to 
these positional variations, thereby enhancing its segmentation 
accuracy across different nodule locations. 
 
3.4 Proposed model 
 

UNet++ and UNet3+ are two variants of the UNet 
architecture that aim to improve the original UNet model's 
capabilities for segmentation tasks. They achieve this by 
incorporating more advanced features and design 
modifications. The UNet++ architecture uses a nested, multi-
scale approach, allowing the network to capture more 
comprehensive information at different scales. On the other 
hand, the UNet3+ architecture modifies the skip pathways 
(which connect the encoder sub-network to the decoder sub-
network) and deep supervision block, enhancing the model's 
effectiveness in image segmentation tasks. However, the 
encoder and decoder subnetworks remain unchanged as 
compared to UNet. The encoder and decoder in all variants of 
UNet are made up of two 3 × 3 convolutional layers with a size 
of 64, and each convolutional layer is followed by a ReLU 
activation function. This means that there is a ReLU activation 
at the very end of each residual block and this can negatively 
affect propagation as large weight updates (especially in the 
beginning) will cause the activation value to always be 0, 
regardless of the input. 

The encoder captures the abstract features of the input 
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image which are essential semantic information. If more 
semantic information can be extracted from the encoder, the 
segmentation accuracy should improve. To improve feature 
extraction in encoders and to avoid the problem of network 
degradation, the proposed architecture has a residual 
connection network for encoders and decoders. 

Residual connections are crucial in deep neural networks for 
addressing the vanishing gradient problem. By allowing 
information to flow directly during both forward and 
backward propagation, these connections improve learning 
efficiency and optimization, especially for small, complex 
lung nodule structures. In contrast to standard UNet3+ 
approaches that often lack residual learning, this method 

promotes enhanced feature reuse and faster convergence. 
Additionally, residual connections are essential for handling 

the variability in the shapes and sizes of lung nodules, ensuring 
that the model preserves critical spatial and contextual 
information across layers. Without residual learning, deep 
networks might struggle to capture the fine details necessary 
for precise segmentation. A residual connection network 
consists of many residual blocks and allows information to 
propagate more easily, both forward and backward. In our 
proposed structure, each encoder and decoder block consist of 
a residual connection network as shown in Figure 4, hence 
improving the encoder and decoder sub-networks. 

 

 
 

Figure 4. Proposed encoder structure of RCED-UNet3+ architecture 
 

The proposed residual connection network has 3 
convolutional layers of, sizes 1 × 1, 3 × 3, and 1 × 1, and before 
each of these layers, a batch normalization (BN) and ReLU 
activation are performed where batch normalization is a 
technique used to address the vanishing gradient problem. It 
helps to maintain a stable distribution of inputs by normalizing 
the activations within each layer. It acts as a regularizer, 
preventing overfitting, improving generalization, and 
facilitates the use of higher learning rates, leading to faster 
convergence and reduced training time in these deep neural 
networks. The output from these layers combined with the 
original input form a residual connection (RC). If  𝑥𝑥  is the 
original input to the block and 𝐹𝐹(𝑥𝑥)  represents the output 
through all the layers then 𝑅𝑅𝑅𝑅 can be expressed as: 
 

𝑅𝑅𝑅𝑅 = 𝑥𝑥 + 𝐹𝐹(𝑥𝑥) (1) 
 

However, the dimensions of 𝐹𝐹(𝑥𝑥)  and  𝑥𝑥  need to be the 
same for element-wise addition; to ensure this we introduce 
another 1 × 1 convolutional layer with 0 padding and apply it 
to 𝑥𝑥. Then we get: 
 

𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) + 𝐹𝐹(𝑥𝑥) (2) 
 

This residual network should improve the accuracy as it 

reduces the number of channels and solves the problem of 
having an activation of a value of 0 regardless of input. 

The architecture proposed in this paper modifies the 
UNet3+ architecture by incorporating residual connections to 
solve the problem of vanishing gradient. The proposed 
architecture not only surpasses the performance of the original 
UNet architecture by incorporating advanced skip pathways 
and deep supervision, but it also ensures higher feature 
abstraction at the encoder level and mitigates network 
degradation. The proposed RCED-UNet3+ model is illustrated 
in Figure 1 which significantly improves overall segmentation 
performance, achieving a Dice score of 0.984. In contrast, the 
baseline UNet3+ model exhibits a Dice score of 0.965. This 
highlights the impact of residual connections in improving 
feature learning, especially for the segmentation of irregularly 
shaped lung nodules. 

Table 2 describes the parameters of the proposed 
architecture, encompassing layer names, operations executed 
at each layer, and the resulting output size. The model is 
structured with four primary layer types: input layer, encoder 
layers, decoder layers, and output layer. Each layer undertakes 
operations such as convolution, batch normalization, and 
rectified linear unit (ReLU) activation. The table also 
describes the number of output channels and the size of the 
convolution kernels for each layer. 
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Table 2. Detailed parameters of proposed RCED-UNet3+ 
 

Name Operations Output Size 
Input 512 × 512 × 1 

Encoder 0 (E0) 

Conv, c = 64, k = 1 
BN, ReLU, Conv, c = 64, k = 3 
BN, ReLU, Conv, c = 64, k = 1 

RC 

512 × 512 × 64 

Encoder 1 (E1) 

MaxPooling, k = 2 
BN, ReLU, Conv, c = 128, k = 1 
BN, ReLU, Conv, c = 128, k = 3 
BN, ReLU, Conv, c = 128, k = 1 

RC 

256×256×128 

Encoder 2 (E2) 

MaxPooling, k = 2 
BN, ReLU, Conv, c = 256, k = 1 
BN, ReLU, Conv, c = 256, k = 3 
BN, ReLU, Conv, c = 256, k = 1 

RC 

128×128× 256 

Encoder 3 (E3) 

MaxPooling, k = 2 
BN, ReLU, Conv, c = 512, k = 1 
BN, ReLU, Conv, c = 512, k = 3 
BN, ReLU, Conv, c = 512, k = 1 

RC 

64 × 64 × 512 

Bottleneck 

MaxPooling, k = 2 
BN, ReLU, Conv, c = 1024, k = 1 
BN, ReLU, Conv, c = 1024, k = 3 
BN, ReLU, Conv, c = 1024, k = 1 

32 × 32 × 1024 

Decoder3 (D3) 

E0: MaxPooling, k = 8 
Conv, BN, ReLU, c = 64, k = 3 

E1: MaxPooling, k = 4 
Conv, BN, ReLU, c = 64, k = 3 

E2: MaxPooling, k = 2 
Conv, BN, ReLU, c = 64, k = 3 

E3: Conv, BN, ReLU, c = 64, k = 3 
Bottleneck: UpSampling, k = 2 
Conv, BN, ReLU, c = 64, k = 3 

Concatenate new E0, E1, E2, E3, Bottleneck 
BN, ReLU, Conv, c = 320, k = 1 
BN, ReLU, Conv, c = 320, k = 3 
BN, ReLU, Conv, c = 320, k = 1 

RC 

64 × 64 × 320 

Decoder2 (D2) 

E0: MaxPooling, k = 4 
Conv, BN, ReLU, c = 64, k = 3 

E1: MaxPooling, k = 2 
Conv, BN, ReLU, c = 64, k = 3 

E2: Conv, BN, ReLU, c = 64, k = 3 
D3: UpSampling, k = 2 

Conv, BN, ReLU, c = 64, k = 3 
Bottleneck: UpSampling, k = 4 
Conv, BN, ReLU, c = 64, k = 3 

Concatenate new E0, E1, E2, D3, Bottleneck 
BN, ReLU, Conv, c = 320, k = 1 
BN, ReLU, Conv, c = 320, k = 3 
BN, ReLU, Conv, c = 320, k = 1 

RC 

128×128× 320 

Decoder 1 (D1) 

E0: MaxPooling, k = 2 
Conv, BN, ReLU, c = 64, k = 3 

E1: Conv, BN, ReLU, c = 64, k = 3 
D2: UpSampling, k = 2 

Conv, BN, ReLU, c = 64, k = 3 
D3: UpSampling, k = 4 

Conv, BN, ReLU, c = 64, k = 3 
Bottleneck: UpSampling, k = 8 
Conv, BN, ReLU, c = 64, k = 3 

Concatenate new E0, E1, D2, D3, Bottleneck 
BN, ReLU, Conv, c = 320, k = 1 
BN, ReLU, Conv, c = 320, k = 3 
BN, ReLU, Conv, c = 320, k = 1 

RC 

256×256×320 

Decoder 0 (D0) E0: Conv, BN, ReLU, c = 64, k = 3 
D1: UpSampling, k = 2 512×512× 320 
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Conv, BN, ReLU, c = 64, k = 3 
D2: UpSampling, k = 4 

Conv, BN, ReLU, c = 64, k = 3 
D3: UpSampling, k = 8 

Conv, BN, ReLU, c = 64, k = 3 
Bottleneck: UpSampling, k = 16 
Conv, BN, ReLU, c = 64, k = 3 

Concatenate new E0, D1, D2, D3, Bottleneck 
BN, ReLU, Conv, c = 320, k = 1 
BN, ReLU, Conv, c = 320, k = 3 
BN, ReLU, Conv, c = 320, k = 1 

RC 
Output Conv, BN, ReLU, c = 1, k = 3 512 × 512 × 1 

 
 

4. EXPERIMENTAL SETTING 
 

The experiments were carried out using a dataset of CT 
scans from the LIDC-IDRI database, which had 15550 CT 
images with annotation of lung nodules by four experienced 
radiologists. To eliminate interference from other tissues, the 
dataset has been preprocessed to extract the lungs' parenchyma 
from the CT image. Data augmentation is done after 
reprocessing to improve the model efficiency and expand the 
data size to 62,200 CT images. 

Two experiments were conducted: one to assess whether the 
proposed architecture shows improvement over a UNet3+ 
network, and the other to evaluate the effectiveness of the 
proposed architecture with augmented data and without 
augmented data. 

Both architectures, UNet3+ and the proposed, were 
implemented in Python using the PyTorch library. The 
hyperparameters for UNet3+ were chosen based on the best-
performing hyperparameters in study [31] except for the loss 
function. Both models utilized a learning rate of 0.01, a 
dropout rate of 0.15, a batch size of 32, and employed the SGD 
optimizer. 

The model was trained using a hybrid loss function that 
integrates both dice loss and binary cross-entropy loss. Dice 
loss is effective in measuring the similarity between two 
samples, while binary-cross entropy loss is commonly used to 
penalize false classifications. The model trained with the 
hybrid loss function showed significant improvements 
compared to using separate dice loss and binary cross-entropy 
loss. Let 𝑅𝑅 be the correct mask, 𝑆𝑆 be the predicted mask and 
then soft dice loss (DLS) is defined as: 
 

𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷=1 −
2𝑅𝑅𝑆𝑆 + 1
𝑅𝑅 + 𝑆𝑆 + 1

 (3) 

 
where, binary-cross entropy loss (BCE) is defined as: 
 

𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵=𝑅𝑅𝑙𝑙𝐶𝐶𝐶𝐶(𝑠𝑠) + [(1 − 𝑅𝑅𝑙𝑙𝐶𝐶𝐶𝐶(1 − 𝑆𝑆)] (4) 
          

Then proposed RCED-UNet 3+ model hybrid loss is 
defined as: 
 

𝑙𝑙𝐻𝐻 = 𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵  (5) 
 

This hybrid loss function penalizes the model for 
misclassifying background and foreground pixels and also 
ensures that the model produces accurate segmentation. The 
models were evaluated using the Intersection of Union metric 
(IoU), and the Sørensen-Dice similarity coefficient (Dice). 
Both metrics measure the similarity between two images based 

on the presence and absence of data. The dice coefficient is 
very similar to the Intersection over Union metric. Defining 𝑅𝑅 
as the correct mask and 𝑆𝑆 as the generated segmentation, Dice 
can be defined as: 
 

𝐷𝐷𝐷𝐷ce=2*|C ∩ S|/(|C| + |S|) (6) 
 

IoU metric can be defined as: 
 

IoU = |C ∩ S| / |C ∪ S| (7) 
 

The Hausdorff distance is characterized by the maximum 
difference in distance between two boundaries. Specifically, it 
is identified as the greatest minimum distance from any point 
𝑝𝑝 located on the boundary of set 𝑆𝑆𝐴𝐴 to the boundary of set 𝑆𝑆𝐵𝐵. 
The Hausdorff distance is defined as: 
 

ℎ(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) = max
𝑝𝑝∈𝐷𝐷𝐴𝐴

(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝, 𝑆𝑆𝐵𝐵)) (8) 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑑𝑑𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝐷𝐷𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝐻𝐻𝐻𝐻(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) 
= max(ℎ(𝑆𝑆𝐴𝐴 , 𝑆𝑆𝐵𝐵), ℎ(𝑆𝑆𝐵𝐵 , 𝑆𝑆𝐵𝐵)) (9) 

 
The model's performance can be further evaluated based on 

true positives (correctly identified positives), true negatives 
(correctly identified negatives), false positives (incorrectly 
identified positives), and false negatives (incorrectly identified 
negatives) by computing Accuracy, Precision, and Recall. 
Accuracy is defined as the ratio of correctly identified pixels 
to the overall number of pixels in the segmentation output. 
Precision represents the ratio of correctly identified pixels 
classified as lung masses to the total number of pixels 
predicted as such. Conversely, recall assesses the proportion 
of correctly identified pixels within a lung mass relative to the 
total number of pixels in the area that the lung mass occupies.: 

They are defined as: 
 

𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (10) 

 

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐷𝐷𝑠𝑠𝐷𝐷𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (11) 

 

𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (12) 

      
 
5. RESULTS AND DISCUSSION 

 
Dice coefficient and Intersection over Union (IoU) are 

common metrics used to find the accuracy of semantic 
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segmentation models. In this work, we employed these metrics 
to evaluate the performance of the proposed RCED-UNet3+ 
architecture. Table 3 presents a comparison between the IoU 
and Dice scores of our proposed model and the UNet3+ 
baseline architecture and Figure 5 shows the evolution of Dice 
scores and IoU scores across epochs on training. The results 
indicate a significant improvement in the Dice score when the 

proposed architecture is used. Additionally, the table shows 
that both the IoU and Dice scores increase when the proposed 
architecture is trained with augmented data, as compared to 
when it is trained without augmented data. Table 4 shows the 
evaluation of model performance in terms of accuracy, 
precision, recall and Hausdorff distance with data 
augmentation and without data augmentation. 

Table 3. Comparison of mean IoU scores and dice scores of UNet3+ model, RCED-UNet3+ model, and RCED-UNet3+ model 
trained with augmented data 

Model Mean IoU Score Mean Dice Score 
UNet3+ 0.932 0.965 

RCED-UNet3+ Without Data Augmented 0.963 0.980 
RCED-UNet3+ With Data Augmentation 0.979 0.984 

Table 4. Comparison of accuracy, precision, recall and Hausdorff distance of RCED-UNet3+ model (without augmentation) and 
RCED-UNet3+ model trained with augmented data 

Model Accuracy Precision Recall Hausdorff Distance 
RCED-UNet3+ (Without Data Augmented) 0.989 0.983 0.975 5.011 
RCED-UNet3+ (With Data Augmentation) 0.998 0.989 0.979 4.640 

Figure 5. Evolution of dice scores and IoU scores across 
epochs on training  

The hybrid loss function showed a consistent decrease over 
a larger number of epochs, indicating improved model 
learning and adaptation to the complexities of lung nodule 
segmentation as depicted in Figure 6. 

Figure 7 presents a box plot, while Figure 8 illustrates a 
qualitative comparison of the three models. The results 
indicate that the UNet3+ model performed the worst followed 
by RCED-UNet3+. This shows that the introduction of 
residual connection networks in UNet3+ has improved the 
performance of the model. The box plot also shows that the 
RCED-UNet3+ trained with augmented data performed the 

best, moreover, it has a smaller interquartile range than RCED-
UNet3+ suggesting that its performance is uniform across the 
dataset. 

Figure 6. Variation of the hybrid Loss, over epochs on 
training set 

Figure 7. Boxplot comparison of UNet3+, RCED-UNet3+, 
and RCED-UNet3+ trained with augmented data 

The RCED-UNet3+ architecture outperforms seven other 
advanced models in lung nodule segmentation, as detailed in 
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Table 5. It achieves a Dice score of 0.9802 ± 0.0986, 
significantly surpassing other models. ResiUNet, which 
combines pretrained residual networks with U-Net, records a 
Dice score of 94.87%, but RCED-UNet3+ excels in handling 
irregular lung nodules. Additionally, RCED-UNet3+ 
surpasses the DL-based graph model, which uses a multi-scale 
PET/CT fusion technique and attains a Dice score of 0.86, as 
well as the Atrous Convolution-based Convolutional Neural 
Network (ATCNN), which captures multi-scale HRCT 
features and scores 0.9715. The Residual UNet, achieving 
0.9545 ± 0.1372, also falls behind RCED-UNet3+, which 

leverages residual connections in both the encoder and 
decoder for better performance. Furthermore, RCED-UNet3+ 
outpaces GUNet3++ by 1.92% in Dice score, focusing on 
enhancing the encoder and decoder units, while GUNet3++ 
relies more on skip connections. The RCED-UNet3+ also 
exceeds APU-Net, which requires more training data due to its 
dual UNet structure, showing that additional PET/CT images 
aren't crucial for higher segmentation accuracy. Lastly, though 
DENSE-UNET shares similarities, the incorporation of 
residual connections into UNet3+ gives RCED-UNet3+ a 
clear advantage in lung nodule segmentation. 

Figure 8. A qualitative comparison of the output of UNet3+, RCED-UNet3+, and RCED-UNet3+ trained with augmented data 
with radiologist’s annotation 

Table 5. Comparison of dice score of RCED-UNet 
architecture with 7 other state-of-the-art lung nodule 

segmentation architecture 

Model Year Metric Value 
ResiU-Net [41] 2023 Dice Score 0.948 

DL based graph model [42] 2023 Dice Score 0.86 
ATCNN2PR framework [43] 2023 Dice Score 0.9715 

Residual UNet [44] 2022 Dice Score 0.954 
GUNet++ [31] 2022 Dice Score 0.9610 
APU-Net [45] 2022 Dice Score 0.9686 

Dense-UNET [46] 2022 Dice Score 0.7442 
RCED-UNet3+ (Proposed) Dice Score 0.984 

6. CONCLUSION

Recent studies have focused on the challenges associated
with detecting and segmenting lung cancer. The need for early 
lung cancer identification to ensure patients have a longer life 
expectancy is at the core of the issue. In this study, a modified 
UNet variant, named RCED-UNet3+ has been proposed to 
segment pulmonary nodules from CT images. The proposed 
model was validated by using the LIDC-IDRI dataset. The 
RCED-UNet3+ model introduced the improved residual 
connection network for the encoder and decoder structure, skip 
connection linking the two paths, and deep supervision block. 
The residual connection network should improve the accuracy 

as it reduces the number of channels and solves the problem of 
having an activation of a value of 0 regardless of input. At the 
same time, the hybrid loss function was introduced to penalize 
the model for misclassifying background and foreground 
pixels and also ensure that the model produces accurate 
segmentation. Furthermore, the RCED-UNet3+ architecture 
compared with seven other state-of-the-art architectures 
demonstrates better performance and efficiency. This suggests 
that the modification introduced in UNet3+ architecture along 
with the hybrid loss function contributes to improved lung 
nodule segmentation accuracy in CT images. For future 
research, we intend to evaluate the model using entirely new 
datasets from various scanners to further verify and confirm 
its robustness. 
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