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Automatic hyperparameter optimization is crucial for reliable cardiac arrhythmia 

classification using electrocardiograms (ECGs). However, existing approaches often 

struggle to identify intricate arrhythmia patterns, leaving a significant research void. In this 

study, we introduce the first deep PSO-POA framework, integrating Particle Swarm 

Optimization (PSO) and pelican optimization methods, to address this challenge. Our 

framework enhances Deep Neural Network (DNN) designs for ECG arrhythmia pattern 

detection by providing a solid basis that includes chaotic initialization, a calibrated objective 

function for model assessment, and a balanced approach between exploration and 

exploitation tactics. We automate systematic and data-driven hyperparameter adjustment in 

the unique AutorythmAI system. Leveraging a diversified ECG database with numerous 

arrhythmia patterns for validation, we optimize hyperparameter configurations for multi-

class DNN models through careful testing and validation processes. Model performance is 

rigorously evaluated using cross-validation, sensitivity analysis, and benchmark 

comparisons. With different parameter choices, the ResIncept and VGGRes models 

demonstrate impressive accuracies of 96.40% and 97.39%, respectively. To enhance 

adoption and reproducibility, we meticulously document the framework's implementation 

details, dataset sources, and hyperparameter configurations, making them publicly available 

for future studies to replicate and benchmark against. Our unique system eliminates manual 

hyperparameter selection, thereby improving arrhythmia detection accuracy, openness, 

repeatability, and field adoption. Also, we have compared data from different countries to 

prove that the model is globally working well without any bias. 
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1. INTRODUCTION

Cardiovascular illnesses persist as a substantial worldwide 

health challenge, with arrhythmias emerging as a key issue [1]. 

Prompt and precise arrhythmias identification is essential for 

efficient medical management and enhanced patient results [2-

4]. Automated machine learning algorithms have 

demonstrated significant potential in improving the efficiency 

of arrhythmia detection in recent years. Nevertheless, there is 

still a significant deficiency in optimizing these systems to 

attain comprehensive multi-class detection capabilities [5, 6]. 

This study aims to address this deficiency by integrating the 

PSO and the Pelican Arrhythmia Optimize (PAO) framework 

in a novel manner. Collectively, they are referred to as PSO-

Pelican Arrhythmia Optimize, and their objective is to 

revolutionize the detection of arrhythmias by utilizing 

automated deep learning parameter optimization [7-9]. 

Furthermore, arrhythmia classification predominantly 

depends on deep learning approaches, which utilize their 

ability to evaluate complex electrocardiogram (ECG) patterns 

with exceptional accuracy [10-12]. Neural networks, 

specifically deep learning models, have exhibited exceptional 

proficiency in identifying intricate patterns present in ECG 

signals. Nevertheless, the efficiency of these models is closely 

linked to the accurate adjustment of hyperparameters, which 

continues to be a significant obstacle in the field of arrhythmia 

detection [13-15]. Although there are advanced deep model 

architectures specifically developed for arrhythmia detection, 

their performance generally fails to meet expectations due to 

insufficient optimization techniques [16, 17]. The limitations 

become particularly evident in cases requiring multi-class 

identification, since existing algorithms struggle to distinguish 

between distinct ECG patterns indicative of various 

arrhythmic disorders [18, 19]. 

Further, the complexities related to hyperparameter 

adjustment in arrhythmia detection are manifold. Primarily, 

the extensive and intricate range of parameters in deep 

learning models renders manual adjustment impracticable and 
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time-consuming. Automated methods, such as grid and 

random search, have been used to explore this domain [20-22]. 

However, they often lack the efficiency required to 

successfully negotiate the complexities of hyperparameter 

landscapes [23, 24]. As a result, this restriction impedes the 

ability to fully exploit deep learning models' capabilities in 

accurately distinguishing small distinctions across different 

arrhythmia categories. 

Moreover, given these difficulties, combining PSO with the 

Pelican Arrhythmia Optimize framework presents itself as a 

new and promising approach to tackle the complexities of 

hyperparameter tuning [25-28]. The PSO algorithm offers a 

powerful method for efficiently exploring the extensive 

parameter space of deep learning models by leveraging 

insights from collective behavior seen in swarms. The Pelican 

Arrhythmia Optimize framework is a specialized platform for 

assessing and refining deep learning models that utilize ECG 

data, specifically focusing on arrhythmia detection [29-32]. 

Likewise, the combination of PSO with Pelican Arrhythmia 

Optimize significantly changes the optimization of deep 

learning models for detecting arrhythmia [33-35]. PSO utilizes 

the combined intelligence of particle swarms to effectively 

explore the hyperparameter environment, continuously 

adjusting and refining the model configuration to reach 

exceptional performance [36-38]. Whereas, this work aims to 

demonstrate that PSO-Pelican Arrhythmia Optimize may 

enhance the accuracy and efficiency of automated deep 

learning parameter optimization for detecting arrhythmia [39, 

40]. 

Detecting arrhythmia with complex deep learning models 

requires adaptive optimization for multi-class settings [41, 42]. 

Despite their complexity, these models lack thorough 

optimization methods. This results in suboptimal parameter 

settings and limited arrhythmic pattern application [43-45]. 

This also limits real-time change, which is essential for 

medicinal interventions [46, 47]. This study proposes 

advanced optimization methods for detecting numerous types 

of arrhythmia to overcome present constraints. The suggested 

strategy, called PSO-PAO optimization, aims to improve the 

discriminative ability of deep learning models in 

discriminating between different arrhythmic circumstances 

while increasing accuracy, sensitivity, and specificity [48]. 

This strategic improvement is expected to substantially 

contribute to the complex challenge of categorizing 

arrhythmias. The work rigorously evaluates the effectiveness 

of the PSO-PAO-optimized deep learning model using a large 

dataset that includes various types of arrhythmic scenarios 

with many classes. The primary objective is to create an 

automated, reliable arrhythmia classification system. This will 

be achieved by carefully changing neural network 

hyperparameters via PSO-PAO optimization. To improve 

clinical reliability and precision, this research will develop 

automated arrhythmia detection systems. 

Figure 1 shows the cutting-edge PSO-Pelican Arrhythmia 

Optimizations framework, which automatically optimizes 

deep learning parameters to detect arrhythmias. Multi-modal 

ECG data, including visuals for analysis, is pre-processed first. 

The second phase uses complex feature engineering, including 

feature selection and extraction, to improve the dataset's 

distinctiveness. AutorythmAI, a complex system that 

automates model selection and hyper-parameter tuning, is 

introduced in the third phase. This optimizes model 

performance without operator intervention, making the 

process more efficient. For reliable arrhythmia detection, the 

selected model receives the augmented and polished images. 

The PSO-Pelican Arrhythmia Optimizations system improves 

arrhythmia diagnosis by merging data pretreatment, feature 

engineering, and automated deep learning optimization. 

 

 
 

Figure 1. Framework for PSO-Pelican arrhythmia optimization detection via automated deep learning parameter tuning 

 

The major contributions to this paper include: 

(1). Innovative Hyperparameter Tuning: Introducing a 

novel two-phase algorithm combining PSO and POA to 

automate hyperparameter tuning in deep learning models for 

enhanced accuracy of arrhythmia detection. 

(2). Enhanced Arrhythmia Detection: Showing better 

accuracy and robustness in identifying different arrhythmic 

patterns through optimized deep learning models helps doctors 

make more accurate diagnoses. 

(3). Framework for Healthcare Automation: Providing a 

versatile framework applicable in healthcare settings, this 

algorithm facilitates automation in developing reliable 

arrhythmia detection systems. 

(4). Adaptive Model Refinement: Implementing an adaptive 

mechanism for continual model improvement, ensuring 

sustained accuracy in dynamic healthcare scenarios. 

(5). Interpretable Decision Framework: Establishing 

methods for clearer interpretation of model decisions and 
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enhancing transparency and understanding for clinicians 

implementing the system. 

The structure of the paper proceeds as follows: Section II 

delves into related work pertaining to the addressed issue, 

providing comprehensive insights into prior research. Section 

III presents preliminary information, laying the groundwork 

for the subsequent discussions. Section IV entails a 

comprehensive overview of the proposed deep H-PSO-POA 

algorithm. The experimental findings and discussions are 

outlined in Section V, while Section VI encapsulates the 

conclusion of this research. 

 

 

2. RELATED WORK 

 

The emerging discipline of deep learning has brought about 

a significant transformation in multiple sectors, particularly in 

healthcare, where it has demonstrated great promise in 

enhancing the precision and effectiveness of diagnostic 

procedures. Developing deep learning models has greatly 

advanced the identification of arrhythmia, a crucial component 

of monitoring cardiovascular health. Yet, the maximum 

efficiency of these models relies on successfully adjusting 

hyperparameters, which is a complicated and demanding 

endeavor. According to the study [49], obtaining the most 

optimal model configurations necessitates a comprehensive 

comprehension of machine learning algorithms and expertise 

in optimization approaches. Furthermore, the impact of the 

tuning technique on the sensitivity of optimizer comparisons 

continues to be a significant concern, even with the progress 

made in hyperparameter tuning methods [50]. 

In general, hyperparameter tuning in deep learning models 

presents significant challenges due to the high dimensionality 

of the search space and the intricate interactions between 

hyperparameters. The selection of optimal hyperparameters 

directly impacts the model's performance, convergence speed, 

and generalization ability. However, manual tuning of 

hyperparameters is time-consuming, labor-intensive, and 

often leads to suboptimal results. 

However, the high cost of computation and machine 

learning proficiency prevent wider adoption. Genetic 

algorithms, PSO, POA, and simulated annealing navigate 

complex parameter spaces efficiently [51]. These solutions are 

flexible and can overcome past limits. Because ECG signal 

processing is so complex, arrhythmia detection research 

requires specialized optimization approaches [52]. The 

performance metrics and restrictions of deep learning models 

used to detect arrhythmia have also been extensively studied. 

It is becoming clear that these models require significant 

computational resources and customized optimization 

strategies to maximize their use [53]. This review consolidates 

and evaluates existing knowledge on hyperparameter tuning 

strategies and their role in improving deep learning models' 

arrhythmia detection [54]. 

He et al. [55] created a system for identifying cardiac 

arrhythmia using Internet of Things electrocardiograms 

(ECGs). The study emphasizes the need for advanced 

diagnostic methods to reduce cardiac arrhythmia health risks. 

The authors use the well-known MIT-BIH-AR dataset and 

present a unique method that combines dynamic ensemble 

selection (DHCAF) with multi-channel convolutions 

(MCHCNN) to detect arrhythmias in IoT-based ECGs 

Improved diagnostic accuracy is possible with feature 

engineering and deep learning. However, the paper 

acknowledges the framework's lack of automatic 

hyperparameter change, suggesting a future improvement. The 

results demonstrate the framework's importance in enhancing 

IoT-based ECG arrhythmia detection. Furthermore, it stresses 

the need to resolve recognized limits for further study and 

optimization. 

The authors [56] also addressed the crucial issue of 

identifying arrhythmias using ECG signals. For this purpose, 

the article recommends employing an advanced deep 

convolutional neural network (D-CNN). Their method also 

uses continuous wavelet transform and coefficient of 

fractional (CoF) features. The beginning stresses the 

importance of accurate arrhythmia diagnosis for quick 

treatment. Current techniques are lacking; hence the issue 

statement emphasizes automated hyperparameter optimization 

and reduced computing resource needs. The paper tests the 

proposed approach using the widely used MIT-BIH-AR 

dataset. Systematic D-CNN and CoF feature integration is 

novel. However, the lack of automated hyperparameter change 

poses model optimization concerns. The study classifies 2D 

ECG signals with 95.84% accuracy, proving the approach 

works. However, the model's high computational requirements 

emphasize the need for future studies to improve resource 

efficiency. Atal and Singh's research is significant. However, 

more optimization research is needed to improve its 

practicality. 

Bouaziz et al. [57] also addressed the crucial issue of 

automatically categorizing ECG arrhythmias. Their approach 

uses an MLP neural network and a novel PSO metaheuristic. 

Due to rising cardiovascular disease rates, accurate ECG 

arrhythmia categorization is crucial. Current methods are 

vulnerable to local optima and computationally intensive, 

according to the authors. They propose integrating MLP and 

PSO to overcome these limits, taking advantage of each 

method's capabilities. The five-category MIT-BIH Arrhythmia 

Database was used for evaluation. PSO is used to train the 

Multilayer Perceptron (MLP) for better categorization. The 

methodology's 94.44% accuracy rate shows its efficiency. 

This research provides a reliable ECG arrhythmia 

classification method. It also shows how neural network 

topologies and unique metaheuristics can improve medical 

diagnosis accuracy and efficiency. 

In addition, Nainwal et al. [58] also identify ECG data using 

a DNN classifier and a modified Pigeon-Inspired Optimizer 

dubbed (MPIO). This research aims to overcome wider 

application restrictions and present methodology 

computational requirements. The issue statement requires a 

clear and effective ECG categorization system. The authors 

tested their approach on an ECG dataset and achieved 95.01% 

accuracy. This investigation shows that the recommended 

methodology is practical in real life. The innovative method 

uses DNN and Multiple Input and Output (MPIO) approaches 

to improve categorization. The study found that the proposed 

strategy improves classification accuracy, advancing ECG 

signal processing. The results of this study resolve constraints 

and allow this approach to be used in clinical settings and other 

fields that require precise ECG signal classification. 

Over the past several years, there has been significant 

interest in combining computational intelligence and medical 

diagnosis. This has led researchers to investigate new methods 

to improve the accuracy of classifying complicated health 

situations. Baños et al. [59] introduced a novel hybrid model 

combining PSO and CNN for cardiac arrhythmia classification, 

addressing the underutilization of PSO-CNN-SVM hybrids in 
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prior studies. Their tests on chronic renal illness datasets 

achieved an impressive 89.01% accuracy, underscoring the 

importance of diverse and accurate datasets for validating 

machine learning models. This research utilizes a 

methodology that incorporates PSO to optimize the 

parameters of Convolutional Neural Networks (CNNs) [60]. 

This approach sets it apart from other studies, making it 

distinctive. Based on the findings, the suggested hybrid model 

demonstrates effective performance and has the potential to 

classify cardiac arrhythmias accurately and consistently. This 

would contribute to our overall understanding in the realm of 

medical diagnostics. 

Moreover, Tuerxun et al. [61] improved wind turbine fault 

classification with Broad Learning system (BLS)and 

Enhanced Pelican optimization. Real-time monitoring and 

data collecting in renewable energy generation require 

accurate fault categorization, which their IoT-integrated 

methodology overcomes. The work emphasizes the need for 

an effective optimization approach to manage premature 

convergence and large dimensionality. Key issues are 

addressed by the Enhanced POA. It outperforms previous 

algorithms in wind turbine fault categorization, suggesting it 

could improve turbine operations and maintenance.  

Table 1 shows the list of past references, including 

methodology used, dataset, results, and limitations. 

Whereas, Table 2 demonstrates significant deficiencies in 

studies about the classification of cardiac arrhythmia. This 

demonstrates the pressing necessity for deep learning models 

specifically tailored to the intricate responsibilities of 

detecting arrhythmias. Recognizing these gaps highlights the 

necessity of progressing approaches beyond traditional 

frameworks. Using metaheuristic algorithms in healthcare can 

lead to hybrid models, improving classification accuracy. 

Tailoring PSO to address convergence issues, especially local 

optima, presents opportunities to enhance the reliability of 

cardiac arrhythmia classification methods. 

In healthcare, particularly in the vital area of diagnosing 

arrhythmia using ECG data, various challenges have 

highlighted the need for concentrated advancement. The gaps 

clearly suggest the need to improve models, find new 

methodologies, and change optimization strategies. The goal 

is to improve their practicality and effectiveness in complex 

healthcare by properly diagnosing arrhythmias using ECG 

data. Due to the shortcomings found in this specialized field, 

algorithmic precision and optimization must be accelerated. A 

detailed optimization plan with many strategies is needed. 

Strategic convergence integrates two optimization methods 

into a single framework to optimize parameters synergistically. 

This hybrid approach enhances capacities and deepens 

solution exploration. It offers better parameter adjustment and 

model accuracy. Healthcare models must incorporate 

optimization approaches to tackle real-world ECG arrhythmia 

detection complexity. 

To summarize, the proposed shift towards combining 

optimization techniques in a cohesive framework has great 

potential. This novel method is ready to revolutionize the field 

of parameter tuning in healthcare, leading to greater 

effectiveness of models and, as a result, increased accuracy in 

detecting arrhythmias using ECG signals. 

 

Table 1. Arrhythmia detection frameworks: Methodologies and limitations 

 
Paper 

Cited 
Approach/Methodology Dataset Used Accuracy Limitations 

[55] 
DHCAF (Dynamic Ensemble Selection), 

MCHCNN (Multi-channel Convolutions) 
MIT-BIH-AR 

Accurate arrhythmia detection in IoT-

based ECGs, combining feature 

engineering and deep learning 

Lack of automated 

hyperparameter tuning for the 

framework 

[56] 
Continuous Wavelet Transform, D-CNN, 

CoF 
MIT-BIH-AR 

95.84% accuracy in 2D ECG signal 

classification 

No automated hyperparameter 

tuning, computational resource 

requirement 

[57] MLP (Multi-Layer Perceptron)+PSO MIT-5 Classes Achieving 94.44% accuracy 
Susceptibility to local optima, 

computational intensity 

[58] 
MPIO (Multi-Population Input 

Optimization)+DNN 
ECG dataset Accuracy of 95.01% 

Lack of broader application, 

computational demands 

[59] 

PSO-CNN (Convolutional Neural 

Network)-SVM (Support Vector 

Machine) 

Chronic 

Kidney 

Disease 

Accuracy of 89.01% 
Few studies utilizing this 

approach 

[61] 
Grey Wolf Optimization, Genetic 

Algorithm 

IoT 

Framework 
Enhanced accuracy for IoT 

Challenges with premature 

convergence, handling high 

dimensionality 
 

Table 2. ECG and optimization: Identified research gaps 

 
Research Domain & 

Papers Cited 
Research Gap Explanation of Identified Gap 

Deep Learning 

Applications for ECG 

[38-40] 

Lack of deep model integration 

for CAs classification 

The lack of strong deep models for cardiac arrhythmia classification limits pattern 

identification, but transfer learning may help. 

Optimization 

Techniques 

[41, 42] 

Limited use of MA in 

healthcare applications 

Metaheuristic Algorithms (MA) that optimize neural network performance have 

been understudied in healthcare and might enhance hybrid model categorization. 

Convergence 

Challenges 

[43, 44] 

PSO's susceptibility to local 

optima 

PSO shows rapid convergence to local optima, limiting exploration of diverse 

solution spaces; addressing this limitation requires modified PSO versions. 

 

  

3014



 

3. FUNDAMENTAL CONCEPTS 

 

3.1 ECG data collection 

 

A multi-modal ECG dataset combines ECG data with 

additional signals like respiratory or blood pressure data. This 

integration of diverse signals offers supplementary insights, 

enhancing ECG analysis accuracy for detecting arrhythmias, 

identifying cardiac issues, and monitoring vital signs in 

medical procedures. These datasets, such as CPSC2018 [62], 

St. Petersburg INCART [63], CinC2020, Georgia [64], and 

CACHET-CADB [65], are publicly accessible, enabling 

researchers to benchmark their algorithms and collaborate 

within the field. The data formats vary between header files 

(.hea) detailing 12 lead signal values and diagnostic 

information, and mat files (.mat) containing patient ECG 

signals. Table 3 gives the summary of the multimodal ECG 

data used. For testing the data, the Chapman-Shaoxing 12-lead 

ECG Database [66] would be utilized. This database 

comprises 45,152 ECGs extracted from 34,905 10-second 

recordings, all of which are sampled at a frequency of 500 Hz. 

This dataset provides a substantial volume of ECG data, 

allowing for comprehensive testing and validation of the 

proposed arrhythmia detection framework. The PTB-XL [67] 

dataset comprises over 21,000 12-lead ECG recordings from 

1,525 patients, encompassing a wide spectrum of cardiac 

conditions and arrhythmias used as benchmark dataset for 

comparison. Similarly, the Georgia ECG dataset offers ECG 

recordings collected from patients in the Georgia region, 

providing additional data for research and validation purposes 

used for benchmark data and comparison. 

In conclusion, our study leveraged diverse datasets from 

different countries to demonstrate the global applicability and 

robustness of our model for cardiac arrhythmia detection. By 

utilizing datasets such as the Chapman-Shaoxing 12-lead ECG 

Database,  PTB-XL dataset, and the Georgia ECG dataset, 

which represent varied demographics and populations, we 

ensured that our model's performance was evaluated across a 

wide spectrum of cardiac conditions and patient profiles. 

 

Table 3. Summarization of multimodal ECG database 

 

Dataset Name 
Number of 

Subjects 

Female 

(F) 

Male 

(M) 

ECG Signal 

Length 

CPSC2018 6877 3178 3699 6s-60s 

St. Petersburg 

INCART 
32 15 17 1800s 

Georgia 10,344 4793 5551 10s 

CACHET-

CADB 
24 9 15 10s 

 

3.2 Multimodal dataset collaboration and data balancing 

 

This section merges datasets while preserving data 

properties. Empty data, label, filename, gender, and age lists 

are initialized. We load each dataset separately and add its data 

and information to their lists. Concatenating these lists into 

NumPy arrays ensures order. The combined dataset keeps all 

data and labels. We extracted 3,252 abnormal and 2,568 

standard signals from each dataset, ensuring a balanced class 

distribution without additional data-balancing. 

 

3.3 Custom AutoRhythmAI model for ECG arrhythmias  

 

Automatic Machine Learning (AutoML) strengthens AI 

standardization. It makes machine learning accessible with a 

button press or hides algorithm execution, data pipelines, and 

code [68]. This expertise is promising for research. AutoML is 

a dynamic system with great potential despite being built for 

task automation. Our ECG arrhythmia detection model cannot 

be customised using AutoML. Customized AutoRhythmAI 

algorithms for ECG arrhythmia identification in diverse 

datasets are our solution. Integrating hybrid model automation 

is stressed. 

The AutoRhythmAI Model's meticulous approach to 

detecting arrhythmias in ECG data is depicted in Figure 2, 

visually outlining the sequential procedures involved in our 

groundbreaking model. The system illustrates the complex 

steps in data processing, encompassing preprocessing, model 

training, and validation, showcasing the proposed system's 

comprehensive nature. Our system has many strengths, but 

automated hyperparameter optimization is lacking. Model 

performance and generalization depend on this automated 

modification. Without it, the framework may struggle to attain 

optimal configurations and accuracy. Automatic 

hyperparameter adjustment should be prioritized for model 

resilience and efficacy in future editions. 

 

3.4 PSO 

 

PSO is a metaheuristic method devised to discover global 

maxima or minima within potential solution spaces. Inspired 

by the collective movement behaviors seen in flocks of birds 

or schools of fish, PSO's operation combines individual 

decisions with collective behaviors. Initially proposed by 

Trojovský and Dehghani [69], PSO has seen various 

modifications while retaining its fundamental operators. The 

algorithm calculates new particle positions by determining 

velocities influenced by the best global and current particle 

positions. The velocity update formula is defined as: 

 

3.4.1 Velocity update 

 

𝑣𝑖𝑡 + 1
= 𝑤 ∗ 𝑣𝑖𝑡

+ 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑝𝑖𝑡

) + 𝑐2

∗        𝑟2 ∗ (𝑝𝑔𝑏𝑒𝑠𝑡𝑖
) − 𝑝𝑖𝑡

 
(1) 

 

- 𝑣𝑖𝑡 + 1
: Particle velocity at time t+1, 𝑣𝑖𝑡

-Particle velocity 

at time t. 

- w: Coefficient of inertia, adjusting with particle speed. 

- c1, c2: Cognitive and social coefficients. 

- r1, r2: Vectors of random values between 0 and 1, 

matching the length of the velocity vector. 

- 𝑝𝑏𝑒𝑠𝑡𝑖
: Best position attained by particle i, 𝑝𝑖𝑡

Position of 

particle i at time t. 

- 𝑝𝑔𝑏𝑒𝑠𝑡𝑖
: Best overall position of the entire swarm. 

Once velocities are updated, particle positions in iteration 

t+1 are calculated. 

 

3.4.2 Position update 

 

𝑝𝑖𝑡 + 1
= 𝑝𝑖𝑡

+ 𝑣𝑖𝑡 + 1
 (2) 

 

- 𝑝𝑖𝑡+1
: New position of particle i in iteration t+1. 

- 𝑝𝑖𝑡
: Previous position of particle i calculated in iteration t. 

- 𝑣𝑖𝑡+1
: Velocity vector obtained using the velocity update 

formula. 
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Figure 2. AutoRhythmAI model: ECG arrhythmia detection workflow 

 

3.5 POA 

 

The POA draws inspiration from the cooperative foraging 

behavior observed in pelican birds, presenting itself as a 

nature-inspired metaheuristic algorithm for optimization tasks. 

Here's a structured breakdown of the Key concepts of POA 

algorithm: 

Exploration: Involves exploring new positions in the search 

space to discover potentially better solutions. 

 

𝑁𝑒𝑤𝑃𝑜𝑠 = 𝑋(𝑖, 𝑗) + 𝑟𝑎𝑛𝑑(1,1) ∗ (𝐴𝑔𝑒𝑛𝑡𝑠_𝑇𝑎𝑟𝑔𝑒𝑡
− 𝐼 ∗ 𝑋(𝑖, 𝑗)) 

(3) 

 

Exploitation: Utilizes discovered positions to exploit and 

fine-tune optimization solutions. 

 

𝑁𝑒𝑤𝑃𝑜𝑠 = 𝑋(𝑖, 𝑗) + 0.2 ∗ (1 −
𝑡

𝑇
) ∗ (2 ∗ 𝑟𝑎𝑛𝑑(1,1)

− 1) ∗ 𝑋(𝑖, 𝑗) 
(4) 
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The algorithm iteratively generates prey positions, updates 

positions for exploration and exploitation across dimensions, 

and outputs the best candidate solution obtained through the 

POA. 

 

 

4. ARRYTHMIAS DETECTION USING THE DEEP 

PSO-POA CLASSIFIER 

 

This section details arrhythmia categorization via the 

customized AutorythmAI framework, boosted by the Deep 

PSO-POA Classifier. Heart data in ECG form undergoes 

collection, preprocessing, and is then used in AutorythmAI's 

DNN models, optimized by PSO-POA. Leveraging PSO-POA, 

the DNN efficiently extracts features, enabling autonomous 

arrhythmia classification. The validation methodology for the 

deep PSO-POA framework for cardiac arrhythmia 

classification using ECGs would typically involve several 

steps to ensure the robustness and reliability of the developed 

models. Here's a suggested validation methodology: 

 

4.1 Pre-processing techniques for multi-class distribution 

 

First, ECG data are pre-processed to detect arrhythmia. Our 

approach to multi-class pre-processing a dataset with 27 

distribution classes focused on signal length standardization 

and data labelling. Machine learning techniques like one-hot 

encoding and Multilabel binarize enhance it. Data processing 

was efficient and effective using these procedures, meeting 

model requirements. 

 

4.2 Proposed deep PSO-POA optimization for arrhythmia 

classification (model training) 

 

Deep NN classifiers on Multi class distribution are highly 

esteemed for their proficiency in parameter reduction while 

upholding data quality, ensuring optimal convergence speed in 

comparison to other classifiers. Within our proposed model, 

disease classification is executed through the application of a 

Deep PSO -POA based DNN classifier. This model operates 

by optimizing parameters directly from the provided data. The 

DNN architecture adeptly extracts confined features from 

input data, significantly enhancing classification performance. 

The classifier is trained effectively using PSO-PAO 

optimization, enabling efficient learning from input data and 

improved classification performance. 

 

4.2.1 Chaos Initialize population 

In PSO-POA optimization, initial positioning of people is 

usually randomized, which may cause an uneven population 

distribution and reduced solution accuracy. Chaos theory-

based sequences are random and bounded. Logistic Map 

erratic mapping generates a more uniformly dispersed and 

investigated chaotic sequence. Population variety increases 

greatly, enhancing the algorithm's performance. This study 

provides Logistic chaotic mapping to improve PSO-POA 

optimization initialization by improving navigability. This 

update allows a more homogeneous population in the flamingo 

optimization search space during initialization. After chaotic 

sequence generation, this chaotic space is mapped onto the 

optimization problem's solution space, following the 

optimization variables. The mapping process follows. 

The steps to initialize the population using chaos are: 

 

1) Generate initial PSO-POA individual 𝑌 as a random 

𝑑-dimensional vector within [−1, 1]. 

2) For the remaining 𝑁−1 individual: Utilize the logistic 

map equation x_{n+1}=r*x_n*(1-x_n) for each 

dimension of 𝑌, ensuring values are in the −1≤x_n≤1 

range. 

3) Map the obtained chaotic sequence into the search 

space: 

 

Equation: xid = Ld+(1+xid)×(Ud-Ld)/2 

𝑥𝑖𝑑 denotes the position of the 𝑖th individual in the 𝑑-

dimensional search space. 

𝑈𝑑 and 𝐿𝑑 represent the upper and lower bounds, 

respectively, of the search space. 

𝑥𝑖𝑑 is derived from the logistic chaotic sequence as the 

coordinate of the 𝑖th individual. 

 

4.2.2 Objective function 

The objective function trains and evaluates a multi-class 

DNN model for ECG arrhythmia identification. It decodes 

hyperparameters from a position, builds and compiles a DNN 

model, trains it on training data, and evaluates its performance 

using test accuracy. Hyperparameters are decoded from a 

specific position to build a DNN model for ECG arrhythmia 

detection via the objective function. It includes these steps: 

(1). The decoding process extracts learning rate, batch size, 

and hidden units from the provided position. 

(2). Model Construction: Creates a DNN model using 

Conv1D layers, Batch Normalisation, Global Average Pooling, 

and Dense layers using hyperparameters. 

(3). DNN Model Compilation: Utilizes Adam optimizer and 

categorical cross-entropy loss. 

(4). Model Training: Apply hyperparameters and settings to 

train the model on training data. 

(5). Evaluation: Determines model accuracy tested on 

validation dataset. 

(6). Returns: Optimize performance metric (test accuracy). 

Optimizing hyperparameters for the DNN model used in 

ECG arrhythmia detection is possible using this function. 

 

4.2.3 Phase 1: Exploration stage 

Hyperparameter tuning is crucial to optimizing machine 

learning models for performance. Many optimization methods 

struggle with high-dimensional and complex solution spaces. 

The algorithms may struggle to maintain exploration-

exploitation balance as dimensions rise, affecting their ability 

to find optimal solutions. This involves algorithms like PSO. 

This research part shows the Exploration Stage of a PSO 

method, which refines model parameters. Acceleration 

coefficients and random values drive iterative particle velocity 

modifications based on local and global optimum placements. 

This dynamic technique improves model performance, 

solution space navigation, and accuracy. PSO exploration 

efficiently explores the solution space and POA's resilience in 

varied optimization settings. Formula for updating velocity: 

Eq. (5) 

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡+1) = 𝑤 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡) + 𝑐1

∗ 𝑟1(𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖)

+ 𝑐2 ∗ 𝑟2(𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖) 

(5) 

 

Here: 
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- 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡+1) denotes the updated velocity of particle 

i in iteration t+1. 

- w represents the inertia weight. 

- 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡) is the current velocity of particle i in 

iteration t. 

- c1 and c2 stand for cognitive and social coefficients, 

respectively. 

- r1 and r2 are random values within the range [0, 1]. 

- 𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
 refers to the best position found by particle 

i so far, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖  represents the current position of 

particle i and 𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 denotes the best position 

found by any particle in the swarm. 

 

Due to its tendency to converge swiftly to local optima, PSO 

generally struggles with multimodal problems. PSO's 

exploration of numerous peaks is limited, potentially 

disregarding better global solutions. This can limit its solution 

space exploration, making it harder to find the optimal 

solutions across varied peaks or optima. Thus, enhancing 

performance in complicated situations requires tweaking PSO 

to negotiate various terrain or adopting hybrid approaches. 

 

4.2.4 Phase 2: Exploitation stage 

Supplemental optimization methods like the POA help PSO 

handle multimodal difficulties. POA navigates many optima 

by exploring rather than exploiting, unlike PSO. To address 

PSO's premature convergence and improve global optimal 

solutions in multi-peak scenarios, the hybridization includes 

POA's properties into the optimization process. PSO and POA 

increase optimization's exploration-exploitation balance in 

this joint technique. Eq. (6) depicts exploitation. 

 

𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
= 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 + 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 + 0.2

∗ (1 − 𝑡
1

𝑚𝑎𝑥𝑖𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)

∗ (2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝐷) − 1)
∗ 𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

 

(6) 

 

This formula updates the new position ( 𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
)  if 

each particle in an iterative loop based on its current position 

(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 ), velocity ( 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and other parameters as 

described. 

This hybrid strategy uses PSO and POA to maximize their 

strengths. PSO's exploration efficiency compliments POA's 

exploitation resilience. This integrated strategy seeks to 

balance and improve hyperparameter tweaking. 

 

4.2.5 Termination 

The optimization process stops when the specified 

maximum number of iterations is reached. This condition 

prevents the algorithm from running indefinitely and ensures 

it stops after a certain number of iterations, regardless of 

convergence. 

 

4.3 Cross-validation 

 

Performed k-fold cross-validation on the training set to 

assess the generalization ability of the models and evaluated 

the models' performance metrics such as accuracy, precision, 

recall, F1-score, and area under the receiver operating 

characteristic curve (AUC-ROC) for each fold. 

 

 

5. EXPERIMENTS RESULTS AND DICUSSION 

 

5.1 Development and testing environments for deep PSO-

POA model framework 

 

The model, built on Python 3.7 using Keras 2.5.0 and 

TensorFlow 2.5.0, thrived in Kaggle's environment. Powered 

by an NVIDIA GeForce RTX 2060 GPU and an Intel Core i7-

9750H CPU with 31.92GB RAM, it handled complex data 

effortlessly. This blend of top-notch software and high-

performance hardware enabled smooth development, testing, 

and rigorous optimization tasks on Kaggle's platform. 

 

Algorithm 1: Optimizing Classifier Hyperparameters 

through a Deep PSO -POA Optimization. 

Input : 

max_iterations: Maximum iterations 

num_particles: Number of particles 

Constants: acceleration_coefficient1, 

acceleration_coefficient2 (c1, c2) 

inertia_weight: Inertia weight (w) 

search_space_min, search_space_max: Search space 

boundaries 

objective_function(): Evaluates the proposed deep learning 

model (ResIncept model, VGGRes model, InceptVGG, and 

LenetAlexLSTM ) for arrhythmia detection 

 

Phase 1: Exploration Stage 

for t in range(max_iterations): 

    for i in range(num_particles): 

        𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1 ∗

𝑟1 ∗ (𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
– 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖) 

        𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡2 ∗ 𝑟2 ∗

(𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
– 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖) 

        𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 +

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 + 𝑠𝑜𝑐𝑖𝑎𝑙𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

    # End of Particle Loop 

# End of Iteration Loop 

 

Phase 2: Exploitation Stage 

for t in range(max_iterations): 

    for i in range(num_particles): 

        initialize_population()  # Using chaotic sequences 

        𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
= 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 + 0.2 ∗ (1– 𝑡/

max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) ∗ (2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝐷)– 1) ∗
𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

 

        𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
=

 𝑐𝑙𝑖𝑝(𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
, 𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑝𝑎𝑐𝑒_𝑚𝑖𝑛, 𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑥) 

        new_fitness_i= objective_function(new_position_i) 

        if new_fitness_i> best_fitness_i: 

            best_position_i= new_position_i 

            best_fitness_i= new_fitness_i 

    # End of Particle Loop 

# End of Iteration Loop 

Best hyperparameters and corresponding fitness values 

optimized for the proposed deep learning model tailored for 

arrhythmia detection. 

 

5.2 Parameters 

 

As previously mentioned, the proposed model's 

functionality depends on specific parameters dictated by the 
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Multi Modal dataset and the configurations governing the PSO 

and POA algorithms followed by the DNN models in the 

framework. The count of evolutions, population size, neural 

network depth, kernel size, and number of neurons are crucial 

characteristics. The PSO metaheuristic algorithm requires 

inputs beyond coefficients and vectors, as seen in algorithm 1. 

It needs particle population size and evolution count. Table 4 

contains experimental data for the suggested model. 

 

Table 4. Variables and values in proposed optimization 

algorithm 

 
Variable Explanation Value 

`num_pelican` 
The optimization population's pelican 

count. 
5 

`num_iterations` 
Specifies the total number of iterations 

for the optimization process. 
20 

`t` 
Current optimization iteration or time 

step. 
5 

`MaxT` 
Maximum optimization algorithm 

iterations. 
20 

`w` 
The inertia weight controls the 

current's response to past velocity. 
0.5 

`c1`, `c2` 

Denote PSO algorithms' cognitive and 

social coefficients influencing particle 

mobility. 

2.0 

`history` 
Historical data list used to track 

optimization process performance. 
[] 

`r1`, `r2` 

Generate random numbers between 0 

and 1 for PSO's velocity 

computations. 

Random 

 

When configured, these parameters control optimization. 

Num_pelican, num_iterations, t, and MaxT all effect 

optimization efficiency and population size. These factors 

impact search space exploration and algorithm convergence to 

optimal solutions. These variables affect PSO algorithms. w, 

c1, and c2 effect exploration and exploitation, whereas r1 and 

r2 randomly move particles. The history list tracks fitness 

values or other indicators across iterations to display 

optimization progress. 

Optimizing the performance of machine learning models 

often involves fine-tuning various hyperparameters. Here is a 

breakdown of key parameters and their respective input ranges, 

outlining the scope for optimization in table. These parameters 

play a pivotal role in enhancing the model's efficiency and 

predictive power. 

From the Table 5 by strategically navigating within the 

specified input ranges, there lies an opportunity to fine-tune 

and calibrate the model, aiming for heightened accuracy, faster 

convergence, and robust generalization. 

 

Table 5. Hyperparameter search space ranges 

 
Parameter Range Input Range (Default) 

Num Epochs [20, 30, 40, 50, 100] 

Learning Rate [0.0001, 0.1] 

Batch Size [5, 10, 15, 20] 

Hidden Units [16, 32, 64, 128] 

 

Rationale for Selection: The selection of these 

hyperparameters was based on a combination of domain 

knowledge, empirical evidence from previous studies, and 

extensive experimentation on our dataset. Our goal was to 

identify configurations that balance model complexity, 

convergence speed, and generalization ability, ultimately 

maximizing performance on the target task. 

 

5.3 Performance metrics 

 

5.3.1 Metrics used 

In the context of Arrhythmias ECG Classification, these 

metrics are significant for evaluating model performance. 

Sensitivity represents the rate of correctly identified positive 

arrhythmia cases, while Specificity measures the rate of 

correctly identified negative cases. Precision denotes the 

positive predictive value specifically for arrhythmias 

classification. AUC Score is the Area Under the Receiver 

Operating Characteristic curve, demonstrating the model's 

discrimination ability. Loss typically indicates the model's 

performance in terms of error between predicted and actual 

values. Apart from these training times is also considered as 

the performance metrics to evaluate the running time of 

proposed algorithm. 

 

5.3.2 Training time 

Table 6 shows subtle model preferences from 

hyperparameter optimization. With a learning rate of 0.01, 64 

epochs, 128 hidden units, and 20 batches, the ANN balanced 

accuracy and efficiency. ResIncept and VGGRes preferred 0.1 

learning rate, moderate epochs, and smaller batches. Due to 

settings, AlexNet and ResNet-50 took longer to train. 

Hyperparameter selection directly affects model performance 

and computing efficiency across varied architectures, as 

shown in this work. 

 

Table 6. Best hyper-parameter search and training time taken by each model for optimization 

 

Model 
Best Hyper Parameter Search 

Epochs 
Training Time  

(in s) Learning Rate Batch Size Hidden Units 

ANN 0.01 64 128 20 1000 

Lenet-5 0.033 32 32 30 987 

AlexNet 0.005 64 64 20 1851 

VGG-16 0.001 32 64 30 1781 

Inception 0.001 128 64 30 1890 

LSTM 0.001 64 32 20 1684 

Resnet-50 0.001 64 32 20 1871 

ResIncept 0.1 64 32 20 1900 

VGGRes 0.1 128 64 20 1872 

InceptVgg 0.039 128 64 20 1789 

LenetAlexLSTM 0.001 64 32 20 2001 
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Table 7. Training data performance analysis 

 
Models Accuracy(%) Sensitivity (%) Specificity (%) AUC Score(%) Loss (%) 

ResIncept Model 96.40 78.61 28.04 81.07 11.9 

VGGRes Model 97.39 82.13 31.91 82.61 10.1 

InceptVGG 96.86 89.18 38.45 88.12 10.8 

LenetAlex 

LSTM(LA-LSTM) 
95.89 80.12 21.61 79.85 12.7 

 

 
 

Figure 3. Testing data performance matrices taken by each model for optimization 

 

5.3.3 Training data performance metrics 

The array of performance metrics across various models 

showcases nuanced strengths in arrhythmia detection which is 

tabulated in Table 7. Models like Inception and InceptVGG 

exhibit remarkable accuracy (96.39% and 96.86%, 

respectively) coupled with strong AUC scores (86.54% and 

88.12%, respectively), indicating superior overall 

performance. In contrast, VGG-16, VGGRes, and Resnet-50 

demonstrate noteworthy precision and recall rates, achieving a 

balance between accuracy and precise identification. However, 

models like ANN and Lenet-5 reveal lower recall percentages, 

suggesting potential lapses in identifying relevant arrhythmia 

instances despite high overall accuracy. 

 

5.3.4 Testing data performance metrics 

The evaluation of the testing dataset from the Chapman-

Shaoxing 12-lead ECG Database reveals diverse performance 

traits among models in arrhythmia detection as shown in 

Figure 3. The InceptVGG model stands out with exceptional 

accuracy (97.12%), high sensitivity (91.45%), and reasonable 

specificity (47.89%). Inception shows balanced performance 

with good sensitivity (83.08%) and specificity (37.29%). 

Models like ResNet-50 exhibit limitations in accurately 

detecting positive instances, while VGGRes strikes a 

promising balance between sensitivity (85.21%) and 

specificity (42.33%). These results underscore the importance 

of model selection aligned with specific clinical needs, 

emphasizing accurate detection while minimizing false 

positives or negatives in arrhythmia identification. 

5.3.5 Comparative analysis 

The classification of cardiac arrhythmia is essential for the 

prompt identification and management of cardiovascular 

disorders. Various techniques have been suggested in recent 

years to improve the precision and effectiveness of 

categorization systems. The purpose of this comparison is to 

evaluate the performance of current systems in contrast to our 

proposed method, which utilizes a novel technique called 

Deep PSO-POA for NN to aid in classifying cardiac 

arrhythmias. Table 8 summarizes the latest advancements in 

the classification of cardiac arrhythmia within the last 5 years. 

The comparative analysis examines various factors, including 

the year of publication, the databases employed, the number of 

cardiac arrhythmia classes, the status of data balance, the data 

size, the algorithms utilized, the level of achieved accuracy, 

and the ability of each proposal to automatically derive the 

framework. 

 

Existing systems. CNN-HP evaluates six 1D MIT-BIH 

ECG signal groups [70]. It lacks automated architecture 

despite 95.3% accuracy. In this study, MITDB and a DNN 

with a recurrent neural network classify 2D image ECG data 

into three categories [71]. Without an automated basis, it 

possesses 96.7% precision like study [72]. This study [73] uses 

5 MITDB 1D ECG signal classifications. We combine PSO 

and convolutional neural networks. While 94% accurate, it is 

not automated. IoT device 1D ECG signals are analyzed using 

an adaptive activation function and feedforward artificial 

hydrocarbon networks with deep learning [73]. Model 
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Farmland Fertility Algorithm with Hybrid Deep Learning 

(AAC-FFAHD DL). Excellent 97.76% correctness, but no 

automatic framework generation like earlier sources. Our 

cardiac arrhythmia classification is new. Recommended 

approach uses multi-modal database with 27 1D ECG signal 

classifications. Deep PSO-POA neural network innovation. A 

unique automatic hierarchical structure determination method 

boosts its 97.12% accuracy. 

 

Comparative analysis with benchmark dataset. The Table 9 

presents a comparison between proposed optimization 

techniques applied to the classification models using the 

benchmarked PTB-XL dataset. 

InceptVGG demonstrates the highest accuracy (96.13%) 

along with the highest sensitivity (75.39%) and specificity 

(89.67%), making it the standout performer among the 

proposed model on the PTB-XL dataset. 

 

Table 8. Comparative analysis with existing system 

 
References Database No. of Classes Method Accuracy Automated Framework 

[70] MIT-BIH 6 CNN-HP 95.3% No 

[71] MITDB 3 DNN-RNN 96.7% No 

[72] MITDB 5 H-PSO-CNN 94% No 

[73] IOT Sensed Data 2 AAC-FFAHD & DL Model 97.76 No 

Proposed Method Multi modal database 27 Deep PSO -POA for NN 97.12% Yes 

 

Table 9. Proposed model vs PTB-XL dataset performance 

 
Dataset Model Accuracy Sensitivity Specificity 

PTB-XL 

ResIncept Model 96.87 62.32 89.39 

VGGRes Model 95.95 60.17 86.19 

InceptVGG 96.13 75.39 89.67 

LenetAlex LSTM 96.12 69.28 89.28 

 

Table 10. Existing method vs proposed method 

 
System Dataset Model Accuracy Recall Precision 

Existing-TPE Optimization [74] Georgia ECG ResIncept Model 94.81 24.0 78.58 

  VGGRes Model 94.04 11.9 66.67 

  InceptVGG 95.02 35.4 70.71 

  LenetAlex LSTM 94.77 28.1 71.14 

Proposed-Deep PSO-Pelican Optimization Georgia ECG ResIncept Model 96.39 35.5 88.18 

  VGGRes Model 95.48 20.6 75.12 

  InceptVGG 95.73 24.1 79.11 

  LenetAlex LSTM 96.07 30.9 83.57 

 

Comparison to existing methods on standard benchmarks. 

The provided Table 10 presents a comparison of performance 

metrics and epoch periods for different models, utilising both 

the current TPE Optimisation and the suggested Deep PSO-

Pelican Optimisation techniques, on the Georgia ECG dataset. 

Specifically, the proposed ResIncept Model achieves the 

highest accuracy of 96.39%, with significantly improved recall 

and precision values of 35.54% and 88.18% respectively, 

showcasing the effectiveness of Deep PSO-Pelican 

Optimization in enhancing model performance. Overall, the 

results underscore the potential of optimization techniques like 

Deep PSO-Pelican Optimization in advancing the 

performance of machine learning models for medical 

applications such as ECG analysis. 

 

Results of analysed hyperparameter sensitivity. Sensitivity 

analysis in neural networks involves assessing the impact of 

input variables on the output. The sensitivity analysis for the 

selection of hidden units involves evaluating the importance 

of input and hidden units in neural networks. This analysis 

helps identify the relative contribution of these units to the 

network's output. Below we have a basic representation to 

train the model based on sensitivity analysis of number of 

hidden units. 

Step 1 : Train the  proposed neural network  with a specific 

number of hidden units. 

Step 2 : Evaluate the trained model on a validation dataset 

to obtain the accuracy. 

Step 3 : Repeat steps 1 and 2 for different numbers of hidden 

units. 

Step 4 : Plot the accuracy against the number of hidden units. 

 

 
 

Figure 4. Validation accuracy vs hidden units 

 

The Figure 4 shows the validation accuracy performed on 

Chapman-Shaoxing 12-lead ECG Database with hidden units 

ranges from [4, 8, 16, 32, 64, 128] to perform sensitivity 

analysis. Based on the provided dataset and the plotted graph: 

(1). Initial Performance Fluctuation: With a low number of 

hidden units, validation accuracy fluctuates, indicating the 
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model's instability or underfitting due to insufficient 

complexity. 

(2). Improved Performance: Validation accuracy generally 

improves as the number of hidden units increases up to a 

certain point (around 64 hidden units in this case). 

(3). Optimal Complexity: The peak validation accuracy of 

97.5% is achieved with 64 and 128 hidden units, indicating an 

optimal level of complexity for this particular dataset and 

model architecture. 

 

Distinctive features. 

Database Diversity: Our suggested system differentiates 

itself from existing techniques by utilizing a multi-modal 

database, which guarantees a broader dataset compared to the 

prevailing use of MITDB or IoT-sensed data. 

Cardiac Arrhythmia Classification: Unlike current 

methods that can only handle a small number of cardiac 

arrhythmia classes (ranging from 2 to 6), our suggested 

method showcases its strength by effectively classifying a 

significant 27 classes. The system's increased coverage 

improves its potential to be used in real-world situations where 

a wide variety of arrhythmias may be encountered. 

Automation Capability: The suggested system is notable 

for implementing an automated framework for creating the 

layered architecture. This feature fills a notable deficiency in 

previous techniques, offering a more effective and user-

friendly manner for constructing cardiac arrhythmia 

categorization algorithms. 

Our approach is unique since it uses Deep PSO-POA for NN. 

This novel approach improves accuracy and refinement 

beyond previous methods. Compared to other methods, our 

solution, which uses Deep PSO-POA for NN on a multi-modal 

database, is more accurate and presents an automated 

architecture framework. The system's ability to manage more 

cardiac arrhythmia types, varied database use, and creative 

methodology advances categorization. Our technique helps 

detect and treat cardiovascular problems accurately and 

efficiently, aligning with current healthcare technologies. 

 

5.3.6 Addressing hyper-parameter tuning complexity with 

PSO-pelican framework 

The PSO-Pelican framework offers a novel solution to the 

complexity of hyperparameter tuning in deep learning models. 

By combining PSO with Pelican Search Optimization, the 

framework efficiently explores the hyperparameter space to 

identify optimal configurations that maximize model 

performance. 

Key Features of PSO-Pelican Framework: 

Exploration Stage: During the exploration stage, the PSO-

Pelican framework leverages PSO to explore the search space 

and exploit local optima. Each particle represents a potential 

solution in the hyperparameter space, and its movement is 

guided by both personal best and global best positions. 

Exploitation Stage: In the exploitation stage, the 

framework transitions to Pelican Search Optimization, which 

utilizes chaotic sequences to further explore and exploit 

promising regions of the search space. This adaptive strategy 

enables the framework to escape local optima and discover 

more optimal hyperparameter configurations. 

Dynamic Adjustment: The framework dynamically 

adjusts the exploration and exploitation strategies throughout 

the optimization process, balancing between exploration of 

diverse hyperparameter configurations and exploitation of 

promising regions to refine the search towards optimal 

solutions. 

 

5.3.7 Discussion 

Our research delves into ECG-based arrhythmia detection, 

shedding light on the model's strengths and critical 

considerations. These insights have the potential to 

revolutionize the accuracy and efficacy of diagnosing 

arrhythmias in healthcare settings. 

(1) Addressing the Challenges of Multimodal 

Optimization 

Arrhythmia diagnosis is difficult because there are 

numerous arrhythmic patterns and optimal approaches. The 

hybrid method navigates terrain with many optimal options 

using PSO and POA. New solutions are PSO's specialty. POA 

efficiently uses current solutions. POA increases trade-offs 

between exploration and exploitation. These qualities allow 

the model to detect frequent and rare arrhythmias in complex 

and irregular environments. 

(2) Possibility of Enhanced Hyperparameter 

Optimization 

Adding logistic chaotic mapping enhances hybrid approach 

hyperparameter optimization. Chaotic mapping enhances 

PSO-PAO startup and exploration. This improves arrhythmia 

detection models' reliability. Arrhythmia detection model 

performance depends on hyperparameter tweaking. The PSO-

POA hybrid's hyperparameter optimization lets researchers 

and doctors adjust model parameters based on dataset features. 

Adaptability helps with patient populations' dynamic and 

diverse arrhythmia patterns. 

(3) Relevance for Medical Practice 

The research could revolutionize arrhythmia detection in 

clinical practice by enhancing reliability through advanced 

investigation, multimodal optimization, and hyperparameter 

tuning. The PSO-POA hybrid significantly reduces false 

detections, enabling faster, more accurate decisions for 

improved patient outcomes. 

(4) Comparative Analysis of Existing Models 

Comparing the PSO-POA hybrid method to different 

arrhythmia detection methods helps determine its genuine 

impact. This involves comparing performance to standard 

machine learning, deep learning, and other optimization 

strategies. Analyzing the PSO-POA hybrid's pros and cons 

would assist evaluate its role in arrhythmia identification. 

Understanding how the proposed strategy improves current 

models is crucial for clinical research practice. 

To summarize, the conversation emphasizes the PSO-POA 

hybrid method's significant capacity to revolutionize 

arrhythmia diagnosis using ECG data. The suggested model 

significantly advances the development of automated 

arrhythmia detection systems in healthcare by addressing 

exploration problems, multimodal optimization difficulties, 

and enhancing hyperparameter tuning. The significance for 

clinical practice highlights the necessity of ongoing study in 

this area, emphasizing tackling obstacles, verifying 

applicability, and carrying out thorough comparative analyses. 

While our study illuminates numerous advantages, it also 

brings forth significant drawbacks and considerations. 

- Real-time Implementation Challenges: The 

model's complexity may impede its seamless integration into 

clinical settings, posing challenges for real-time applications 

critical to healthcare. 

- Interpretability Limitations: Deep learning models 

often lack interpretability, posing challenges in 

comprehending and justifying decisions. This limitation could 
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hinder acceptance in critical healthcare scenarios where 

interpretability is paramount. 

- Potential for Overfitting: Although our framework 

demonstrates promising results in the evaluated datasets, there 

is a risk of overfitting, particularly when applying the model 

to new or unseen data. Careful validation and robustness 

testing are essential to mitigate this risk and ensure the 

generalizability of our findings. 

Despite the potential benefits of our framework, its 

integration into existing clinical workflows may present 

logistical and operational challenges. 

By comparing these findings to our study goals, we see the 

need for future studies to simplify models and improve 

interpretability without sacrificing accuracy. Despite 

limitations, this research shows promise for arrhythmia 

identification, but it needs to be refined to meet actual 

healthcare needs. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

The PSO-Pelican Arrhythmia Optimize (PSO-POA) hybrid 

technique and autorhythmic model have showed potential in 

automating deep learning parameter fine-tuning to improve 

arrhythmia identification. The study found a promising 

balanced exploration-exploitation hyperparameter 

optimization strategy. Chaotic initialization and synergistic 

PSO-POA interactions are used in this technique. 

InceptVGG's extraordinary precision, sensitivity, and 

specificity across varied datasets shows that high-performing 

models can be used in healthcare. InceptVGG excels with 

97.12% accuracy and 91.45% sensitivity. This major 

development improves cardiac arrhythmia categorization. 

These discoveries may help doctors make accurate diagnosis 

and create effective treatment programme. These models can 

transform arrhythmia diagnosis by providing accurate and 

rapid data to doctors. After theoretical advancements, the 

research emphasizes the need for accurate arrhythmia 

detection devices. InceptVGG and similar models satisfy the 

primary research goal of improving arrhythmia identification 

accuracy. These models may modify clinical settings, making 

them important outside academia. However, the voyage 

continues. Future research should build on this foundation and 

focus on many key factors to advance arrhythmia detection. It 

is crucial to conduct thorough empirical validations of the 

proposed approach on various datasets and problem domains 

to ensure its effectiveness and applicability. Although the 

work has demonstrated encouraging outcomes, more 

verification using a wider variety of datasets would improve 

the applicability of the suggested hybrid approach. Ensuring 

the model's stability and performance across varied patient 

demographics and variations in arrhythmia is of utmost 

importance at this step. 

(1) Adaptive Parameter Tuning: The hybrid method 

requires further study. The hybrid approach's parameter 

flexibility should be optimized in future research. This inquiry 

may involve real-time adjustments based on input data 

features to improve optimization performance and adaptation 

to diverse arrhythmia patterns. 

(2) The capacity of the PSO-POA hybrid technique to 

handle more complicated problem spaces is an area that needs 

further investigation. Given the complicated nature of 

arrhythmia detection, ensuring that the proposed approach can 

handle more intricate data patterns is essential to be considered 

reliable and effective. 

(3) Model Refinement and Expansion: Although 

InceptVGG has performed well, it is important to continue 

improving and expanding its capabilities. Alterations, 

extensions, or combinations with other architectures may offer 

additional benefits. Innovative neural network architectures 

for arrhythmia identification may also increase the model's 

performance. 

(4) Ethical Considerations and Real-World 

Implementation: As these models become realistic, ethics 

become crucial. To ensure ethical healthcare implementation 

of automated arrhythmia detection systems, further 

investigations should focus on data confidentiality, system 

explanation, and unfairness. 

Essentially, the PSO-PAO hybrid technique has 

successfully reached high accuracy rates, especially when 

using InceptVGG. This result paves the way for further 

research in a dynamic and expanding subject. The intended 

future directions aim to enhance, expand, and consolidate the 

hybrid optimization methodology, enhancing arrhythmia 

detection systems' accuracy, efficiency, and practicality. This 

study stimulates continuous efforts to improve healthcare 

outcomes by utilizing state-of-the-art technology and creative 

methods for detecting arrhythmia. 
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