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Human activity recognition (HAR) plays a crucial role in various domains, including 
surveillance systems, human-computer interactions, and healthcare monitoring. This paper 
presents an approach to improve the HAR system by using an optimized feature selection 
method called the Improved Seagull Optimization algorithm (I-SGO) and utilizing a 
proposed hybrid classifier. The HAR process begins with the fusion of spatio-temporal and 
texture-based features, forming a comprehensive feature set. Subsequently, I-SGO is applied 
for feature selection, and the selected features are used to train an optimized hybrid classifier. 
The hybrid classifier comprises a support vector machine (SVM) and k-nearest neighbor (k-
NN), with their outputs combined and fed as input to an optimized artificial neural network 
(ANN) using I-SGO at various levels. The effectiveness of the proposed model is assessed 
on benchmark datasets, such as the UCF101-Action Recognition dataset and Human Action 
Clips and Segments (HACS). The experimental results provide evidence of the hybrid 
model's higher recognition accuracy in comparison to previous approaches. The interaction 
of feature selection through I-SGO and the optimization of the hybrid classifier, where the 
outputs of SVM and k-NN are combined as input to the ANN, contributes to robust and 
accurate HAR.  
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1. INTRODUCTION

Human activity recognition (HAR) involves the
observation, assessment, and detection of human actions. It 
can positively impact many areas of our lives, including smart 
healthcare [1, 2], home monitoring [3], sports [4, 5], gaming 
management, and rapid detection of harmful behaviors [6]. 
HAR is currently being approached through computer vision 
and sensing devices and has been a topic of extensive research. 
Computer-vision-based HAR have a strong foundation and 
have been used in various applications. For example, 
researchers have designed frameworks for person re-
identification [7], fall detection [8], and fitness action analysis 
[9]. Computer-vision-based HAR encounters numerous 
obstacles that must be overcome, including occlusions, 
alterations in viewpoints, and adverse lighting conditions. 

Traditionally, human activity identification relies on 
pattern-based approaches involving manual feature extraction, 
feature selection, and the training of off-the-shelf classifiers. 
Standard classifiers, such as Random Forests (RF), SVM, and 
Hidden Markov Models (HMM) [10-12] are commonly used 
for activity modeling. However, these approaches have 
limitations, particularly in terms of scalability, adaptability, 
and generalization. Owing to the sensitivity of these 
techniques to noise and changes, high-dimensional feature 
vectors and manual feature engineering are required. To 

address these limitations, researchers have explored different 
aspects of HAR starting with feature extraction. Various 
methods have been utilized to extract features that capture 
lighting change tolerance [13], robustness, scale invariance, 
rotation invariance, and computational efficiency [14]. 
Extensive research has been conducted on textural features, 
shape and motion features, spatiotemporal descriptors [15], 
dynamic texture descriptors, and motion feature learning. It 
was observed that combining spatiotemporal features with 
texture-based features leads to improved accuracy and 
discrimination in activity recognition. 

Another critical aspect of HAR is feature selection because 
large feature vectors can introduce computational 
complexities and reduce interpretability. Feature selection 
techniques are designed to detect a highly relevant and 
informative subset of features, while simultaneously reducing 
dimensionality. Filter, wrapper, and embedded methods were 
used for the feature selection. Mutual information, minimum 
redundancy [16], maximum relevance (mRMR), and meta-
heuristic algorithms [17-19] are some approaches employed 
for feature selection. After choosing the features, they were 
used to train the HAR classifier model. 

Classic pattern-based approaches that utilize single 
classifiers at the forefront of HAR have shown certain 
shortcomings in terms of accuracy, generalization, and 
scalability. To overcome these challenges, hybrid classifiers 
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have been introduced in HAR to improve both accuracy and 
robustness [20]. By combining different classifiers, this 
approach aims to include a wider array of activity patterns, 
thereby enhancing classification performance [21-23]. 
Various methods such as deep learning, genetic algorithms, 
linear discriminant analysis (LDA), k-NN, and SVM have 
been integrated into hybrid classifiers [24-27]. These 
approaches utilize diverse feature extraction and selection 
techniques to maximize the use of present information. The 
strengths of multiple classifiers can be leveraged through 
hybrid approaches to improve both accuracy and robustness. 

In pattern-based HAR, classifiers typically rely on 
spatiotemporal features extracted from activity data. Although 
these features effectively capture the dynamic aspects and 
broader context of activities, they often overlook finer details 
and surface characteristics of the bodies involved. This 
limitation can lead to incomplete representation of certain 
actions, which may compromise the accuracy and robustness 
of the HAR system, particularly when dealing with complex 
or subtle activities. To address this issue, integrating additional 
feature types such as texture-based features can provide 
complementary insights into the visual characteristics and 
appearance of activities. This approach improves the accuracy 
and performance of HAR systems by providing more detailed 
representations of their activities. However, the inclusion of 
more features increases the dimensionality of the feature 
vector, which can lead to a higher computational complexity. 
Consequently, using single classifiers to manage these high-
dimensional vectors may be less effective, thereby affecting 
the overall performance of the HAR system. 

To enhance the overall performance of the HAR system and 
address its limitations, the following measures are proposed: 

•Integration of diverse types of features for comprehensive
representation of activity. 

•The feature selection method uses I-SGO to identify the
most relevant and informative subsets of the features. 

•Development of a new hybrid model employing SVM, k-
NN, and ANN classifiers. 

•The weights of the ANN were fine-tuned using the I-SGO
optimization algorithm to improve the recognition accuracy of 
the proposed hybrid model. 

In summary, this study sought to overcome the inadequacies 
of traditional pattern-based HAR by implementing an 
optimized hybrid classifier. The primary goal of merging 
several classifiers is to improve performance. The research 

emphasized three key areas: feature extraction, feature 
selection, and development of a hybrid model incorporating 
SVM, k-NN, and ANN classifiers. 

The goal of this research is to improve the field of HAR and 
develop more reliable and effective systems for a variety of 
applications by utilizing recent advancements in machine 
learning and computer vision. The subsequent sections of this 
work are structured as follows: Section 2 provides an overview 
of the preprocessing and feature extraction methods used in 
the context of HAR. Section 3 provides a comprehensive 
description of the hybrid classifier model that is being 
presented. It includes a detailed explanation of the optimal 
feature selection process, which utilizes the I-SGO algorithm. 
Additionally, it explores the application of the I-SGO 
algorithm in fine-tuning the weights of the ANN. Section 4 
presents the results of the study and provides an in-depth 
discussion. Section 5 concludes the paper by summarizing the 
key findings. 

2. METHOD

This paper presents an innovative method to improve HAR
by analyzing real-world video sequences. The method is 
organized into three key phases: pre-processing, feature 
extraction, feature selection, and activity classification. As 
depicted in Figure 1, the proposed model starts with a video 
sequence input, referred to as Vinp. The video frames were first 
pre-processed using filtering and Background Subtraction 
(BS) to focus on the Region of Interest (ROI). After the frames 
were pre-processed, called imgpre, the features were extracted 
from them. The extracted features included the Shape and 
Motion Local Ternary Pattern (SMltp) (fSMltp) [28], Center 
Symmetric Motion Local Ternary Pattern (CS-Mltp) (fCS-Mltp) 
[14], Motion Boundary SIFT (MoBSIFT) (fMoBSIFT) [29], 
extended-speeded-up robust features(E-SURF) (fE-SURF) [30], 
and shape-index-based local ternary pattern (SILTP) (fSILTP) 
[31]. These features were concatenated as F = fSMltp + fCS-Mltp + 
fMoBSIFT + fE-SURF+ fSILTP to represent a single-input video file. 
Feature selection was performed to reduce the dimensions of 
the feature vectors. The I-SGO selects the optimal features (F*) 
from the extracted feature set F. The SGO algorithm was 
inspired by the migration and attack behavior of seagulls, 
which were mathematically modeled to emphasize the 
exploration and exploitation in the search space. 

Figure 1. The block diagram of the proposed HAR system 
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For activity classification, we propose a hybrid machine-
learning model that integrates SVM, k-NN, and an optimized 
ANN. Initially, the SVM and k-NN classifiers are trained on 
the optimal features, denoted as F*. The outputs from these 
classifiers, labeled as outSVM and outk-NN, are then used to train 
the ANN, which makes the final classification of human 
activity. To enhance the accuracy of activity classification, the 
ANN weights were further refined using the I-SGO method 
[32]. 

 
2.1 Pre-processing and extraction of features 

 
In the initial step, the input video Vinp was processed to 

convert it into individual frames. Each extracted frame is 
referred to as img. To minimize noise, the image frame img 
underwent Gaussian filtering [33], as described by Eq. (1). 
 

𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐺𝐺(𝑎𝑎, 𝑏𝑏) =
1

2𝜋𝜋𝜎𝜎2
𝑒𝑒�−

𝑎𝑎2+𝑏𝑏2
2𝜎𝜎2 � (1) 

 
The variables a and b in Eq. (1) indicate the coordinates of 

the image, whereas σ denotes the standard deviation. The 
result of applying Gaussian filtering to the image frame is 
referred to as an imgfilter. This filtered frame was then 
processed using a BS to separate the ROI from the 
background. Five spatiotemporal features were subsequently 
extracted from the ROI, and all extracted features were 
combined to create a complete feature vector 𝐹𝐹 as 𝐹𝐹 =
𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆 + 𝑓𝑓𝐶𝐶𝑆𝑆−𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆 + 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑓𝑓𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆 + 𝑓𝑓𝐸𝐸−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .  

 
 

3. HUMAN ACTIVITY RECOGNITION WITH THE 
PROPOSED HYBRID MODEL 

 
To perform HAR, a classifier was trained using the obtained 

features. To represent an activity video, all extracted features 
were concatenated to form a complete feature vector 𝐹𝐹 as 𝐹𝐹 =
𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆 + 𝑓𝑓𝐶𝐶𝑆𝑆−𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆 + 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑓𝑓𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆 + 𝑓𝑓𝐸𝐸−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 . 

However, the high dimensions of the extracted features 
from video data can pose challenges, leading to increased 
computational complexity, susceptibility to noise and 
irrelevant features, increased storage requirements, and 
diminished interpretability. In order to address these 
drawbacks, feature selection approaches have been devised to 
determine the most pertinent and informative subset of 
features. This helps to decrease dimensionality while 
simultaneously preserving or enhancing the classification 
performance. 

 
3.1 Optimal feature selection using I-SGO 

 
To reduce the dimensions of feature F, an I-SGO algorithm 

was used, which selected the most optimal features. In I-SGO, 
the seagull positions are updated using migration and attack 
behaviors and are mathematically modelled using Eqs. (6)-
(13). As shown in Algorithm 1, a population of seagulls and 
individual seagull positions is randomly initialized, 
representing subsets of features. The fitness of each seagull 
was calculated using the CalculateFitness() function based on 
the accuracy of the proposed classifier. When the stopping 
criterion is not met, the positions of the seagulls are updated, 
their fitness is assessed, and the global best solution is updated 
using the get GlobalBestSolution() function, if a better 
solution is obtained. Finally, the selected subset of features 

corresponding to the global best solution is returned. 
Algorithm 1: Seagull optimization algorithm for feature 
selection (ISGOA) 

Require: Seagull position 𝑃𝑃× 
Ensure: Optimal position 𝑃𝑃ghext 

1: Initialize the positions 𝑃𝑃𝛼𝛼  of each seagull in the 
population of size pop randomly, along with the parameters 
𝑓𝑓𝑐𝑐,𝑎𝑎, 𝑏𝑏,𝑢𝑢, 𝑣𝑣, and maximum iteration limit Maxiter.  
2: Apply the CalculateFitness (𝑃𝑃𝑥𝑥)  function to calculate 
fitness values for each 𝑃𝑃𝑥𝑥 in the population.  
3: Use the getGlobalBestSolution() function to find 𝑃𝑃sext 
and gbestValue in the population. 
4: for iter ← 1 to Maxiter do 
5: for 𝑖𝑖 ← 1 to pop do 
6: Update the position 𝑃𝑃𝑛𝑛 of each seagull using Eqs. (6) to 
(13), respectively.  
7: Apply the Calculate Fitness (𝑃𝑃∗)  function to            
calculate the fitness value of each updated seagull position. 
8: end for 
9: Use the getGlobalBestSolution() function to assess the 
fitness of all individuals and update 𝑃𝑃𝑔𝑔𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓 and gbestValue. 
10: Update the position of the seagull using Eq. (15) before 
the next iteration.  
11: end for 
12: return 𝑃𝑃𝑔𝑔𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓  and gbestValue.  

Function: Calculate Fitness (𝑃𝑃∗) 
Input: Seagull positions 𝑃𝑃𝑥𝑥 
Output: Fitness values 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 [ ] 
1: for 𝑖𝑖 ← 1 to 𝑝𝑝𝑝𝑝𝑝𝑝 do 
2: FITs [𝑖𝑖] ← Fitness Function (𝑃𝑃𝑥𝑥) using Eq. (4) 
3: end for 
4: return 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 [] 

Function: getGlobalBestSolution() 
Input: Fitness values 𝐹𝐹𝐹𝐹𝐹𝐹s [] 
Output: Optimal position 𝑃𝑃𝑔𝑔best  and corresponding 

fitness gbestValue 
1: gbestValue & FITs [1] 
2: for 𝑘𝑘 ← 1 to pop do 
3: if gestValue < 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑘𝑘] then 
4:  gbestValue ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑘𝑘] 
5:  𝑃𝑃𝑔𝑔ℎ𝑓𝑓𝑥𝑥𝑓𝑓 ← 𝑃𝑃𝑘𝑘𝑥𝑥 
6: end if 
7: end for 
8: return 𝑃𝑃gest, gbestValue 

 
3.2 The proposed hybrid model 

 
In traditional pattern-based HAR systems, actions can be 

classified using decision trees, SVM, HMM, and other 
machine learning algorithms. Problems with these methods 
include limited generalization, sensitivity to differences and 
noise, and limited ability to scale up. To address these 
limitations, a hybrid classifier is proposed to capture a wide 
range of real-world activity patterns and improve the overall 
classification accuracy. A hybrid machine learning model was 
introduced in the human activity classification phase by 
blending the SVM [34], k-NN [35], and optimized ANN. The 
constructed hybrid machine-learning model provides 
information regarding human activities, as shown in Figure 2. 
The selected features, 𝐹𝐹∗, were used to train the SVM and k-
NN models. The results from the SVM and k-NN are called 
𝑝𝑝𝑢𝑢𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑝𝑝𝑢𝑢𝑜𝑜𝑘𝑘−𝑁𝑁𝑁𝑁, and they are used to train the ANN. 
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Figure 2. The proposed hybrid classifier model for HAR 

3.3 ANN 

The ANN [36] was trained by combining the output from 
the k-NN classifier (𝑝𝑝𝑢𝑢𝑜𝑜𝑘𝑘−𝑁𝑁𝑁𝑁) and SVM classifier (𝑝𝑝𝑢𝑢𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆). 
The ANN consists of three layers: the input layer, the hidden 
layer, and the output layer. Neurons serve as the computational 
units inside each layer. Data is transmitted from the input layer 
to the hidden layer and ultimately to the output layer. The 
synaptic weights assigned to each link represent the strength 
of the connections between nodes. Eq. (2) was used to 
calculate the output of the node. 

𝑝𝑝𝑢𝑢𝑜𝑜𝐴𝐴𝑁𝑁𝑁𝑁 = 𝑓𝑓 ��𝑊𝑊𝑓𝑓 .𝐹𝐹𝑓𝑓∗ + 𝑏𝑏𝑖𝑖𝑎𝑎𝐹𝐹𝑓𝑓

𝑆𝑆

𝑆𝑆=1

� (2) 

where, 𝐹𝐹𝑓𝑓∗  is the input, 𝑊𝑊𝑓𝑓  is the weight function, and 𝑏𝑏𝑖𝑖𝑎𝑎𝐹𝐹𝑓𝑓 
represents the network bias. The activation function 𝑓𝑓 , as 
defined in Eq. (3) is applied. 

𝑓𝑓(𝑥𝑥) =
1

1 − 𝑒𝑒−𝑥𝑥
(3) 

Error 𝐸𝐸 was computed by subtracting the output generated 
by the ANN model from the desired output, as specified in Eq. 
(4). 

𝐸𝐸 = ��(𝑂𝑂𝑢𝑢𝑜𝑜𝐴𝐴𝑁𝑁𝑁𝑁 − 𝑂𝑂𝑢𝑢𝑜𝑜𝑓𝑓𝑎𝑎𝑓𝑓)
𝑆𝑆𝑆𝑆

 (4) 

where, 𝑃𝑃 specifies the number of training patterns, 𝑂𝑂𝑢𝑢𝑜𝑜𝑓𝑓𝑎𝑎𝑓𝑓 is 
the desired output, and 𝑂𝑂𝑢𝑢𝑜𝑜𝐴𝐴𝑁𝑁𝑁𝑁  represents the output of the 
ANN. The final classification result for human activity was 
delivered by the ANN output. The classification error was 
determined using Eq. (4). Minimizing this error is the key 
objective of this study. The objective function is 
mathematically represented by Eq. (5): 

𝑂𝑂𝑏𝑏𝑂𝑂 = min (𝐸𝐸) (5) 

We used a metaheuristic algorithm to obtain a solution to 
Eq. (5). The existing literature supports the idea that 
metaheuristics solve optimization problems by utilizing 
flexible strategies to explore solution spaces and achieve 
optimal or near-optimal solutions [37-42]. In addition, to 
improve the accuracy of HAR, the weights of the ANN were 
tuned via the novel I-SGO approach. The proposed I-SGO 
approach is a conceptual amalgamation of the standard seagull 
optimization algorithm (SGO). 

3.4 Fine tuning the ANN weights using I-SGO 

The I-SGO algorithm, as detailed in Algorithm 2, was used 
to fine-tune the weights of the ANN in the proposed hybrid 
model. The I-SGO model was developed using inspiration 
acquired from SGO [32, 43]. The application of I-SGO to fine-
tune the weights of an ANN involves several steps. First, based 
on the ANN architecture, the dimension of the problem space 
is defined as D. Next, an initial population of potential 
solutions, represented by individual seagulls, is created. The 
size of the seagull population is represented as 𝑝𝑝𝑝𝑝𝑝𝑝 . Each 
seagull corresponds to a set of weights based on the 
architecture of the ANN, and the position of the 𝑖𝑖𝑓𝑓ℎ seagull is 
represented as 𝑃𝑃𝑓𝑓𝑔𝑔 = (𝑥𝑥𝑓𝑓1, 𝑥𝑥𝑓𝑓2, … , 𝑥𝑥𝑓𝑓𝐷𝐷)   𝑖𝑖 = 1,2, … , 𝑝𝑝𝑝𝑝𝑝𝑝. The 
fitness of each individual was evaluated by training an ANN 
and measuring its performance using a fitness function. 
Subsequently, I-SGO iterations begin, in which the seagull 
positions are updated based on their positions and those of the 
others. The I-SGO model depends on the migratory and attack 
tendencies of seagulls in their natural habitat. The two main 
stages of the I-SGO model are migration (exploration) and 
attacks (exploitation). 

Algorithm 2: Tuning of ANN weights using the I-SGO 
optimization algorithm 
Require: Dataset, ANN, number of iterations, population 
size 
Ensure: Optimized weights of ANN 
1: Initialize ANN with random weights and biases 
2: repeat  
3: Divide the dataset into training and testing sets 
4: Choose weights of ANN to be optimized or tuned 
5: Initialize the I-SGO algorithm with the number of 
iterations and population size.  
6: Generate the initial population of weights of ANN 
7: Evaluate the fitness of each set of weights of ANN using 
training set 
8: Update the position of the seagulls based on fitness 
evaluation 
9: Generate new sets of weights of ANN using I-SGO 
10: Evaluate the fitness of the new population of weights 
11: until the Stopping criterion is met or the desired fitness 
the level is achieved, or the number of iterations is 12. Train 
the ANN on the combined training set using the selected 
weights 
13: Evaluate the performance of the trained ANN on the 
testing set 
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Migration (exploration): The migration behavior of a 
seagull is a component of global search. Seagulls migrate from 
one location to another. However, they must satisfy three 
requirements: avoiding collisions, navigating towards the 
optimal position, and moving in the direction of the best 
solution. 

Collision avoidance: A new variable, a, is added to avoid 
collisions between neighbors. Mathematically, this condition 
is expressed by Eq. (6): 

𝐶𝐶 = 𝑎𝑎 ∗ 𝑃𝑃𝑔𝑔(𝑥𝑥) 

𝑎𝑎 = 𝑓𝑓𝑐𝑐 − �𝑥𝑥 × �
𝑓𝑓𝑐𝑐

𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥
�� (6) 

where, 𝑥𝑥 = 0,1,2, … .𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥, is the iteration number, C denotes 
the position of the seagull that causes no collision, and 𝑃𝑃𝑔𝑔 is 
the position of the seagull in the current iteration. The value of 
𝑎𝑎  is linearly reduced to zero from 𝑓𝑓𝑐𝑐 , which controls the 
frequency of employing variable 𝑎𝑎. 

Movement toward the direction of best neighbors: The 
seagull will navigate towards the optimal location once it 
ensures that it avoids collisions with other birds. This 
condition is mathematically represented by Eq. (7): 

𝑀𝑀 = 𝑏𝑏 ∗ (𝑃𝑃𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓(𝑥𝑥) − 𝑃𝑃𝑔𝑔(𝑥𝑥)) (7) 

where, M represents the position of the seagull according to 
the best seagull position and b is a parameter that balances the 
global and local searches as defined in Eq. (8), 𝑃𝑃𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓  shows 
the best position in the population and 𝑃𝑃𝑔𝑔  is the current 
location of the seagull. 

𝑏𝑏 = 2 ∗ 𝑎𝑎2 ∗  𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 (8) 

where, 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟  is a randomly generated integer that falls 
between [0, 1]. 

Move toward the best position: The seagull strategically 
maneuvers to optimize its position for reaching a new 
destination, while ensuring it does not collide with other 
seagulls. As shown in Eq. (9): 

𝐷𝐷 = |𝐶𝐶 + 𝑀𝑀| (9) 

where, D denotes the separation between the seagull and its 
best position seagull. 

Proposed attack (exploitation): The seagull changed its 
angle during the migration. Using x, y, and z to describe their 
motion, seagulls attack their prey by spiraling in the air. This 
process is expressed by Eqs. (10)-(13): 

𝑋𝑋′ = 𝑟𝑟 ∗ cos(𝑘𝑘) (10) 

𝑌𝑌′ = 𝑟𝑟 ∗ sin(𝑘𝑘) (11) 

𝑍𝑍′ = 𝑟𝑟 ∗ 𝑘𝑘 (12) 

𝑟𝑟 = 𝑢𝑢 ∗ 𝑒𝑒𝑘𝑘𝑘𝑘 (13) 

where, r denotes the radius of each round of spiral movement 
and u, v are constants of the spiral shape. 

Eq. (14) describes the seagull attack behavior: 

𝑃𝑃𝑔𝑔(𝑖𝑖) = (𝐷𝐷 ∗ 𝑋𝑋′ ∗ 𝑌𝑌′ ∗ 𝑍𝑍′)+𝑃𝑃𝑔𝑔𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓(𝑖𝑖) (14) 

To enhance the attack capability, a new mathematical model 
was designed according to Eq. (14). The attack stage, which is 
represented by Eq. (14), is a local search stage that is prone to 
local extrema and may not yield a global solution. 

𝑃𝑃(𝑥𝑥) = (𝐷𝐷 ⋅ 𝑋𝑋′ ⋅ 𝑌𝑌′ ⋅ 𝑍𝑍′) + 𝑃𝑃𝑔𝑔𝑏𝑏𝑓𝑓𝑔𝑔𝑓𝑓(𝑥𝑥) 
+�Pgworst(x) − P(x)� ⋅ W′

+ �Pgbest(x) − P(x)� ⋅ W′
(15) 

A slight adjustment to the current solution helps overcome 
the local extremes. To achieve this, Eq. (14) is expanded using 
additional components. By introducing a random perturbation 
in Eq. (14), the algorithm can explore neighboring regions and 
avoid getting stuck at local maxima. These added terms 
enhance the individual seagulls' ability to learn from both the 
global optimal position and worst position seagull. The 
constant W' governs the impact of the extra terms and 
safeguards against falling into the local extrema. 

The seagull positions were updated using migration and 
attack patterns to fine-tune the ANN weights. The suitability 
of the new seagull position is validated, and the optimal 
solution is revised. This process was repeated until the criteria 
were satisfied. The ANN model used optimized weights, and 
its performance was tested on a real-world dataset. 

4. RESULT AND DISCUSSION

4.1 Experimental setup 

Experiments were conducted using two benchmark datasets 
to assess the performance of the proposed model. 

Datasets: Dataset 1, referred to as the UCF101-Action 
Recognition dataset, was sourced from [44] 
(https://www.crcv.ucf.edu/research/data-ets/ucf101). It 
includes 101 action categories organized into 25 groups. 
Dataset 2, known as Human Action Clips and Segments 
(HACS), was obtained from reference [45] 
(http://hacs.csail.mit.edu) and comprises 200 action 
categories. To validate the proposed system, the feature set is 
partitioned into training and testing subsets. 

Metrics for evaluation: The performance metrics used to 
comprehensively assess the proposed model included 
Accuracy, Sensitivity, Specificity, Precision, Recall, F1-
Score, Matthews Correlation Coefficient (MCC), False 
Negative Rate (FNR), and False Positive Rate (FPR). 

Baseline comparisons: We tested the proposed hybrid 
model against prevalent classifiers such as ANN, RF, SVM, 
and kNN, as well as the proposed hybrid model without feature 
selection (PWOFS), the suggested hybrid model without SGO 
optimization (PWOOPT), and other cutting-edge optimization 
algorithms such as the Seagull optimization algorithm (SGO) 
[43], Social spider optimization algorithm (SSO) [46], 
Sandpiper optimization algorithm (SOA) [47], Shark Smell 
Optimization (SSO) Algorithm (SSOA) [48], and Deer 
Hunting Optimization Algorithm (DHOA) [49]. This was 
performed to demonstrate the improvements achieved through 
I-SGO.

4.2 Hybrid classifier performance analysis 

We tested the proposed method against standard classifiers 
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as well as the proposed hybrid models without feature 
selection (PWOFS) and without I-SGO optimization 
(PWOOPT) to determine how well it worked. The outputs for 
datasets 1 and 2 are displayed in Tables 1 and 2, respectively. 

Dataset 1: The accuracy of the proposed model was 14.1%, 
9.2%, 13.4%, 11.3%, 5.7%, and 6.15% higher than that of the 
ANN, RF, SVM, kNN, PWOFS, and PWOOPT classifiers, 
respectively. In addition, the proposed model demonstrated the 
highest sensitivity, specificity, and precision, with the lowest 
FPR and FNR values. It also recorded the highest MCC and F-

measure values among all compared classifier models. 
Dataset 2: The accuracies of the proposed model were 

12.01%, 8%, 11%, 10.5%, 4.1%, and 5.16% higher than those 
of existing classifiers such as ANN, RF, SVM, KNN, PWOFS, 
and PWOOPT, respectively. The proposed model exhibited 
higher sensitivity, specificity, accuracy, and F-measure values 
of 0.934, 0.972, 0.904, and 0.994, respectively, compared to 
the other classifiers. Furthermore, the proposed model also 
demonstrated the lowest FPR and FNR values compared to the 
ANN, RF, SVM, KNN, PWOFS, and PWOOPT classifiers. 

 
Table 1. Comparison of the performance of the proposed method with ANN, RF, SVM, KNN, PWOFS, and PWOOPT 

classifiers on Dataset 1 
 

Measures ANN RF SVM KNN PWOFS PWOOPT Proposed Method 
Accuracy 0.84 0.87 0.83 0.85 0.904 0.9 0.959 
Sensitivity 0.12 0.38 0.31 0.2 0.719 0.729 0.859 
Specificity 0.92 0.71 0.721 0.92 0.84 0.82 0.964 
Precision 0.12 0.38 0.34 0.2 0.72 0.71 0.829 

F- Measure 0.12 0.38 0.34 0.2 0.72 0.72 0.919 
MCC 0.02 0.32 0.34 0.11 0.824 0.81 0.824 
FPR 0.08 0.29 0.279 0.07 0.016 0.018 0.036 
FNR 0.9 0.62 0.69 0.8 0.281 0.271 0.163 

 
Table 2. Comparison of the performance of the proposed method with ANN, RF, SVM, KNN, PWOFS, and PWOOPT 

classifiers on Dataset 2 
 

Measures ANN RF SVM KNN PWOFS PWOOPT Proposed Method 
Accuracy 0.83 0.87 0.84 0.84 0.91 0.9 0.949 
Sensitivity 0.12 0.34 0.33 0.16 0.72 0.708 0.934 
Specificity 0.91 0.723 0.745 0.92 0.832 0.822 0.972 
Precision 0.12 0.34 0.327 0.16 0.729 0.719 0.904 

F- Measure 0.12 0.34 0.33 0.16 0.72 0.71 0.994 
MCC 0.02 0.32 0.33 0.06 0.88 0.89 0.915 
FPR 0.08 0.277 0.255 0.07 0.068 0.178 0.028 
FNR 0.8 0.66 0.67 0.8 0.28 0.292 0.066 

 
4.2.1 Justification of the hybrid classifier 

The proposed hybrid classifier combines SVM, k-NN, and 
ANN to maximize the capabilities of each method and 
improve the total performance of HAR. 

SVM: This algorithm excels in high-dimensional spaces, 
particularly in determining optimal hyperplanes for 
classification. In our experiments, the SVM component 
attained accuracies of 83% and 84% on the UCF101 and 
HACS datasets, respectively, as listed in Tables 1 and 2, 
demonstrating its capability to handle complex feature sets. 

k-NN: This algorithm offers a straightforward, yet powerful 
classification approach based on proximity. The model 
achieved accuracy rates of 85% and 84% on the UCF101 and 
HACS datasets, respectively, as indicated in Tables 1 and 2. 
This demonstrates the model's effectiveness in identifying 
activities based on the nearest examples. 

ANN: The second level of the hybrid model utilizes an 
ANN, which is recognized for its capability to model complex 
nonlinear relationships. By feeding the outputs of the SVM 
and k-NN into the ANN, the model can learn higher-order 
interactions between features and classes, thereby enhancing 
its overall predictive power. This two-step approach allows the 
ANN to refine the decision boundaries set by the SVM and k-
NN, leading to an improved performance. 

This study examined the efficacy of the proposed method 
by comparing a hybrid classifier with optimized ANN 
parameters using I-SGO with conventional classifiers, as well 
as the suggested hybrid models without feature selection 
(PWOFS) and without I-SGO optimization (PWOOPT). On 

the UCF101 dataset, PWOFS achieved accuracies of 90.4% 
and on the HACS dataset, 91%. For both datasets, PWOOPT 
achieved 90% accuracy. The combination of SVM, k-NN, and 
ANN in the proposed method enhances the stability, accuracy, 
and reliability of the model for HAR. 

Incorporating feature selection and ANN fine-tuning, the 
Proposed Method achieved 95.9% accuracy on UCF101 and 
94.9% on HACS, as shown in Tables 1 and 2. It outperformed 
previous classifiers, particularly in F-measure, indicating an 
optimal balance between precision and recall. The model also 
exhibited low FPR, FNR, and high MCC, accuracy, and 
specificity, effectively identifying true positives and negatives 
while minimizing false positives. These results suggest that the 
proposed hybrid classifier enhances HAR system reliability 
and reduces the impact of incorrect predictions, making it 
suitable for various applications. 
 
4.3 Performance analysis of I-SGO algorithm 

 
4.3.1 Size of features after optimal feature selection using I-
SGO algorithm 

After concatenating all proposed features, the total feature 
length per video signal was 2,080 pixels. We applied the I-
SGO algorithm for feature selection as detailed in Algorithm 
1. Table 3 lists the feature sizes after optimal selection for 
Datasets 1 and 2. The proposed I-SGO method achieved the 
highest accuracy, reaching 0.959 for Dataset 1 with 1,685 
selected features and 0.949 for Dataset 2 with 1,699 selected 
features. This performance outperformed other methods, 
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including Principal Component Analysis (PCA), SGO, SSO, 
SOA, SSOA, and DHOA. These results suggest that the 

proposed I-SGO method effectively identifies the most 
relevant features, leading to more accurate HAR predictions. 

Table 3. Comparison of feature size and accuracy for different feature selection methods on Datasets 1 and 2 

Method Database1 Database2 
No. of Features Selected Acc. No. of Features Selected Acc. 

PCA 950 0.85 970 0.835 
SGO 1724 0.931 1709 0.905 
SSO 1729 0.931 1696 0.895 
SOA 1723 0.935 1568 0.9 

SSOA 1702 0.937 1872 0.916 
DHOA 1424 0.939 1424 0.927 
I-SGO 1685 0.959 1699 0.949 

4.3.2 Performance of the I-SGO algorithm to fine tune the 
proposed hybrid model 

The proposed hybrid model was fine-tuned using the I-SGO 
algorithm outlined in Algorithm 2 and compared against SGO, 
SSO, SOA, and DHOA algorithms. Performance metrics 
included accuracy, sensitivity, specificity, precision, FPR, 
FNR, F-measure, MCC, and NPV, evaluated at 50%, 60%, 
70%, and 80% learning percentages. Results for Datasets 1 and 
2 are presented in Figures 3 and 4. 

Dataset 1: The accuracy of the proposed method is 95.9% 
at 80 learning percentage. It also had a higher accuracy than 
the SGO, SSO, SOA, SSOA, and DHOA algorithms with the 
hybrid classifier, by 3.35%, 3.34%, 2.93%, 2.74%, and 2.53%, 
respectively, at 80 training percentages. The proposed model 

also exhibited a higher sensitivity, specificity, and precision 
for all learning percentages. These metrics demonstrate that 
the proposed I-SGO with a hybrid classifier can accurately 
identify positive and negative cases, avoid false predictions, 
and reduce the costs. 

In addition, the proposed model exhibited the lowest FPR 
and FNR for all training percentages. At 80 training cycles, the 
FPR was 12.64%, which was lower than those of the SGO, 
SSO, SOA, SSOA, and DHOA algorithms by 4.34%, 4.30%, 
2.55%, 1.74%, and 0.85%, respectively. The low FPR and 
FNR values indicated that the proposed hybrid classifier could 
distinguish between positive and negative cases and reduce the 
cost of false predictions. 

(a) Accuracy (b) Sensitivity

(c) Specificity (d) Precision
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(e) FPR (f) FNR 

  
(g) F-Measure (h) MCC 

  
(i) NPV  

 
Figure 3. Performance comparison of the proposed I-SGO algorithm with hybrid classifier against SGO, SSO, SOA, SSOA, and 

DHOA algorithms with hybrid classifier on Dataset 1 
 

Dataset 2: The proposed method outperformed SGO, SSO, 
SOA, SSOA, and DHOA in terms of accuracy, sensitivity, 
specificity, and precision at learning percentages of 50, 60, 70, 
and 80. As shown in Figure 4, it achieved the highest accuracy 
of 94.9% at 80% learning, exceeding the other algorithms by 
5.67%, 5.69%, 4.62%, 3.47%, and 2.32%, respectively. It also 
had lower FPR and FNR, along with higher MCC, F-measure, 
and NPV. 

The proposed hybrid classifier demonstrated high MCC, 
NPV, and F-measure values, reflecting its accuracy and 
reliability. This led to a high number of true positive and 
negative predictions and a low number of false predictions, 
including correctly identifying a large proportion of negative 
cases. The model also achieved a good balance between 
precision and recall, ensuring that most positive cases were 

accurately identified. 
 

4.3.3 Convergence analysis of I-SGO algorithm 
In this study, the I-SGO method was employed to fine-tune 

the ANN weights and minimize the error in human activity 
detection. The I-SGO method updates positions based on the 
global best and worst solutions, aiming to minimize the error 
function described in Eq. (4). Convergence analysis was 
performed to assess the algorithm's ability to reach the optimal 
solution efficiently. The performance of the I-SGO was 
compared with SGO, SSO, SOA, SSOA, and DHOA 
optimization methods on Datasets 1 and 2, as shown in Figures 
5 and 6. Notably, the I-SGO method achieved the lowest cost 
function at just 20 iterations for both datasets. 
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(i) NPV  

 
Figure 4. Performance comparison of the proposed I-SGO algorithm with hybrid classifier against SGO, SSO, SOA, SSOA, and 

DHOA algorithms with hybrid classifier on Dataset 2 
 

  
  

Figure 5. Convergence comparison of the proposed I-SGO 
algorithm with other optimization algorithms for Dataset 1 

Figure 6. Convergence comparison of the proposed I-SGO 
algorithm with other optimization algorithms for Dataset 2 

 
4.3.4 Statistical performance analysis of I-SGO with hybrid 
classifier 

This study evaluated the performance of the proposed 
hybrid classifier and other HAR classifiers by analyzing the 
best, worst, mean, median, and standard deviation of 
prediction error minimization. The results for Datasets 1 and 2 
are shown in Tables 4 and 5. 

Dataset 1: The proposed model achieved the lowest mean 
(0.038), median (0.036), and standard deviation (0.0075) of 
prediction error compared to SGO, SSO, SOA, SSOA, and 
DHOA with hybrid classifiers. 

Dataset 2: The proposed method had the lowest mean 
(0.051), median (0.051), and standard deviation (0.001) of the 
error function compared to SGO, SSO, SOA, SSOA, and 
DHOA with hybrid classifiers. 

The proposed hybrid classifier with the I-SGO algorithm 
consistently outperformed other classifiers in accuracy and 
consistency across both datasets. It had the lowest mean and 
median prediction errors and minimal variability, as indicated 
by the low standard deviation. These results demonstrate that 
the I-SGO-based hybrid model offers a robust and reliable 
approach for HAR. 

 
Table 4. Statistical performance comparison of the proposed hybrid model with the I-SGO algorithm and the proposed hybrid 

classifier with SGO, SSO, SOA, SSOA, and DHOA optimization algorithms on Dataset 1 
 

Approaches BEST WORST MEAN MEDIAN Standard Deviation 
SGO + Hybrid Classifier 0.059 0.062 0.061 0.061 0.0014 
SSO + Hybrid Classifier 0.059 0.063 0.062 0.063 0.0017 
SOA + Hybrid Classifier 0.055 0.058 0.057 0.057 0.0014 

SSOA + Hybrid Classifier 0.053 0.057 0.055 0.055 0.0015 
DHOA + Hybrid Classifier 0.051 0.055 0.053 0.053 0.0014 
I-SGO + Hybrid Classifier 0.03 0.049 0.038 0.036 0.0075 
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Table 5. Statistical performance comparison of the proposed hybrid model with the I-SGO algorithm and the proposed hybrid 
classifier with SGO, SSO, SOA, SSOA, and DHOA optimization algorithms on Dataset 2 

Approaches BEST WORST MEAN MEDIAN Standard Deviation 
SGO + Hybrid Classifier 0.095 0.108 0.103 0.105 0.0045 
SSO + Hybrid Classifier 0.093 0.106 0.098 0.096 0.0049 
SOA + Hybrid Classifier 0.083 0.085 0.084 0.084 0.00067 

SSOA + Hybrid Classifier 0.072 0.073 0.073 0.073 0.00033 
DHOA + Hybrid Classifier 0.062 0.063 0.062 0.062 0.00048 
I-SGO + Hybrid Classifier 0.05 0.053 0.051 0.051 0.001004 

4.3.5 Novelty and contribution of the I-SGO 
I-SGO introduces novel enhancements to traditional SGO

algorithm, specifically for optimizing feature selection and 
fine-tuning ANN weights in the hybrid classifier for HAR. The 
novelty and contributions of I-SGO are highlighted by the 
results presented in Tables 3-5. 

Enhanced feature selection capabilities 
Table 3 illustrates the performance of various feature 

selection methods for Datasets 1 and 2. The proposed I-SGO 
method, as detailed in Algorithm 1, achieved the highest 
accuracy across both datasets. Specifically, I-SGO selected 
1,685 features (81% of the original 2,080) for Dataset 1 with 
an accuracy of 95.9%, and 1,699 features (82% of the original 
set) for Dataset 2 with an accuracy of 94.9%. In comparison, 
other methods like PCA selected fewer features but with lower 
accuracies: 950 and 970 features for Datasets 1 and 2, 
respectively, yielding accuracies of 85.0% and 83.5%. SGO, 
SSO, and SOA also selected more features but did not match 
I-SGO’s accuracy. DHOA, selecting the fewest features
(1,424 for both datasets), achieved accuracies of 93.9% and
92.7%, still lower than I-SGO’s performance. These results
highlight I-SGO’s efficiency in reducing the feature set while
significantly improving classification accuracy, demonstrating
its effectiveness in HAR.

Superior fine-tuning of hybrid classifier 
Performance across metrics: When integrated with the 

hybrid classifier, I-SGO demonstrated superior performance 
compared to other optimization algorithms, including SGO, 
SSO, SOA, SSOA, and DHOA. For instance, with 80% 
training on Dataset 1, I-SGO achieved the highest accuracy of 
95.9%, surpassing those of SGO, SSO, SOA, SSOA, and 
DHOA by 3.35%, 3.34%, 2.93%, 2.74%, and 2.53%, 
respectively. In Dataset 2, I-SGO yielded the best accuracy of 
94.9% at 80% training, outperforming SGO, SSO, SOA, 
SSOA, and DHOA by 5.67%, 5.69%, 4.62%, 3.47%, and 
2.32%, respectively. These results highlight the exceptional 
capability of I-SGO to fine-tune the hybrid model to achieve 
better generalization and overall accuracy. These results, fine-
tuned using Algorithm 2, suggest that I-SGO effectively 
enhances the generalization and accuracy of the hybrid model. 

Sensitivity and specificity: Sensitivity ensures the model 
accurately detects true positive cases, which is crucial for 
reliable activity detection. Specificity ensures the model 
correctly identifies negative cases, minimizing false positives. 
Together, high sensitivity and specificity enhance the model's 
accuracy and reliability in HAR applications. The proposed 
hybrid model fine-tuned by I-SGO demonstrated higher 
sensitivity and specificity across all learning percentages, 
effectively distinguishing between positive and negative 
cases. For instance, at 80% training, the FPR was reduced to 
12.64%, 4.34% lower than SGO, highlighting I-SGO’s 
effectiveness in reducing false positives. 

Improved convergence and error minimization 
Convergence speed: According to the convergence 

analysis, I-SGO had the lowest cost function after 20 iterations 
for both datasets. This implies that it achieved the best answer 
faster than the other methods. For real-time uses, such as HAR, 
this shows how well the algorithm works to find optimal or 
nearly optimal solutions more quickly. 

Error minimization: I-SGO demonstrated significant 
performance in minimizing prediction errors across both 
datasets. For Dataset 1, I-SGO with the hybrid classifier 
achieved the lowest mean prediction error of 0.038, despite a 
higher standard deviation of 0.0075, compared to methods like 
SGO, which had a mean error of 0.061 and a standard 
deviation of 0.0014. This indicates that I-SGO not only 
provides higher accuracy but also delivers more consistent 
predictions. The best prediction error was 0.030 and the worst 
was 0.049, underscoring I-SGO’s ability to reduce prediction 
errors and enhance accuracy. Although the higher standard 
deviation may be due to I-SGO’s broader optimization scope, 
it is offset by the substantial reduction in mean error. For 
Dataset 2, I-SGO achieved a mean prediction error of 0.051 
with a standard deviation of 0.0010, outperforming other 
methods. The best prediction error was 0.050 and the worst 
was 0.053, reflecting significant error reduction and improved 
accuracy. The higher standard deviation might be attributed to 
I-SGO’s extensive optimization, but this variability is
outweighed by the notable enhancement in mean error and
accuracy. This balance between accuracy and variability
highlights the robustness and effectiveness of I-SGO in
advancing HAR systems.

Adaptive search mechanism 
The I-SGO algorithm features an adaptive search 

mechanism that dynamically adjusts parameters based on the 
fitness landscape, unlike static methods. By updating seagull 
positions through individual and collective fitness evaluations, 
as outlined in Eq. (15), and adjusting parameters W and W′ 
according to the best and worst solutions, I-SGO enhances 
search space exploration. This adaptability allows I-SGO to 
effectively navigate complex optimization problems, 
improving feature selection, fine-tuning, and ultimately 
boosting the accuracy of human activity recognition systems. 

Consistency across datasets 
The I-SGO showed notable consistency in performance 

across both datasets. For Dataset 1, I-SGO achieved the lowest 
mean prediction error of 0.038, despite a higher standard 
deviation of 0.0075 compared with the other methods. The 
best prediction error of 0.030 and worst of 0.049 demonstrated 
its effectiveness in minimizing prediction errors and 
enhancing accuracy. Although the standard deviation was 
higher, it was compensated by a substantial reduction in the 
mean error, indicating robust performance. 

In Dataset 2, I-SGO achieved a mean prediction error of 
0.051 and a standard deviation of 0.0010, outperforming the 
performance of other methods. The best prediction error was 
0.050 and the worst was 0.053. Despite the higher standard 
deviation compared to some methods, the reduction in the 
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mean error and consistent accuracy improvements highlight 
the effectiveness and reliability of I-SGO. This balance of 
accuracy and variability, even with a greater standard 
deviation, confirms the robustness of I-SGO and its value as a 
robust tool for advancing HAR systems. 

Balanced performance 
F-Measure, MCC, and NPV: The hybrid classifier fine-

tuned with I-SGO consistently achieved higher F-measure, 
MCC, and NPV values across both datasets. The F-measure 
and MCC demonstrate the balance between precision and 
recall, as well as the correlation between predicted and actual 
classifications. This highlights the capacity of I-SGO to 
optimize the hybrid model for accuracy and dependability. 

Lower variability: The lower standard deviation in 
prediction errors demonstrates that I-SGO produces more 
stable and reliable outcomes, reducing the risk of erratic model 
behavior under different conditions. 

I-SGO gives a significant advancement over traditional
optimization methods by effectively performing feature 
selection, error minimization, and model fine-tuning. Its 
novelty lies in its ability to consistently achieve higher 
accuracy, sensitivity, and specificity and lower error rates 
across different datasets. This makes I-SGO particularly 
valuable for applications in human activity recognition, where 
accurate and reliable classification is crucial. These results 
strongly justify the adoption of I-SGO as an effective 
optimization technique in scenarios that require precise and 
consistent model performance. 

5. CONCLUSION

This paper introduces a machine learning-based HAR
system designed to optimize classification performance 
through three key stages. In the pre-processing and feature 
extraction phase, raw data are transformed into frames, 
followed by Gaussian filtering and background subtraction to 
segregate the foreground and background objects. Relevant 
texture-based spatiotemporal features were extracted from the 
preprocessed data. To address the potential limitations of 
video data, particularly the high dimensionality of 
discriminative features related to the finer details and surface 
properties of objects in human activities, we employed feature 
selection and optimization methods. The optimal features were 
selected using the I-SGO approach. For human activity 
classification, we propose a hybrid machine-learning model 
that integrates an SVM, k-NN, and an optimized ANN. The 
ANN weights were fine-tuned using the I-SGO approach to 
enhance classification accuracy. The experimental results 
highlight the system's efficacy, demonstrating high accuracy, 
sensitivity, specificity, and F-measure with low FPR and FNR 
on the UCF-101 and HACS datasets. The proposed feature 
selection and optimization techniques show promise for 
further refinement. Future research may explore alternative 
machine learning models or optimization techniques to 
improve classification accuracy, emphasizing the 
effectiveness of the proposed three-stage approach in 
achieving enhanced system performance. 
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