
Development of a Semantic Text Classification Mobile Application Using TensorFlow Lite

and Firebase ML Kit

Dony Novaliendry1* , Adam Permana1, Nurindah Dwiyani2 , Noper Ardi3 , Cheng-Hong Yang4 ,

Fadhillah Majid Saragih1

1 Electronic Department, Universitas Negeri Padang, Padang 25131, Indonesia
2 Engineering Department, Sekolah Tinggi Ilmu Pelayaran, Jakarta 14150, Indonesia
3 Informatic Department, Politeknik Negeri Batam, Batam 29461, Indonesia
4 Electronic Department, National Kaohsiung University Science and Technology, Kaohsiung 807618, Taiwan

Corresponding Author Email: dony.novaliendry@ft.unp.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570607 ABSTRACT

Received: 26 September 2024

Revised: 15 November 2024

Accepted: 21 December 2024

Available online: 31 December 2024

The development of neural networks in the current industrial era 4.0 should help various

work fields, one of which is the scientific literature. The problem that often occurs is that

scientific papers still use manual sorting of themes/semantics. The purpose of this research

is to build a semantic text classification application that can allow users to sort by

theme/semantics by using a neural network model, Recurrent Neural Network (RNN)

embedded in a smartphone. The development of this application uses the waterfall method

in which there are analysis and system design. The application implements the text

recognition feature of the Firebase ML Kit. It is developed using a general machine

learning cycle method or approach consisting of data identification, data preparation,

algorithm selection, model training, model evaluation and model deployment. The model

was built using abstract data from scientific papers from the State University of Padang

Library. The total data obtained 84 training data and 21 test data using a ratio of 80:20

percent to perform the validation test. The neural network model uses the

AverageWordVec specification provided by TensorFlow Lite Model Maker with three

classification outputs. The model validation test reached 0.7619 accuracy values with

0.7782 loss values. The model is executed using the TensorFlow Lite interpreter embedded

in the application. The application results fulfill the overall system functional requirements

analysis.

Keywords:

neural networks, semantic text classification,

machine learning, TensorFlow Lite, Firebase

ML Kit

1. INTRODUCTION

The upcoming industrial revolution is based on a

revolutionary technology that substantially impacts industrial

production input and output and 3D printing, genetic

engineering, and especially artificial intelligence [1]. One of

the reasons artificial intelligence plays a role in the 4.0

industrial revolution is the development of adequate

infrastructure and a boost to needs due to the increasing data

collected by the internet service industry. This large amount of

collected data has become difficult for traditional database

methods to handle, giving rise to big data. On the way,

scientists continue to research handling big data with statistical

methods that became the forerunner of machine learning.

Machine learning is a branch of computational algorithms

designed to mimic human intelligence by learning from the

surrounding environment [2]. There are various algorithms

from machine learning ranging from the most straightforward,

such as regression, to sophisticated ones such as deep neural

networks. Artificial neural network (ANN) or neural network

is the most sophisticated algorithm because it is inspired and

based on a biological brain structure. This is because ANN

allows it to be designed with multiple layers to become a

variety of architectural forms. This layered ANN becomes the

foundation for sub-branches of the latest machine learning

computation algorithms called deep learning.

On November 9, 2015, Google Corporation developed an

open-source library called TensorFlow under the Apache 2.0

license, which is only used internally by Google. TensorFlow

is a library for symbolic math dataflows popular with machine

learning cases, especially neural networks and even deep

neural networks. In February 2017, the first version (1.0.0) of

TensorFlow was released, then in May 2017, Google released

a particular software stack for mobile software development

called TensorFlow Lite. TensorFlow Lite is a lightweight

version of TensorFlow, capable of being executed faster on

mobile devices and even embedded devices such as

microcontrollers [3, 4]. The TensorFlow library also provides

a unique model maker for TensorFlow Lite called TFLite

Model Maker, aiming to simplify the adaptation process and

change the TensorFlow neural network model to specific data

input.

Obtaining meaning from a text is a sophisticated ability that

only the human brain has from the many creatures on earth.

Neurons in the human brain can interpret sentences, and even

paragraphs in both text and context [5-7]. However, the human

Journal Européen des Systèmes Automatisés
Vol. 57, No. 6, December, 2024, pp. 1603-1611

Journal homepage: http://iieta.org/journals/jesa

1603

https://orcid.org/0000-0003-2653-0467
https://orcid.org/0009-0009-6138-6000
https://orcid.org/0000-0003-4295-6257
https://orcid.org/0000-0002-2741-0072
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.570607&domain=pdf

brain has limitations in endurance [8-10]. Besides that,

interpreting a text is also not an easy job. It takes analysis and

essential knowledge to consume enough energy, mostly if it is

done intensively for a long time. This problem is potentially

made easier by the existence of TensorFlow as a supporting

library for the development of artificial intelligence.

A survey conducted on general students consisting of 27

respondents (16 women and 11 men) found that library visitors

often tended to find books and scientific papers that did not fit

their category or shelf. Survey details can be seen in Table 1.

Table 1. Library performance questionnaire responses

No. Question Response

1

How often did you go to the

library (before the

pandemic)?

Rarely (22.2%)

Quite Rarely (22.2%)

Often Enough (33.3%)

Always (22.2%)

2

Are you having trouble

finding scientific articles that

match the theme you want in

the library?

Yes (63%)

No (29.6%)

Maybe (7.4%)

3

Is a search with "keywords"

enough to help you find a

suitable theme?

Helpful Enough (55.6%)

Helpful (37%)

Less Helpful (3.7%)

4

How often do you do books

and scientific papers that

don't fit the category/shelf?

C1/Rarely (11.4%)

C2/Quite Rarely (50%)

C3/Always (38.4%)

Before implementing the application in the field of library

and archiving or other fields, it is necessary to design the initial

prototype and test it so that the next researcher will develop

this prototype. The application prototype is designed in a

modular fashion so that the application is used in one area and

can be used in other fields. Further development only needs to

change the neural network model with little or no change in

application design.

2. LITERATURE REVIEW

2.1 Summary of scientific papers

Scientific paper summaries are generally abstracts derived

from research articles, theses, reviews, conference

proceedings, or any in depth analysis of a specific subject.

They are often used to help readers quickly ascertain the

purpose of a paper [11, 12]. Scientific paper summaries are

suitable for training data on neural network models due to the

limited number of words. The summary of scientific papers in

question summarizes the scientific paper of the thesis at the

Library of the Department of Electronics, State University of

Padang.

Summary / abstracts in scientific writing in the Library of

the Department of Electronics, State University of Padang

follow the rules and regulations of the Thesis / Final Project

Preparation Guide of Padang State University with the

following conditions:

•In general, abstracts are arranged in the following order:

word abstract, author's name, thesis title, abstract content, and

keywords.

•Abstract content is written one space in three paragraphs

with a maximum length of 200 words.

•The first paragraph contains a brief description of the

problem and research objectives. The second paragraph

contains the research method and or approach. The third

paragraph contains the research results.

2.2 World embedding and text semantic

Lai et al. [13] stated that word embedding is another term

for distributed word representation, capturing the semantic and

syntactic information of words from a large unlabeled corpus

(collection of writings). Meanwhile, according to Turian et al.

[14], word representation is a mathematical object associated

with each word, often in a vector. The distributed word

representation has the characteristics of being denser, has

lower dimensions and has real value than the word

representation.

Nowadays, developer discussions, especially machine

learning engineers, define word embedding as a collective

term for a model that learns to map a series of words or phrases

in the vocabulary to vectors of numerical values [15, 16].

Because neural networks are designed to learn from numerical

data, word embedding aims to increase neural networks'

ability to learn from text data by converting them into vectors.

This vector is then called embedding [17, 18].

A common way of handling data is to use a one-hot

encoding. This method is very inefficient because most vectors

will have a value of 0. Then the output for the multiplication

of the matrix is also likely to be 0. The illustration of one hot

encoding can be seen in Figure 1.

Figure 1. Illustration of one hot encoding

Instead of multiplying the matrix between the input and

hidden layers, the value can be taken from the embedding

weight matrix, which serves as a lookup table. The following

is an illustration of the embedding weight matrix with an

example of the word 'eat'.

Figure 2. Illustration of embedding weight matrix

1604

Word embedding itself in machine learning can be divided

into two categories, namely, unsupervised and supervised. It

can be seen in Figure 2.

2.3 Machine learning

Hurwitz, in his book, states that machine learning is a form

of artificial intelligence that allows a system to learn from data

without the need to be explicitly programmed [19, 20].

Machine learning uses various algorithms that iteratively learn

from data to improve, describe data, and predict outcomes. As

an algorithm that can digest training data, this algorithm can

create the right model based on that data. A machine learning

model is an output that is generated when training a machine

learning algorithm with data. Several machine learning models

are built using neural networks [21, 22].

2.3.1 Neural network

A neural network or artificial neural network by Cross is a

machine learning method that consists of a set of processing

units (nodes) that simulate neurons and are interconnected

through a series of "weights" (similar to synaptic connections

in the nervous system) with a way that allows signals to travel

through the network both in parallel as well as serial [23].

A neural network is a generalization of a mathematical

model based on a biological neural network with the

assumption that:

•Information processing resides in many neurons

(perceptron).

•Signals are sent between neurons using a connection.

•The connector between these neurons has a weight value

that can strengthen or weaken the signal.

•To produce the output, each neuron/perceptron uses

various activation functions as needed.

Each neuron unit or perceptron has an activation function

that determines the output of the input processing it performs.

The output is the value that becomes the neuron impulse that

continues to spread/propagate to the last network layer.

Modern neural networks do not only forward propagation but

also do backpropagation. Backpropagation allows the weight

of the connection between perceptron to change automatically

with each forward and backward propagation. This forward

and backward propagation activity is then called the epoch

count. In one epoch, precisely at the last perceptron, there is a

calculation of the difference between the actual results and the

expected results. There are various functions to determine how

much the error (loss) is, so determining the difference between

expectations and the actual value of the neural network is

called a loss function. Loss function gives high value if model

prediction tends to be wrong. Conversely, the higher the model

prediction success, the smaller the loss function value. This

value helps optimize the model in the next epoch.

The process of model optimization exists in various

methods, methods or optimization algorithms, which is then

known as the optimizer. Optimizer performs optimization by

changing neural network attributes such as weight and

learning rate to reduce epoch's loss [24, 25]. There are various

optimizers, including Gradient Descent, Stochastic Gradient

Descend, LMA, Momentum, RMSprop, Adagrad, AdaDelta,

Adam (Adaptive Moment Estimation), and others, each of

which has its advantages and advantages in some

instances/tasks.

2.4 AverageWordVec

AverageWordVec is the name of a class in the TensorFlow

Lite Model Maker library (Figure 3). This class applies the

word embedding algorithm to be precise by taking the average

(average) of the input word vector. As can be seen in Table 2,

AverageWordVec itself has a layered architecture that can be

categorized as a deep neural network. This class creates an

object instance that will execute sequential modelling with

multiple TensorFlow + Keras layers. The following is a neural

network sequential model specification with three

classifications by this class:

Figure 3. Keras & TensorFlow

Table 2. AverageWordVec sequential model specification by

default

Layer Type
Output Shape (batch size, seq_len,

wordvec_dim)

Embedding (None, 256, 16)

Average Pooling 1D (None, 256, 16)

Dense (None, 128, 16)

DropOut (None, 16)

Dense (None, 3)

The essential parts that need to be considered in using this

class include the Keras layers in it, the loss function using the

sparse binary cross-entropy and the optimizer, named

RMSprop.

3. RESULT AND DISCUSSION

3.1 System analysis

System analysis is the decomposition of a complete system

into its parts to identify and evaluate the system's problems,

the opportunities and obstacles that occur, and the expected

needs so that improvements can be proposed.

Analysis of system requirements is where some material

and system requirements will be used to add and assist in doing

a project.

Functional requirements in the form of features that exist in

applications that are included in Table 3.

Analysis of device requirements is a part that will support

the development of the Semantic Text Classifier Application.

Table 4 shows the functional Requirement Analysis for

designed system.

System Security Analysis is a part that users need to pay

attention to when using the Semantic Text Classifier

Application. The suggestions for using the system are

described in Table 5.

1605

Table 3. Functional requirement analysis

No. Functionality Description

1
The apps are capable of capturing

images (Camera Capture)

The application uses Android resources to activate the camera and capture

the image for processing

2
The apps can read text patterns on

images

Using the Text Recognition feature of ML Kit, the application can convert

any text in the captured image into a text string

3
The apps can save the existing text as a

text file (.txt)

To simplify the data collecting process when building a neural network

model, the application provides three buttons to save text strings into

category folders in text file format (.txt)

4 The apps can display prediction results

The prediction results display the category along with the percentage value

ranging from 0 to 1. Prediction is made through the inference of the

TensorFlow Lite model installed in the application

5
The application can save prediction

results

Prediction results in the form of recognized text and predicted

categories/classes can be saved to nonvolatile storage such as smartphone

internal memory or database

Table 4. Functional requirement analysis

No. Computer System Description

1
Hardware

requirements

Development: Personal Computer with a minimum specification of an Intel Core i5 processor (~ 2.3 GHz) and

4GB RAM (an additional Smartphone is required for debugging)

Usage: A mobile phone or tablet with a minimum 8 Megapixel camera

2
Software

requirements

Development: IDE Android Studio, Google Collabs (Accessed via web), Java, Kotlin and Android SDK

Usage: Android Lollipop operating system (SDK 21)

3
Brainware

requirements

Development: Users with an understanding of Android software development and modern neural network

concepts (deep neural network)

Usage: Does not require specifications. They were designed for the public so that anyone can operate the

application

Table 5. Suggestion and consideration

No. Suggestion Consideration

1
The entire corpus was

caught on camera

Every word that the camera can't read will affect the semantics and even the model training process. It

is essential to make sure the entire corpus is caught on camera

2

The captured writings are

in the computer printouts

form

The model in Firebase Text Recognition is trained through the standard fonts used as well as the

handwriting that is significantly distinguished by the computer. Too insignificant handwriting will read

differently by Firebase Text Recognition. For example, between "0" and "o", by handwriting that does

not pay attention to the space between words, the letter "o" can be read as "0" by the system

3

The position of the camera

is straight on the

paper/camera catch object

The perspective in processing the captured object image affects the height/length of the character being

read

In the design of the semantic text classifier application, the

user inputs the camera capture data. The output produced by

the application is in the form of classification category data

and its confidence value.

Procedure analysis is carried out to determine what

processes will be carried out by the system. In the

implementation process, it is carried out by established

procedures, namely:

-The user opens the apps

-The user captures an image from the camera

-The user informed the scanned text and its prediction

3.2 System design

System design is generally carried out to provide an

overview of the system to be made. When the system design

is done, the most dominant thing done is modelling the user's

needs.

Modelling is done using the unified modeling language.

Because some diagrams are straightforward to be modelled

with UML, application design is only represented in some

UML diagrams, namely use case diagrams, activity diagrams,

class diagrams, object diagrams and component diagrams.

3.2.1 Use case diagram

Use case diagrams represent dynamic aspects of the system.

Specifically, use case diagrams are used to get system

requirements, including internal and external influences.

Figure 4. Designed use case diagram

From Figure 4, it can be seen that the requirements that

users must have been prediction features and data collection.

It only consists of 1 user, in which the prediction feature

requires an external system with firebase services. The

1606

prediction feature requires API communication with firebase

server to log the prediction results.

3.2.2 Activity diagram

An activity diagram is a flowchart to represent the flow

from one activity to another. An activity can be described as

an operating system or a process that involves users to interact

that must have a user interface. However, in Android software

development, an activity is a package of classes and a user

interface that has methods to adapt to the Android application

lifecycle itself. This application consists of 4 activities, but

only two activities need to be designed with an activity

diagram. These activities are MainActivity and

DataCollectingActivity.

Activity Main or MainActivity is the main feature of the

application wherein the menu the user needs to select the

"Start!" to begin with. In Figure 5, it can be seen that the

processes in this activity apply the multithreading concept.

Every instruction in an application is executed with a thread.

In an Android application, a thread that can be watched

directly by the user is called the main thread or UI thread.

Meanwhile, threads other than the main thread are called

worker threads. The Classification Thread is a worker thread

executed when the constructor of the TextClassificationClient

class is executed.

Figure 5. Designed activity diagram for main activity

Activity Data Collecting or Data Collecting Activity is a

unique feature created to make it easier for developers to get

text data in building a neural network model.

Activity Data Collecting adapts the text recognition feature

(Text Recognizer) in the Main Activity. But unlike Activity

Main, Activity Data Collecting is simpler. Because this

activity aims only to read and then store data in files in several

directories/folders. The DataCollecting Activity can be seen in

Figure 6.

Class diagrams represent each class in the application. Each

class consists of attributes and methods. MainActivity, as a

class that forms objects from the main activity, has an

aggregation relationship to TextClassificationClient and

CounterPrefs, which means that some functions in

MainActivity need objects from these two classes. The Result

class has a composition relationship to

TextClassificationClient, which means that if the

TextClassificationClient object is destroyed, the object from

the Result class will be excluded. The class diagram can be

seen in Figure 7.

Figure 6. Designed activity diagram for Data Collecting

Activity

Figure 7. Designed class diagram

Object diagrams represent objects or instances that are

formed from existing classes. As shown in Figure 8, each

object has a value for each of its attributes. The MainActivity

object, as the main thread, will call the handler the

TextClassificationClient handler. The

TextClassificationClient object forms objects from the Result

as many categories as defined by the "label" attribute. Each

result object is stacked in the list data structure.

The component diagram represented in Figure 9 describe a

set of components and their relationships. In this semantic

classifier application design, three components are

implemented. Cameraiew consists of several classes that

manage camera drivers on Android devices. These classes

1607

include Audio, CameraListener and CameraUtils. Text

recognition consists of the FirebaseVision,

FirebaseVisionImage, and FirebaseVisionText classes.

Figure 8. Designed object diagram

Figure 9. Designed component diagram

Specifically, for developing this application, the researcher

chose the AverageWordVec architecture/specification model,

a deep neural network model for semantic classification. The

loss function used is categorical cross-entropy, with the

optimizer is RMSprop.

3.3 Interface implementation

The implementation of the Semantic Text Classifier

Application interface design is explained based on each

existing activity as follows:

The Main Menu Activity or HomeActivity acts as a

launcher and does not require a splash screen as the assets are

loaded multithreading (Figure 10). As the name implies, this

activity is the main menu in the application.

This activity has 4 Button components that call Intent so that

it can move to other activities. There are two types of

TextView components: the first to inform the user what model

is embedded in the application and the second to identify the

application developer's name and institution. The following is

the XML code used for this.

In source code 1, the HomeActivity (Main Menu) class is

the only class that uses this layout. The layout on the main

menu uses ConstraintLayout, a relative layout that binds each

component to at least the parent layout. This layout also has a

background with colour gradations so that it looks elegant with

blue, which symbolizes productivity. There is an icon in the

middle of the layout as its identity adjusts colour gradations.

Figure 10. Main Menu interface

Activity of the prediction feature or MainActivity has two

layouts that make changes in the middle of the process. The

first layout has an id with the name

relative_layout_panel_overlay_camera, while the second

layout is relative_layout_panel_overlay_result as can be seen

in Figure 11.

Layout relative_layout_panel_overlay_camera, or camera

overlay for short, is the layout that is called the first time this

activity is running. Camera overlay has a UI component,

namely CameraView, to capture images. Meanwhile,

relative_layout_panel_overlay_result or shortened as result

overlay will be loaded after the text recognition process is

complete by displaying the text in the Textview component

while providing a single button to execute predictions. This

single button also displays a dialogue for saving the predicted

data to the Firebase Realtime Database. The following is the

XML code used for this activity layout.

Figure 11. Prediction feature interface

The layout of this activity is not much different from the

Prediction feature. Because there is a text recognition process,

this activity also has two layouts: the camera overlay and the

resulting overlay. It's just that in the resulting overlay, this

1608

layout displays buttons for saving text into a text file (.txt).

When pressed, the selected button will flatten, and the system

will display the Toast component to tell the user where the file

is stored. Figure 12 shows the appearance of this activity.

Figure 12. Data collecting interface

The resulting overlay on this activity also provides menu

options in the form of a camera button to speed up shooting

consecutively. The following is the XML code used for this

activity layout.

This activity has the most straightforward layout because it

only displays how to use the application. Figure 13 shows the

activity interface that was successfully developed.

Figure 13. Help page interface

This activity has a landscape orientation when running so

that the image looks large and can match its size to all

smartphone sizes. The following is the XML code used for this

activity layout.

3.4 System implementation

In this subchapter, each source code and program logic is

discussed in more detail than in design. Discussion of the

system will be discussed as a process specification per each

function in one activity. Considering that about and help

activities do not have a complicated process, the activities

discussed are only predictive and data collecting activities.

The process specifications are as follows:

When MainActivity is run from the UI Thread, the active

CameraView will serve the user, and the “take a picture”

button. In this process, the CameraView class has initiated a

listener, which contains an onPictureTaken method in the form

of an event.

The onPictureTaken event itself continues the process by

using the TextRecognizer to get the text/string on the decoded

bitmap image. If the process fails, the activity calls the Toast

method to display it to the user. If getting the text is successful,

then the activity will change the layout from OverlayCamera

to OverlayResult.

In the OverlayResult layout, there are predictive TextView

and Button components. This TextView component is used to

display text that the TextRecognizer has translated.

Meanwhile, Button will trigger to complete the Classification

Thread process, namely input tokenization.

Meanwhile, at the same time when MainActivity is first to

run, the Classification Thread will contain three components

for prediction functions, namely models, labels and

dictionaries. Dictionary is a term for a text file representing the

Weight Embedding Matrix concept in the Word Embedding

algorithm. Labels are text files containing category names

where the model only recognizes the labels by order.

Meanwhile, the model is a compiled FlatBuffer (.tflite format)

file that the TensorFlow Lite Interpreter can only read. The

model itself represents a neural network that already has a

trained connection pattern from data that has been previously

taught (training).

After loading the three components of the prediction

function, the Classification Thread cannot proceed to the

interpretation process because the model requires tokenized

text input. Tokenization is a process that represents a look-up

on a dictionary or weight embedding matrix. Therefore, the

Classification Thread will wait for the UI Thread to parse the

parameter to one of its methods, the classification method.

After the user presses the "prediction" button on the

OverlayResult layout, the UI Thread communicates with the

Classification Thread using the Handler's post method. The

text that TextRecognizer has read can be parsed to the

classification method. At this stage, the classification method

will run the text input tokenization algorithm. Simply put, this

algorithm performs string comparisons from text input against

a list of texts in the dictionary, then takes word-for-word

numeric values to be the input of the neural network model.

The tokenization algorithm is applied to the tokenizeInputText

method, which includes data cleaning techniques such as

ensuring lowercase text input, deleting punctuation marks

such as commas, question marks, minuses, and others. The

value of the word for word numbers is stored into an array with

the float data type to be directly executed by the Interpreter.

The interpreter's execution (in the form of confidence value)

is processed in a ranking algorithm using the PriorityQueue

class, which has a FIFO (First In First Out) concept by making

a lambda function in it to perform comparisons. By

PriorityQueue, the value is then used to call the label according

to the predicted confidence value. These labels are then

accommodated into an ArrayList ready to be displayed in the

Dialog.

In the dialog, a response button is provided to save the

predicted results to the Firebase Realtime Database. It is

provided for further development, allowing users to manage

the semantic prediction data of scientific papers.

3.5 Neural network model result

The text recognition feature (TextRecognizer) in

1609

MainActivity (prediction feature) is the same code used in

DataCollectingActivity. After getting a text with ML Kit

TextRecognizer, the user will be provided with three buttons

to select the folder where the text file is stored. Shared

Preference is applied as a counter of the used file names to

save files with different names so that no text file is saved with

the same name. The total data obtained 84 training data and 21

test data using a ratio of 80:20 percent. The data were split

using stratified random sampling.

The neural network model design for the Semantic Text

Classifier Application is explained based on three advanced

stages of the machine learning cycle. These stages are the

compilation process (training data), data evaluation and the

deployed model.

In the training stage, the data is trained with the parameters

that the AverageWordVec model specification has

determined. This model provides loss and accuracy

information for each epoch. At this stage, the developer trains

100 epoch models and achieves the following accuracy values.

The data can be seen in Figure 14.

Figure 14. Loss and accuracy value at 100th epoch

At this stage, the developer evaluates by calculating the

model's accuracy and loss using data testing. The model's

performance was measured using recall and F1-score metrics,

yielding promising results.

If you pay attention to the value of accuracy and loss using

test_data is lower than the training_data carried out as can be

seen in Figure 15. This is because the data is still small, so the

pattern data obtained from the training data is not sufficient to

represent the testing data's suitability.

Figure 15. Model evaluation result

The deploy model process determines the format of the

model being built. In developing this model, data is exported

in the TensorFlow Lite flat buffer format (.tflite) as can be seen

in Figure 16. In version 0.2.2, the AverageWordVec model

specification exports the vocab file and labels by default to the

model metadata.

Figure 16. Model deploy

4. CONCLUSION

This analysis examines scientific papers that use the

waterfall software development method to design and develop

semantic text classifier applications using Firebase ML Kit

technology with TensorFlow Lite. The purpose of this analysis

is to provide insights into the effectiveness of these

technologies and identify potential implementation

challenges.

The findings suggest that Firebase ML Kit technology with

TensorFlow Lite can be relied on to build robust semantic text

classifier applications with efficient performance. However,

an important challenge is the development of a well-designed

neural network model that can accurately classification and

categorize textual data. Inadequate training data can lead to

suboptimal performance, highlighting the need for ongoing

refinement of the neural network model and training data set

to improve accuracy.

This study also emphasizes the importance of systematic

planning and execution in the software development process.

Using the waterfall software development method, developers

can identify and address potential issues early on, leading to a

more efficient and effective approach.

The prototype testing of the overall system analysis was

successfully realized from the initial design, highlighting the

potential of the waterfall software development method and

the effectiveness of Firebase ML Kit technology with

TensorFlow Lite in creating reliable semantic text classifier

applications. User acceptance testing (UAT) of the

TensorFlow Lite Summary Text Classification application for

scientific work was successfully conducted with five academic

experts. The application performed as expected, meeting all

user requirements.

In conclusion, the use of Firebase ML Kit technology with

TensorFlow Lite in building semantic text classifier

applications is promising. While challenges exist in

developing these applications, the benefits of these

technologies outweigh the drawbacks. This study emphasizes

the importance of designing the neural network model

carefully and continually refining the training data set to

improve performance. The use of the waterfall software

development method ensures a systematic approach to the

development process, ultimately leading to the successful

realization of the prototype testing. This study highlights the

potential of Firebase ML Kit technology with TensorFlow Lite

and the need for further research and development to expand

the potential use cases of these technologies.

1610

ACKNOWLEDGMENT

The authors appreciate the support from the National

Kaohsiung University of Science and Technology, Taiwan,

and Universitas Negeri Padang, Indonesia.

REFERENCES

[1] Garrett, B. (2013). An Emerging Third Industrial

Revolution. Atlantic Council.

[2] El Naqa, I., Murphy, M.J. (2015). What is Machine

Learning? Springer International Publishing.

[3] Alsing, O. (2018). Mobile object detection using

tensorflow lite and transfer learning. Master thesis, KTH

Royal Institute of Technology.

[4] Ardi, N., Supardianto, S., Lubis, A.I. (2023). Predicting

missing value data on IEC TC10 datasets for dissolved

gas analysis using tertius algorithm. Journal of Applied

Informatics and Computing, 7(1): 44-50.

[5] Novaliendry, D., Darmi, R., Hendriyani, Y., Nor, M.,

Azman, A. (2020). Smart learning media based on

android technology. International Journal of Innovation,

Creativity and Change, 12(11): 715-735.

[6] Krismadinata, U.V., Jalinus, N., Rizal, F., Sukardi, P.S.,

et al. (2020). Blended learning as instructional model in

vocational education: Literature review. Universal

Journal of Educational Research, 8(11B): 5801-5815.

https://doi.org/10.13189/ujer.2020.082214

[7] Novaliendry, D., Adri, M., Sriwahyuni, T., Huda, A.,

Huda, Y., Irfan, D., Jaya, P., Ramadhani, D., Anori, S.

(2020). Development of smart learning media model

based on Android. International Journal of Engineering

Research and Technology, 13(12): 5354-5364.

[8] Novaliendry, D., Wattimenac, F.Y., Renyaan, A.S.,

Lubis, A.L., Ramadhani, D., Lizar, Y., Guci, A. (2020).

Development of an expert system application to detect

vitamin deficiencies in the human body. International

Journal of Early Childhood Special Education, 29(5):

956. https://doi.org/10.24205/03276716.2020.1092

[9] Renyaand, Y.L., Gucif, A., Ariyong, M., Ramadhanih,

D., et al. (2020). Prediction of mortalityinthe

hemodialysis patient with diabetes using support vector

machine. Revista Argentina de Clínica Psicológica,

29(4): 219-232.

[10] Novaliendry, D., Hendriyani, Y., Yang, C.H., Hamimi,

H. (2015). The optimized K-means clustering algorithms

to analyzed the budget revenue expenditure in Padang.

Proceeding of the Electrical Engineering Computer

Science and Informatics, 2(1): 61-66.

[11] Blake, G., Bly, R.W. (1993). The Elements of Technical

Writing. New York, NY: Macmillan.

[12] Ardi, N., Setiawan, N.A., Adji, T.B. (2019). Analytical

incremental learning for power transformer incipient

fault diagnosis based on dissolved gas analysis. In 2019

5th International Conference on Science and Technology

(ICST), Yogyakarta, Indonesia, pp. 1-4.

https://doi.org/10.1109/ICST47872.2019.9166441

[13] Lai, S., Liu, K., He, S., Zhao, J. (2016). How to generate

a good word embedding. IEEE Intelligent Systems,

31(6): 5-14. https://doi.org/10.1109/MIS.2016.45

[14] Turian, J., Ratinov, L., Bengio, Y. (2010). Word

representations: A simple and general method for semi-

supervised learning. In Proceedings of the 48th Annual

Meeting of the Association for Computational

Linguistics, Uppsala, Sweden, pp. 384-394.

[15] Cao, H., Dong, C. (2022). An English pronunciation

error detection system based on improved random forest.

Mobile Information Systems, 2022(1): 6457286.

https://doi.org/10.1155/2022/6457286

[16] Wang, C. (2021). Efficient English translation method

and analysis based on the hybrid neural network. Mobile

Information Systems, 2021(1): 9985251.

https://doi.org/10.1155/2021/9985251

[17] Ji, G., Zheng, Y. (2022). Automatic lane line detection

system based on artificial intelligence. Journal of

Electrical and Computer Engineering, 2022(1): 5284185.

https://doi.org/10.1155/2022/5284185

[18] Ma, J., Ye, X., Huang, K. (2022). Development of

integrated choice and latent variable (ICLV) models

using matrix-based analytic approximation and

automatic differentiation methods on tensorflow

platform. Journal of Advanced Transportation, 2022(1):

6556282. https://doi.org/10.1155/2022/6556282

[19] Hurwitz, J., Kirsch, D. (2018). Machine Learning for

Dummies. IBM Limited Edition.

[20] Huda, A., Ardi, N. (2021). Predictive analytic on human

resource department data based on uncertain numeric

features classification. International Journal of

Interactive Mobile Technologies, 15(8): 172-181.

https://doi.org/10.3991/ijim.v15i08.20907

[21] Jiang, D., He, Z., Lin, Y., Chen, Y., Xu, L. (2021). An

improved unsupervised single-channel speech separation

algorithm for processing speech sensor signals. Wireless

Communications and Mobile Computing, 2021(1):

6655125. https://doi.org/10.1155/2021/6655125

[22] Broll, B., Timalsina, U., Völgyesi, P., Budavári, T.,

Lédeczi, Á. (2020). A machine learning gateway for

scientific workflow design. Scientific Programming,

2020(1): 8867380.

https://doi.org/10.1155/2020/8867380

[23] Cross, S.S., Harrison, R.F., Kennedy, R.L. (1995).

Introduction to neural networks. The Lancet, 346(8982):

1075-1079.

[24] Saputra, D., Handani, S., Indartono, K., Wijanarko, A.

(2020). SMART-in English: Learn English using speech

recognition. Journal of Robotics and Control, 1(4): 109-

113. https://doi.org/10.18196/jrc.1423

[25] Ketkar, N. (2017). Introduction to Keras. In Deep

Learning with Python, pp. 97-111.

https://doi.org/10.1007/978-1-4842-2766-4_7

1611

