
Watchdog Timer for Fault Tolerance in Embedded Systems

Ridha Mehalaine1,2* , Meriem Djezzar1,2 , Djamal Nessah1,2 , Zineb Saiad2 , Asma Saidi2

1 ICOSI Laboratory, University of Khenchela, Khenchela 40004, Algeria
2 Department of Computer Science, University of Khenchela, Khenchela 40004, Algeria

Corresponding Author Email: r_mahaline@univ-khenchela.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570619 ABSTRACT

Received: 23 November 2024

Revised: 6 December 2024

Accepted: 13 December 2024

Available online: 31 December 2024

Embedded artificial intelligence encompasses a diverse range of technologies, from

advanced algorithms to highly specialized computing systems. Intelligent embedded

systems are playing an increasingly crucial role in various industries such as automotive,

aerospace, healthcare, and IoT. When considering the place that intelligent embedded

systems take in our daily lives, it is very important to understand how critical their security

is. In order to ensure their high performance, energy efficiency, and robustness, it is

imperative to ensure rigorous task scheduling. We are interested in the problem of hard

real-time fault-tolerant scheduling for periodic and independent preemptive tasks. This

paper focuses on proposing a fault-tolerant scheduling algorithm for these systems. By

using the watchdog timer, which allows intelligent embedded systems to be more

autonomous by detecting processor errors and adopting the Earliest Deadline First (EDF)

algorithm to allow our system to respect time constraints. The objective is to improve

reliability and efficiency by ensuring the execution of critical tasks despite the presence of

faults. Designing and implementing a fault-tolerant scheduling algorithm for embedded

systems is a crucial aspect in various industries. This helps to improve the reliability and

security of intelligent embedded systems, which is essential to ensure the smooth operation

of the system.

Keywords:

watchdog timer, embedded systems,

scheduling, fault tolerance, EDF* algorithm

1. INTRODUCTION

In the era of ubiquitous digitalization, embedded systems

play a fundamental role in our daily lives. Whether controlling

vital medical devices, piloting autonomous vehicles, or

managing critical infrastructures, these systems provide

discrete intelligence that shapes our environment in invisible

but profound ways. At the heart of this ubiquity are real-time

embedded systems, specialized computing infrastructures

designed to meet the requirements of strict time constraints.

Most embedded systems are indeed strict real-time systems.

This means that they must meet strict time constraints and

deliver results within specific deadlines. Real-time embedded

systems are extremely sensitive to faults.

A single fault can have catastrophic consequences on the

proper functioning of these systems. This is why it is essential

to implement fault tolerance mechanisms to ensure their

reliability. When a fault occurs, it can disrupt the normal

operation of the system. In some cases, this can even endanger

the lives of people relying on these systems, as in the case of

vital medical devices. The fault sensitivity of real-time

embedded systems underlines the importance of their rigorous

design and the use of advanced techniques to ensure their

reliability and safety.

A necessary but not sufficient condition for the proper

functioning of embedded real-time systems is the respect of

time constraints throughout the life of the system. The

occurrence of faults is inevitable, whatever the precautions

taken (human error, malicious intent, hardware aging, natural

disaster, etc.), which could lead to catastrophic consequences

(loss of money, time or worse, human lives). An embedded

system must be fault tolerant, in a way that it must be able to

continue its operation despite the failure of a part of its

hardware or system. Reliability is the probability that a system

will be continuously in operation over a given period. Critical

real-time embedded systems must thus cover an important

property of safe operating systems which is reliability. The

presence of techniques that ensure operational safety is vital in

the design of these systems. Fault tolerance is one of the

methods used in the literature to ensure the operational safety

of embedded real-time systems.

Our goal in this work is to design a strict real-time system

that can efficiently detect and recover from faults while

maintaining the required reliability and performance. To

minimize the risks, it is essential to implement fault detection

and recovery strategies. This may include the use of

redundancy, where multiple components or modules work in

parallel to verify results and detect errors. To design safe

systems, we rely on reliability and fault tolerance. Fault

tolerance is an essential aspect of real-time embedded systems,

it concerns the ability of a system to function correctly even in

the presence of faults. This ensures continuity of operations

and user safety. As for reliability, it aims to ensure that the

system operates predictably and without errors, even under

critical conditions. This involves the use of robust design

techniques, extensive testing, and error detection and

Journal Européen des Systèmes Automatisés
Vol. 57, No. 6, December, 2024, pp. 1713-1720

Journal homepage: http://iieta.org/journals/jesa

1713

https://orcid.org/0009-0000-8723-7286
https://orcid.org/0000-0003-0004-1227
https://orcid.org/0009-0004-8671-7017
https://orcid.org/0009-0006-8755-6256
https://orcid.org/0009-0009-0582-0386
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.570619&domain=pdf

correction mechanisms.

The goals of fault tolerance and reliability are to create

reliable, stable, and secure systems that can meet the stringent

requirements of the applications for which they are intended.

We strive to implement fault-tolerant scheduling for

distributed embedded systems with multiple processors. A

scheduling algorithm with a reliability objective for

independent periodic tasks is preemptive even in the presence

of processor faults, which is our goal. The objective of this

work is to propose an approach that meets the needs of fault

tolerance using the watchdog timer.

2. RELATED WORK

In this section, we present some relevant works on fault

tolerance in real-time embedded systems.

Reghenzani et al. [1] presented the state-of-the-art scientific

work analyzing the Software-Implemented Fault Tolerance

SIFT mechanisms and their real-time scheduling. It presents

an extension of the model based on resource allocation

functions, which allows a more accurate representation of the

failure probabilities for each task. Then, they presented how to

calculate the probability that a job is affected by a failure and

the resulting impact on the failure requirement. Using this joint

temporal fault model can improve the satisfaction of failure

and scheduling requirements.

Kumar et al. [2] studied the various fault tolerance

techniques that are used in many distributed real-time systems.

The paper focuses on the types of faults occurring in the

system, fault detection techniques and recovery techniques

used. Thet explained how these methods are applied to detect

and tolerate faults in various distributed real-time systems. The

fault has to be detected by applying a reliable fault detector

followed by a recovery technique. Many fault detection

techniques are available but it is necessary to apply a proper

fault detector. An unreliable fault detector may commit errors

by mistakenly suspecting a correct process or trusting a failed

process.

Manimaran and Murthy [3] proposed an algorithm to

schedule dynamically arriving real-time tasks with resource-

based fault tolerance requirements and primary backup in a

multiprocessor system. The tasks are assumed to be non-

preemptive and each task has two copies (versions) that are

mutually exclusive in space as well as in scheduling, to handle

permanent processor failures and to achieve better

performance, respectively. According to the simulation

results, the proposed algorithm tolerates more than one fault at

a time and employs performance improvement techniques.

Ramanathan and Shin [4] proposed an active replication-

based approach to solve the problem of delivering critical

messages before their deadline in strict real-time embedded

systems in the case of processor or communication link

failures at a lower cost. They use a distributed architecture

with a hexagonal mesh topology and a hypercube topology.

The idea is to duplicate each message at least twice depending

on its criticality and the number of processors and

communication links it has to traverse. Then, the messages are

broadcast on different routes to reduce the cost of

retransmission.

Chevochot and Puaut [5] presented another approach to

tolerating faults in distributed hard real-time systems. They

developed a replication tool called HYDRA, which allows to

integration of active, passive, or hybrid replication into the

scheduling algorithm. This approach aims to tolerate both

transient and permanent faults of a physical component, using

sites composed of processors, memories and clocks. Sensors

are exposed to timing and functional errors, while actuators are

assumed to be reliable. This is a very promising solution to

ensure the reliability of distributed hard real-time systems.

Despite the existence of several approaches to solve fault

tolerance in real-time embedded systems, most of these

approaches do not deal with processor faults; and those that

deal with this type of fault, use in their context, aperiodic tasks

to simplify their approach, unlike real-time embedded systems

that generally use periodic tasks. The use of data redundancy

or physical resources as a solution to solve the fault problem

in these approaches can lead to the non-compliance with time

constraints in strict real-time embedded systems. Our

approach is based on the proposal of a fault-tolerant and not

negatively affecting scheduling algorithm in terms of time and

energy constraints, which uses periodic tasks in a strict real-

time embedded system based on the use of the watchdog timer

for the detection of processor faults.

3. EMBEDDED SYSTEMS

Embedded systems play an important role in our daily lives.

These systems are ubiquitous in many devices and equipment,

ranging from consumer electronics to complex industrial

applications. The integration of these systems in specific

environments allows dedicated tasks to be accomplished

efficiently and often transparently for the end user. Their role

is essential in sectors such as automotive, aerospace,

healthcare, telecommunications and many others.

According to the language of Molière, the word embedded

is derived from the verb "to embark" which means "to put

something on board a ship, a plane or a vehicle an embedded

system can be defined as: "A stand-alone electronic and

computer system, which is dedicated to a very specific task"

[6].

An embedded system is a computer system whose

calculation means are embedded in the controlled process.

Embedd computing means implies, in addition to space

constraints (size, weight, shape), energy consumption and heat

dissipation constraints. In addition, the power supply for the

computing elements is embedded (batteries, fuel, etc.), and/or

ambient (solar panels, etc.) [7].

An embedded system (ES) is a specialized computer system

that constitutes an integral part of a larger system or a machine.

Typically, it is a system on a single processor and whose

programs are stored in ROM. A priori, all systems that have

digital interfaces (watch, camera, car, etc.) can be considered

as ES. Some ES have an operating system and others do not

because all their logic can be implemented in a single program

[8].

An embedded system is an autonomous combination of

hardware and software (electronics plus computing) dedicated

to generally carrying out a specific task in interaction with its

environment and respecting often severe constraints such as:

energy consumption, weight, reliability, response time, cost,

etc. [9].

We can distinguish two categories of embedded systems:

autonomous systems and embedded systems.

An autonomous system: corresponds to an autonomous

device containing intelligence that allows it to interact directly

with the environment in which it is placed. These include

1714

mobile phones, electronic personal diaries or GPS.

An embedded system: (often invisible to the user) is a

coherent set of computer components (hardware and

software), a device that gives it the ability to fulfill a set of

specific missions. It is an underlying physical system with

which the software interacts and controls [10].

Figure 1. Embedded system [11]

As shown in Figure 1, an embedded system is built around

a computer system that receives information from sensors and

interacts with the environment using actuators and/or displays.

The sensors measure the physical quantities characteristic of

the environment in order to determine its current state. This

information is converted and processed by the computer to

produce a result based on the state of the environment. This

result is converted and transmitted to the actuators to bring the

environment into the expected state. The environment of an

embedded system is composed of two parts:

The functional environment: it refers to the environment

that is in direct interaction with the embedded system. This can

be another system, an industrial process to be controlled or an

individual.

The non-functional environment: it refers to the

environment outside the embedded system that is not

controlled by it. This environment will impose constraints and

usage parameters (for example temperature or humidity level)

which must be taken into account when designing the system

[11].

3.1 The characteristics of embedded system

The main characteristics of embedded system are:

Real time: these systems are subject to time constraints.

They must interact with their environment at a speed that is

imposed by the latter. This therefore induces response time

requirements. An embedded system is generally a real-time

system.

Critical safety: A system failure can lead to a human,

ecological or financial disaster. Embedded systems are often

critical. Indeed, as such a system acts on a physical

environment, the actions it performs are irremediable [12].

Limited resources: embedded software has limited

resources, whether for reasons of weight, volume, or energy

consumption.

Autonomy: autonomy is necessary when human

intervention is impossible, but also when human reaction is too

slow or insufficiently reliable. Embedded systems must

generally fulfill their mission for long periods without human

intervention.

Security and reliability: security in the sense of resistance

to malicious acts, and reliability in the sense of continuity of

service, is often linked to the issue of embedded systems.

Indeed, the criticality of embedded systems requires

guaranteeing an appropriate level of reliability and security.

Safety studies must be conducted throughout the system

development cycle. These studies allow for better control of

risks and reliability. Weak points are thus highlighted and

allow designers to specify reconfiguration strategies before the

real prototype phase and real tests. Safety studies must be

conducted as early as possible in the design phase, in order to

reduce costs and the number of prototypes required for system

validation [12].

3.2 Embedded system architecture

Centralized architecture: It is composed of a calculator

that can be single-processor or multiprocessor with shared

memory and a set of sensors and actuators, all connected to the

calculator. This type of architecture leads to “star” type wiring

that is often significant and costly [13].

Multi-calculator architecture: This architecture is

composed of a set of calculators that are not connected to each

other. The application is fragmented and each computer

implements a set of functionalities. Here, the main interest is

to allow a rapprochement between the calculators and the

transducers. The reduction in wiring thus obtained not only

limits costs, but also increases the reliability of the system: if

a processor fails, not all the functionalities are out of service,

the shorter cables are less sensitive to external electromagnetic

disturbances. The design of this type of system is simplified

because it comes down to creating several simpler real-time

systems. The main disadvantage of this architecture is not

being able to guarantee overall consistency in the behavior of

all of these systems that do not communicate with each other

[13].

Weakly distributed architecture: The most commonly

used bus is the CAN bus, which has become a standard in

automotive applications. Thanks to these new buses,

architectures that we call “weakly distributed” have appeared

in embedded real-time applications. They are made up of a set

of computers connected to each other by a bus. Compared to

the multi-computer approach, the gain is undeniable: it is

possible to control the overall behavior of all the computers

and it is possible to share sensors between the computers [14].

3.3 Real-time embedded systems and their classification

Hard real-time: Strictly constrained real-time systems

have deterministic behavior. In this case, all constraints must

be strictly respected. Indeed, systems with hard temporal

constraints only tolerate strict time management in order to

maintain the integrity of the service provided. Failure to

respect the constraints can cause catastrophic consequences

[15]. This type of system is common in applications affecting

public safety. Examples include nuclear station control

systems, railway control systems, and computer-assisted

medicine [16].

Soft real time: This class of system is less demanding with

regard to compliance with all temporal constraints. This means

that non-compliance with temporal constraints is tolerated by

the system without this having catastrophic consequences.

Systems with flexible or soft temporal constraints accept

variations in data processing, we then speak of Quality of

1715

Service. This means that these are systems where quality is

appreciated by the human senses in the form of a service and

that a low probability of not respecting temporal limits can be

tolerated. This is the case for multimedia systems and

applications (telephony, video, etc.) [16].

Mixed-constraint systems: These are systems composed

of two types of tasks (strictly constrained tasks and softly

constrained tasks). Consequently, a subset of tasks emerges

that must imperatively respect temporal constraints and

another subset of tasks whose evaluation criterion is the

minimization of temporal errors [16].

3.4 Classification of real-time scheduling algorithms

Scheduling algorithms have the mission of finding, at any

given time during the execution of the system, a hardware

component for the highest priority software component. The

way to perform this assignment allows these algorithms to be

classified into:

Offline and online algorithms: A scheduling algorithm is

offline if it constructs the complete scheduling sequence of all

tasks before execution. This is well suited to periodic task

systems. These algorithms allow the design of predictive

systems, since the temporal constraints can be verified and

validated even before the system is put into operation. A

scheduling algorithm is online if it constructs the scheduling

sequence of all tasks during the execution of the application.

Online algorithms are more robust with respect to Worst Case

Execution Time WCET overruns. This is well suited for

sporadic and aperiodic task systems [17].

Exact and approximate algorithms: Offline and online

algorithms that always find an optimal solution for the real-

time scheduling problem, of course if this solution exists, are

part of the class of exact algorithms. However, in the general

case this problem is NP-hard and of exponential complexity,

and to solve it in polynomial time, we adopt heuristic

algorithms that seek solutions that are as close as possible to

the optimal solution [17].

Single-processor/multi-processor: The scheduling is of

the single-processor type if all the tasks can only be executed

on a single processor. If several processors are available in the

system, the scheduling is multi-processor [18].

This subsection briefly explains the principles of the

different scheduling algorithms on a single-processor and

multiprocessor architecture.

Rate-monotonic (RM) scheduling algorithm: The RM

algorithm is a static period-based algorithm, which assigns the

highest priority to the task with the smallest period. The use of

periodicity as a scheduling criterion limits the applicability of

this algorithm to periodic tasks with on-demand deadlines.

Using this algorithm for other types of tasks does not provide

any guarantee of meeting deadlines [19].

“Inverse Deadline” (ID) or “Deadline Monotonic”

(DM): The "inverse deadline" algorithm is a static algorithm

where the highest priority task is the one with the smallest

deadline. Note that, compared to the Rate-monotonic

algorithm, being based on the notion of deadline, this

algorithm applies as well to other task models as those of tasks

with deadlines on requests [19].

“Least Laxity First” (LLF): At time t and when the task is

executed alone, the laxity of a task represents its maximum

delay compared to its deadline to (re)start its execution. The

“least laxity first” algorithm assigns, at time t, the highest

priority to the task with the lowest laxity.

“Earliest Deadline First” (EDF): The EDF algorithm

assigns, at time t, the highest priority to the task with the

closest deadline. EDF* is used for where among the tasks with

the same deadline, the one that arrives first will be elected.

An embedded system must be fault tolerant, in a way that it

must be able to continue its operation despite the failure of a

part of its software or hardware, and this is to justify the

reliability of this system. The slightest failure of a critical

embedded system can cause catastrophic consequences, so

even in the presence of faults the embedded system must be

delivered the service correctly to avoid the consequences.

4. FAULT TOLERANCE

In embedded and distributed real-time systems, compliance

with time constraints throughout the life of the system is

crucial. Given the potentially catastrophic consequences (loss

of human lives, time, or money) that a fault could cause in a

critical real-time system, incorporating techniques to ensure

operational safety is essential when designing these systems.

Fault tolerance is a method used to ensure the dependability of

embedded real-time systems; it allows systems to provide the

expected service even in the presence of faults. Critical real-

time systems must therefore cover an important property of

safe operating systems, which is reliability.

4.1 Operational safety

The dependability represents the ability of a system to

deliver a service (its behavior as perceived by its user(s)) in

which one can have justified confidence. A user is another

system (human or physical) that interacts with the system

considered [20].

4.2 The dependability tree

Dependability mainly manipulates three concepts:

Attributes by which dependability is assessed, Hindrances by

which dependability is affected, Means by which

dependability is improved. Figure 2 summarizes the main

notions of dependability [17].

Figure 2. Embedded dependability tree [17]

To prevent system failures despite the presence of faults,

this is equivalent to breaking the chain that leads from fault to

failure. Fault tolerance is implemented by error detection and

system recovery [21].

4.3 Principles of fault tolerance

The objectives are the subsequent identification of faults

1716

with a view to their elimination or prevention, to avoid the

propagation of the error to other components, to prevent the

occurrence of a failure caused by the error. The parameters of

the detection are the latency and the coverage rate. The

coverage rate is the percentage of errors detected. The latency

is the delay between the production and the detection of the

error. Error detection is said to be concomitant when it is

carried out during the normal execution of the service.

Conversely, it is said to be preventive when it can be carried

out during a suspension of the service. “Efficiency” means that

failures are detected quickly and with acceptable accuracy.

Concurrent detection techniques use redundancy at the

information or component level, or temporal or algorithmic

redundancy. The most commonly used forms are as follows.

Doubling and comparison: processing units are duplicated

and their results are compared.

Error detection codes: they introduce redundancy into the

representation of information. A watchdog timer (WDT) is a

counter that counts down from a predefined value to zero at a

fixed rate. WDT detects processor failures that can occur for

various reasons. The idea is that tasks should periodically reset

the WDT before it expires, by writing a specific value to a

register or calling a function. In this way, the WDT acts as a

watchdog that checks if the processor is working as expected.

Plausibility or structured data checks: assertions are

inserted into the code to verify types, indices, values, etc.

Temporal and execution checks: a “watchdog” monitors

response times or execution progress [13].

Compensation: requires that the system state has sufficient

redundancy to allow its transformation into an error-free state.

It is transparent to the application because it does not require

re-executing part of the application (restart), nor executing a

dedicated procedure (continuation). It can for example be

achieved by replicating components and performing a majority

vote on the results. Another way to proceed is to use error-

correcting codes or more generally fault-tolerant algorithms. It

can be noted that the compensation method does not require

specific error detection since it performs the error detection

itself. A compensation method can serve as an error detector,

while the reverse is not true. Indeed, compensation requires

greater redundancy to be able to correct the error. For example,

in terms of components, two components are sufficient to

detect an error, but at least three will be necessary to correct it

[21].

4.4 Fault tolerance techniques

Fault tolerance methods are based on two classes of

techniques:

-Treating faults.

-Treating errors.

Fault treatment: In this case, the fault tolerance algorithm

aims to prevent faults from being activated. It involves at least

two steps which are fault diagnosis and fault inactivation

Fault diagnosis: determines the causes of the error in terms

of location and nature.

Fault inactivation: prevents faults from being activated

again (by making them passive) [9].

Error treatment: In this case, the fault tolerance algorithm

consists of detecting the existence of an incorrect state (error),

then replacing the incorrect state with a correct state that

complies with the specifications. In all cases, redundancy is

the sole principle used to treat errors, there are three forms of

redundancy.

Hardware redundancy: includes hardware components

added to the system to support fault tolerance (e.g., using an

available processor if one of the executing processors fails).

Software (or information) redundancy: includes all

programs and instructions that are used to support fault

tolerance (e.g., using two implementations of the same

module).

Time redundancy: consists of allowing additional time to

complete the execution of tasks to support fault tolerance (e.g.,

executing a module again later) [9].

The main objective of fault-tolerant scheduling algorithms

(EDF fault-tolerant) is to study processor allocation strategies

in the presence of faults, to propose new improvement

methods for scheduling and to choose one that significantly

decreases the execution time of the algorithm without

degrading the system performance.

5. RESULTS AND DISCUSSIONS

In the domain of real-time systems, where timeliness and

predictability are paramount, scheduling algorithms play a

crucial role in ensuring efficient and reliable task execution.

An algorithm, Earliest Deadline First* (EDF*), has been

proposed that is distinguished by its simplicity and efficiency

in prioritizing tasks based on their impending deadlines. This

chapter embarks on a practical journey to realize EDF*, by

implementing a multiprocessor EDF* scheduler using the

Python programming language.

Our approach delves into the intricacies of scheduling tasks

across multiple processors, unraveling the challenges and

opportunities that arise in this dynamic environment. We will

address the complexities of managing a constantly changing

set of tasks, synchronizing execution across multiple

processors, and protecting the system from timing faults. By

addressing these challenges, we will develop robust strategies

to ensure scheduler resilience. Redundancy and migration

techniques will be employed to protect critical tasks from

processor failures, while scheduling mechanisms will

dynamically adapt to changing system conditions.

To evaluate the effectiveness of our approach, we conclude

this paper by simulating a case study with the results obtained

in detail, we first present an error detection technique which is

the Watch dog-timer.

Task Representation: Tasks in a scheduling system are

defined by several parameters that determine their behavior

and importance in the scheduling process. Here is an

explanation of these parameters.

Task ID: A unique identifier assigned to each task to

distinguish it from other tasks.

Arrival Date (DA): the task arrival date (creation date or

possibly the date a task transferred by another processor is

received). It is now possible to schedule this task.

Execution Time (TE): This is the time required for the

execution of the task. It is determined by simulations or by a

thorough study of the source code before execution.

Deadline (DI): it represents the instant at which the

execution of a task must be completed to respect the time

constraint.

Period (PI): it represents the time between two consecutive

creations of a task.

Figure 3 shows that the proposed approach expresses the

different steps to follow to solve the problem of fault tolerance

for real-time embedded systems. We have chosen the

1717

independent periodic tasks. For each arrival of a task in the

system and before inserting it into the queue, we must

calculate the feasibility to ensure the existence of a real-time

schedule for all of these tasks.

Figure 3. The proposed approach

According to reference [22], the feasibility test to execute

the tasks is composed of two conditions:

Necessary feasibility (Feasibility used in practice): is

calculated by summing the ratios between the execution time

of each task and its period, then dividing this sum by the

number of available processors. This gives a measure of

resource utilization relative to the periodicity constraints of the

tasks.

𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
∑

𝑇𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
𝑇𝑎𝑠𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑡𝑎𝑠𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

(1)

Sufficient feasibility: is calculated by summing the ratios

between the execution time of each task and its deadline, then

dividing this sum by the number of available processors. This

gives a measure of the leeway available to each task relative

to its time constraints.

𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
∑

𝑇𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
𝑡𝑎𝑠𝑘 𝑑𝑒𝑑𝑙𝑖𝑛𝑒𝑡𝑎𝑠𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 (2)

Once the feasibility conditions of the tasks have been

verified, they are placed in a queue and then ordered using the

EDF* algorithm.

Algorithm: EDF scheduling algorithm

Input: List of tasks tasks, number of processors

num_processors, simulation period

simulation_period, optional processor stops.

Output: Timeline for each processor

1. Initialize task_list with metadata for each task

2. Initialize processor_timelines for each processor

3. for t in range(simulation_period) do

4. for each proc_id in processor_stops do

5. t≥processor_stops[proc_id] processor_timelines

[proc_id][t] ← −1

6. available_tasks ← {task | task.capacity > 0}

7. Sort available_tasks by deadline

8. for each proc_id in range(num_processors) do

9. processor_timelines[proc_id][t] = −1 continue

10. current_task ← processor_timelines[proc_id][t − 1]

11. current_task ̸= −1 processor_timelines[proc_id][t] ←

current_task

12. current_task.capacite ← current_task.capacite − 1

13. for each proc_id in range(num_processors) do

14. processor_timelines[proc_id][t] = −1 and

available_tasks ̸= Ø

 task ← available_tasks.pop(0)

15. processor_timelines[proc_id][t] ← task.id

16. task.capacity ← task.capacity − 1

17. for each task task in task_list do

18. task.capacite = 0 task.capacite ← task.initial_capacite

19. task.deadline ← task.deadline + task.period

20. return processor_timelines.

Calculating the LCM of periodic tasks: Calculating the

LCM (Least Common Multiple) of periodic tasks is essential

to ensure synchronized and efficient execution in various

systems, such as real-time systems, communication networks,

and industrial control systems. By determining the LCM, it is

ensured that all tasks execute at regular intervals, avoiding

conflicts and of each task: The period of a task represents the

time required to complete a complete execution cycle.

List the periods of all tasks: Write down the periods of all

the periodic tasks that you want to consider.

Determine the prime factorization of each period:

Decompose each period into its prime factors.

Identify the highest power of each prime factor: For each

prime factor present in one of the periods, identify the highest

power of that prime factor appearing in all periods.

Multiply the identified prime factors: Multiply the

identified prime factors, raised to their respective highest

powers, to obtain the lcm.

Process faults: There are several types of system faults

(code faults, network faults, communication faults, etc.) we

cannot treat them all at once. The fault that we will consider

here is the failure of a processor. This can be due to a processor

delay or a complete failure. If a task does not complete before

the watchdog timer expires, this may indicate a fault in the

processor on which it was running

Fault tolerance mechanism with watchdog timer:

WatchDog: or the watchdog, is an integrated circuit used to

ensure that the system does not get stuck at a particular stage

in the processing it performs. It is a protection generally

intended to restart the system in the event that a defined action

is not executed within a given time. The i.MXL provides a

WatchDog with a granularity of 0.5 seconds, the allowed

interval for a test period is between 0.5 seconds up to 64

seconds [14]. In the context of fault tolerance for our EDF*

scheduling system, we will implement a watchdog timer

mechanism to detect potential faults during the execution of

tasks. Then, we will consider a specific fault, namely a

processor failure, which can be caused by a processor delay or

a complete failure. Here is how the process could be

implemented:

Error detection: In a strict real-time system that uses the

EDF* scheduling algorithm: To manage tasks according to

their earliest deadlines. The watchdog timer is particularly

useful to ensure that tasks are executed within the given

deadlines and that no timeout occurs.

System recovery: When an error is detected, the watchdog

timer triggers a corrective section such as a system reset or

taking action to correct the error. In a multiprocessor system,

a test task that has been monitored by WDT encounters an

1718

error or has been executed late, it is possible to redirect this

task to another free processor so that it can be executed

correctly from its deadline, so the tasks must be distributed

among the available processors.

In case of fault detection, we will consider two solutions:

Task Immigration: The task currently running will be

migrated to another available and functional processor.

Preemption: If migration is not possible or if it is not

desirable, another solution is to preempt a task with a deadline

as far away as possible to free the processor for the pending

task.

Scheduling after fault detection: Once the tasks are in the

global queue, we will use a star classification based approach

to decide the execution. This involves calculating the load rate

of each processor. The processor with the lowest load rate will

be chosen to execute the task.

6. SIMULATION

In this section, we propose a case study to evaluate the

simulation and to show the effectiveness of the proposed

approach. We first present the description of the proposed

tasks. Then we present the execution results.

In our case study we assume that the system is composed of

08 periodic tasks (as shown in Table 1) and 03 processors;

each task described with a 4-tuple: Ti = (DA, TE, Di, Pi).

Table 1. Tasks description

Tasks Arrival Date Execution Time Deadline Period

Task 1 0 2 7 15

Task 2 0 2 10 10

Task 3 0 1 6 5

Task 4 1 1 9 6

Task 5 3 1 12 15

Task 6 2 2 11 6

Task 7 3 1 8 10

Task 8 2 1 10 5

The approach begins in the first step to calculate the

feasibility of task execution with the time constraints for each

task; and to achieve this goal we must first calculate the overall

period of all tasks Ptot = PPCM (15,10.5, 6, 15, 6,10.5) =30

At time t=0 the 03 tasks T1, T2, T3 have arrived in the system,

If the execution of the tasks is feasible, we must insert the tasks

into the queue and ordered by the proposed algorithm. Tasks

T1, T2, T3 are waiting to use the available processors.

Task T3 used processor P1 from date t=0 with TE=1, Task

T1 used processor P2 from date t=0 with TE=2, Task T2 used

processor P3 from date t=0 with TE=2. In date t=1 it is the

arrival of task T4 in the system, this event the system will

check if there are free processors, in our system processor P1

is free so task T4 used processor P1 with TE=1. In date t=2, it

is the arrival of tasks T6, T8, at this moment all processors are

free. T8 used processor P1 and task T6 used processor P2Note:

(DI(T8)=10 < DI(T6)=11) this is the justification for using

processors in order T8 → P1 and T6 → P2. In the date t=3 it

is the arrival of the tasks T7, T5, this event the two processors

P1 and P3 are free at this time the task T5 uses the processor

P1 with TE=1 and T7 uses the processor P3 with TE=1. t=5 it

is the arrival of the task T3 for the period n°2, T3 uses the

processor P3 (we choose the oldest processor used) with a

TE=1 until t=6 (termination of the execution of the task T1),

by the same principle T4 uses the processor P1 and T8 uses

the processor P2.

From the date t=8 until the end of the timeline all the tasks

have arrived to complete their execution according to their

period, they will be ordered by the algorithm and each time

chooses the oldest processor used and its lowest load rate The

execution results of the tasks on the 3 processors are

graphically represented in Figure 4. As the Figure 5 shows the

feasibility and utilization rate of each processor.

Figure 4. Tasks scheduling

Figure 5. Feasibility results and load rate

7. CONCLUSION

This paper has contributed to the advancement of

knowledge in the field of the dependability of distributed

embedded systems (DES). The results obtained, both

theoretically and practically, will allow DES designers and

developers to implement safer and more reliable systems, thus

meeting the increasing requirements of critical applications.

With the results of our proposed approach, a significant

improvement for the reliability of embedded systems by fault

tolerance that allows to give justified confidence to the system

despite the presence of processor faults. This makes the

application of our proposed approach crucial in critical

embedded systems and which can generate catastrophic results

with the slightest system failure such as the e-marked systems

1719

that exist in means of transport (airplane, vehicle, train...) and

devices used in medicine. Our research opens the way to

several interesting perspectives in the field of distributed

embedded systems and fault tolerance. By further exploring

the integration of fault tolerance mechanisms in DES, we

could consider studying the impact of different scheduling

strategies on the reliability and performance of the systems. In

addition, analyzing the efficiency of the EDF algorithm in

more complex scenarios or exploring new fault detection and

recovery techniques could be promising research avenues to

enhance the dependability of DES. Communication between

tasks is very important in intelligent embedded systems, which

opens the way for future research that uses dependent tasks.

REFERENCES

[1] Reghenzani, F., Guo, Z., Fornaciari, W. (2023). Software

fault tolerance in real-time systems: Identifying the

future research questions. ACM Computing Surveys,

55(14s): 306. https://doi.org/10.1145/3589950

[2] Kumar, A., Yadav, R.S., Ranvijay, A.J. (2011). Fault

tolerance in real time distributed system. International

Journal on Computer Science and Engineering, 3(2):

933-939.

[3] Manimaran, G., Murthy, C.S.R. (1998). A fault-tolerant

dynamic scheduling algorithm for multiprocessor real-

time systems and its analysis. IEEE Transactions on

Parallel and Distributed Systems, 9(11): 1137-1152.

https://doi.org/10.1109/71.735960

[4] Ramanathan, P., Shin, K.G. (1992). Delivery of time-

critical messages using a multiple copy approach. ACM

Transactions on Computer Systems, 10(2): 144-166.

https://doi.org/10.1145/128899.128902

[5] Chevochot, P., Puaut, I. (1999). Scheduling fault-tolerant

distributed hard real-time tasks independently of the

replication strategies. In Proceedings Sixth International

Conference on Real-Time Computing Systems and

Applications. RTCSA'99 (Cat. No.PR00306), Hong

Kong, China, pp. 356-363.

https://doi.org/10.1109/RTCSA.1999.811280

[6] Chkouri, M.Y. (2010). Modélisation des systèmes

temps-réel embarqués en utilisant AADL pour la

génération automatique d'applications formellement

vérifiées. Doctoral dissertation, Université Joseph-

Fourier-Grenoble I.

[7] Kamni, S. (2023). Un framework d’aide au déploiement

et à la personnalisation des systèmes temps réel:

Application aux autopilotes de drones. Doctoral

dissertation, ISAE-ENSMA Ecole Nationale Supérieure

de Mécanique et d'Aérotechique-Poitiers.

[8] Z. Mammeri. Introduction Aux Systèmes Embarqués Et

Temps Réel, Cours – Module ASTRE IRIT - UPS –

Toulouse, 2010. https://pdfcoffee.com/chapitre1-pdf-

pdf-free.html.

[9] Bachir, M. (2011). Tolérance aux fautes des systèmes

temps-réel embarqués basée sur la redondance. Doctoral

dissertation, Université de Batna 2.

[10] Meliouh, A. (2021). UML et model-checking pour la

modelisation et la verification des systemes embarques.

Doctoral dissertation, Université de Mohamed Kheider

Biskra.

[11] Solet, D. (2020). Systèmes embarqués temps réel fiables

et adaptables. Doctoral dissertation, Universite DE

Nantes.

[12] Ghenai, A. (2015). Évaluation de la fiabilité des systèmes

embarqués dès la phase de conception par réseaux de

Pétri temporels étendus. Doctoral dissertation, Thèse de

Doctorat en Sciences de L’Université Constantine 2.

[13] Ridha, M. (2023). Tolérance aux fautes pour les systemes

embarques distribues intelli- gents. Doctoral dissertation,

Ecole National Supérieur D’informatique.

[14] Oubadi, S. (2014). Optimisation de

l'ordonnancement/allocation dans les systèmes

embarqués distribués temps réel. Doctoral dissertation,

Oum-El-Bouaghi.

[15] Xu, J., Parnas, D.L. (1991). On satisfying timing

constraints in hard-real-time systems. ACM SIGSOFT

Software Engineering Notes, 16(5): 132-146.

https://doi.org/10.1145/123041.123066

[16] BENDIB, S.S. (2019). Méthodologie de conception de

systemes embarques temps reel. Doctoral dissertation,

Université de Batna 2.

[17] Arar, C. (2016). Redondance logicielle pour la tolérance

aux fautes des communications. Doctoral dissertation,

Université de Batna 2.

[18] Bounabi, C., Boutekkouk, F. (2013). Optimisation des

performances dans les systèmes embarqués distribués. e

Master dissertation, Université Larbi Ben M’Hidi Oum

El Bouaghi.

[19] Vîlcu, D.M.R. (2004). Systèmes temps réel embarqués:

Ordonnancement optimal de tâches pour la

consommation énergétique du processeur. Doctoral

dissertation, Université Paris XII – Val de Marne.

[20] Laprie, J.C. (2004). Sûreté de fonctionnement des

systèmes: Concepts de base et terminologie: Sûreté de

fonctionnement. REE. Revue de L'électricité et de

L'électronique, (11): 95-105.

https://doi.org/10.3845/ree.2004.109

[21] Besseron, X. (2010). Tolérance aux fautes et

reconfiguration dynamique pour les applications

distribuées à grande échelle. Doctoral dissertation,

Institut National Polytechnique de Grenoble-INPG.

[22] Mehalaine, R., Boutekkouk, F. (2020). Energy

consumtion reduction in real time mult, processor

embedded systems with uncertain data. In Artificial

Intelligence and Bioinspired Computational Methods,

Springer, Cham. https://doi.org/10.1007/978-3-030-

51971-1_4

1720

