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Liver CT images play a crucial role in the early diagnosis of liver disorders and have proven 
effective in identifying chronic liver disease, which may lead to fatal outcomes. This 
imaging technique provides detailed cross-sectional views, allowing for precise detection 
of abnormalities, aiding in timely intervention, and improving patient prognosis. The 
detection process of chronic liver disease should be carried out with meticulous accuracy. 
Due to the inherent complexities involved and the presence of ambiguities in CT images, 
segmentation approaches have not yet reached the pinnacle of accurate and reliable 
performance required for clinical application. Recently, the emergence of machine learning 
and deep learning algorithms has provided valuable insights into achieving a more accurate 
segmentation process. However, these existing deep learning algorithms suffer from several 
challenges that hinder segmentation performance. Hence, independent deep learning 
algorithms require further refinement to handle CT liver images effectively. To address this 
problem, this research article proposes a fully automated, robust, and accurate segmentation 
of CT liver images based on a deep neural network architecture that adopts dilated residual 
networks integrated with powerful capsule networks. This proposed network combines the 
strengths of capsule networks and ResNet-50 architectures to achieve better segmentation 
results. Extensive experimentation is conducted using 100 healthy subjects, and 131 
contrast-enhanced image data are used for training, while 70 CT images are used for testing. 
Furthermore, the proposed model is evaluated using performance metrics such as DICE, 
Intersection over Union (IoU), precision, and recall. To demonstrate the superiority of the 
suggested network, its segmentation performance is compared with that of existing state-
of-the-art deep learning architectures. The results demonstrate that the suggested model 
achieved 0.98 DICE, 0.95 IoU, 99.2% precision, and 99.1% recall, respectively, surpassing 
various existing models used for liver CT image segmentation. 
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1. INTRODUCTION

The liver, the largest gland in the human body, weighs
roughly 1500 grams. It plays a critical role in metabolism, 
digestion, and detoxification. Hepatic steatosis and hepatitis 
are significant liver disorders that can lead to hepatic sclerosis 
and liver cancer. Liver tumors are a leading cause of cancer-
related deaths, accounting for approximately 841,080 cases 
and 781,631 deaths globally in 2020 [1, 2]. Hence, an 
intelligent system is required for accurately locating tumor 
areas in the liver [3]. 

For the assessment and staging of liver tumors, computed 
tomography (CT) is one of the primary popular imaging 
modalities [4, 5]. Typically, skilled radiologists manually 
delineate the liver and liver tumor segments. However, 
manually tracing volumetric CT images slice-by-slice is labor-
intensive, subjective, and not very efficient.  

Automated or semi-automated segmentation methods 
would significantly increase efficiency. Moreover, the need 
for automated liver and liver tumor segmentation is 

emphasized by the growing use of intraoperative 3D imaging 
systems [6]. 

Moreover, machine learning methods like Artificial Neural 
Networks (ANN) and Support Vector Machines (SVM) are 
frequently employed for liver tumor segmentation and feature 
extraction [7-10]. Although both are considered black-box 
models, they offer valuable characteristics such as parallel 
processing and data transformation through kernel functions. 
These techniques yield highly accurate classification results, 
particularly in the segmentation process. However, prior to the 
classification steps such as pre-processing, semantic 
segmentation and feature extraction were followed to achieve 
the high detection rate. Recently, researchers shown huge 
interest in adopting the deep learning networks for semantic 
segmentation of Liver tumours. The shift from traditional 
machine learning frameworks to deep learning (DL) is driven 
by the remarkable accuracy attained through its extensive 
learning architectures. These structures enable DL to extract 
more intricate features from the data. Existing DL methods 
such as U-NETS [11], SegNets [12], Fully Connected 
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Convolutional Neural Networks [13] and Hybrid ResNets [14, 
15] are deployed for the segmentation. Furthermore, these
methods suffer from the gradient problems [16-20] which
stops to achieve the best performance. Inspired by this issue,
this research paper presents the efficient ensemble of capsule
and dilated residual networks for achieving the best
segmentation. To sum up the advantages, the primary
contribution of this paper is summarized as pursues:

1. Proposing an intelligent framework for the effective
segmentation of Liver tumours based on CT liver images; 

2. Proposing the novel capsule based dilated residual
networks which propels the semantic segmentation to achieve 
its peak performance that can aid for the better classification; 

3. Investigating the proposed model by measuring the
various performance metrics and comparing with the alternate 
state-of-art existing learning models. 

The remainder of the content is organized as pursues: 
Section 2 presents the different segmentation techniques 
demonstrated by different authors. The proposed methodology 
and dataset descriptions are depicted in Section 3. The 
experimental outcomes are demonstrated in Section 4. The 
paper is ultimately wrapped up with prospects for future 
improvements delineated in Section 5. 

2. RELATED WORK

For an efficient liver segmentation process, shape prior
methods and anatomical knowledge about the organs are 
included. Many works have demonstrated the effectiveness of 
designing model-based segmentation methods. These 
approaches leverage a detailed understanding of liver anatomy 
to improve accuracy and reliability in segmentation. 

Rahman et al. [21] introduced a liver segmentation pipeline 
utilizing graph-cut techniques in a 3D interactive environment. 
Wang et al. [22] utilized a combination approach, 
amalgamating an expectation maximization algorithm with 
region-based texture classification for segmentation. 

Despite their limitations, such methods might struggle with 
distinguishing the liver from surrounding tissues due to poor 
contrast and indistinct boundaries. Additionally, the use of 
contrast agents to enhance tumor visibility in CT scans 
introduces noise. Recently, deep learning techniques, 
particularly fully convolutional networks (FCNs), have 
demonstrated significant promise in automatically segmenting 
medical images. 

Shao et al. [23] introduced a novel deep learning approach, 
termed a 3D convolutional neural network (CNN), for the 
automated segmentation of livers. This method trains to 
generate subject-specific probability maps, serving as shape 
priors to establish the initial liver surface. The model 
integrates both local and global information to refine 
segmentation. Global data encompass healthy liver regions, 
capturing area appearance and intensity distribution, while 
local nonparametric data focus on detecting abnormal liver 
features. Zhang et al. [24] presented a dual-stage mechanism, 
in which the liver was segmented first by utilizing shape 
models, followed by tumor segmentation using dense random 
trees with auto-context learning schemes. The proposed 
scheme suffers from low performance and significantly 
consumes more computational overhead. 

Wu et al. [25] proposed ensemble dense networks by 
integrating the 2D-U-Net and 3D-convolutional neural 
networks to achieve better performance. However, the 

persistence of vanishing gradient problems still prevents these 
models from achieving better segmentation accuracies. To 
overcome these issues, Manjunath et al. [26] suggested the 
enhanced U-NET by integrating the residual path into the skip 
connection of the U-NET. This method provides good 
performance but still requires improvements in terms of 
computational overhead. Additionally, Jiang et al. [27] 
presented Convolutional Neural Networks that incorporate 
attention maps and skip connections. 

3. PROPOSED WORK

The entire structure of the suggested model is depicted in
Figure 1, comprising three constituent elements: capsule 
network, dilated residual networks, and residual skip 
connection. The components are constructed with a U-shaped 
architecture, which is very similar to U-Nets. The three 
components are integrated as the encoder-decoder framework. 
The capsule networks and down-samplers are used in the 
encoder, whereas the up-sampling with dilated residual 
networks is used as the decoder. As the first step, features are 
extracted and fed to the encoders, which consist of the capsule 
network coupled with down-sampling. Following the encoder 
design, the features are then fed to the decoders coupled with 
the dilated residual block with up-sampling. The skip 
connection serves to link the encoder and decoder blocks for 
interconnection purposes. Finally, all the features are 
concatenated to form the segmented images. The depiction of 
the suggested network is thoroughly elucidated in the prior 
segment. 

Figure 1. Proposed architecture for segmenting the liver 
tumors using LiTS liver images 

3.1 Methods and materials 

The dataset used for evaluating the proposed framework is 
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the LiTS-2017 liver tumor segmentation model. Nearly 131 
contrast-enhanced images are utilized for training, while 70 
CT images are used for testing, with all images having a 
resolution of 300 dpsi. These datasets exhibit heterogeneous 
and diffuse shapes and are organized in conjunction with 
ISBI2017 and MICCAI 2017 datasets. Figure 2 presents the 
sample images used for the evaluation process. As shown in 
Figure 2, all the images are stored in (.nii format), and Python 
code is deployed to read these files. 

(a) 

(b) 

(c) 

Figure 2. Sample chronic liver images (.nii format) from the 
LiTS datasets used for segmentation and classification model 

3.2 Data pre - processing technique 

The medical preprocessing method aims to eliminate noisy 
and low-quality pixels that can impede the accurate detection 
of liver cancers in CT scan images. Pixel-intensive evaluation 
has been applied to eradicate inconsistent and noisy pixels 
from the input images. Additionally, image histogram 
techniques have been employed to improve image quality, as 
they demonstrate superior efficacy across various image types. 

3.3 Core model design 

The core model design consists of capsule networks, dilated 

networks, and finally encoder-decoder design. The detailed 
description of each component as follows: 

3.3.1 Capsule networks-its working background 
In the realm of deep learning, Convolutional Neural 

Networks (CNNs) have garnered significant attention for 
tackling image visual representation. Nonetheless, these 
CNNs encounter notable limitations in their fundamental 
architecture, resulting in subpar performance across various 
tasks. CNNs autonomously discern features from images, 
which is crucial for detecting and recognizing diverse visual 
objects. Initially, they identify simple features like edges. As 
the layers go deeper, they recognize more complex features. 
However, CNNs primarily focus on extracting features 
without adequately considering the spatial arrangement of 
objects, which is a significant architectural flaw. Given the 
necessity for precise feature extraction in thermal image 
inputs, CNNs require modifications to enhance accuracy. 
Addressing this concern, the pooling layers in CNNs are 
substituted with capsule networks to improve spatial feature 
extraction. This research introduces the concept of fast capsule 
networks aimed at enhancing spatial feature extraction for 
improved performance. 

Five convolutional layers are employed for feature 
extraction, which is then integrated with the capsule network 
to capture the spatial details of DFU. The complete network 
utilizes the ReLU activation function throughout. 

Capsule Networks were recently introduced to tackle the 
shortcomings of conventional CNN architectures. Capsules 
represent clusters of neurons encoding both spatial details and 
the likelihood of object presence. Within a capsule network, 
every element in an image is associated with a capsule, 
providing encoded information about its presence and spatial 
characteristics. 

1. The likelihood of presence within entities.
2. Parameters for the instantiation of entities.
The capsule network comprises 3 CNN layers. This network 

is segmented into three tiers: a base capsule layer, an upper 
capsule layer, and a classification tier. Global parameter 
sharing is executed to minimize error accumulation, while 
employing an optimized dynamic routing algorithm for 
parameter updates iteratively. To encode the crucial spatial 
correlation between low and high-level convolutional 
characteristics in the image, the product of the input vector 
matrix with the weight matrix is computed. 

𝑌𝑌(𝑖𝑖. 𝑗𝑗) = 𝑊𝑊𝑖𝑖,𝑗𝑗𝑈𝑈(𝑖𝑖, 𝑗𝑗) ∗ 𝑆𝑆𝑗𝑗 (1) 

where, Y(i,j) represents the product output of the input vector 
matrix with the weight matrix for the capsule network, W(i,j) 
is the weight matrix between capsule i and capsule j, U(i,j) is 
the input vector matrix for capsule i and capsule j and Sj is the 
output of capsule j, which is computed through a combination 
of weighted input vectors. 

To ascertain the current capsules, their weighted input 
vectors are summed up, directing the resulting output to the 
superior level capsule. 

𝑆𝑆(𝑗𝑗) = � 𝑌𝑌(𝑖𝑖, 𝑗𝑗) ∗ 𝐷𝐷(𝑗𝑗)
𝑗𝑗

 (2) 

where, S(j) represents the summed weighted input vector for 
capsule j, Y(i,j) is the product of the input vector matrix with 
the weight matrix and D(j) represents the dynamic routing 
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coefficient for capsule j, which adjusts the weight based on the 
routing process. 

The application of non-linearity is culminated by employing 
the squash function 

𝐺𝐺(𝑗𝑗) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆(𝑗𝑗)) (3) 

where, G(j) represents the output of capsule j after applying 
the squash function. 

For precise segmentation, capsule networks have the 
capability to capture data situated across various locations and 
discern the correlations between features through the 
utilization of mathematical Eq. (1). 

The convolutional layers reside within the lower capsule 
area, while the primary capsules occupy the upper region. Eq. 
(2) is utilized to compute the output weights, which are then
transmitted to the upper capsule region. The squash function
maintains the original vector direction by compressing its
length within the range of (0, 1). Subsequently, the model
integrates dot product operations among similar capsules and
optimizes dynamic routing to generate output. This iterative
process continually adjusts network weights to construct
feature maps. Following this, the dimensionality of the feature
maps is reduced through fully connected layers and
transformed into one-dimensional feature maps via flattening
layers. The one-dimensional capsule matrix G undergoes
flattening to yield a one-dimensional vector P, which is further
transformed into a vector of length L through a fully connected
layer. Eq. (4) represents the mathematical formulation for
these features.

𝑍𝑍 = 𝐹𝐹(𝐺𝐺(𝑗𝑗),𝑃𝑃) (4) 

3.3.2 Dilated residual networks 
The dilated residual network is constructed based on the 

ResNet-50 model. It consists of 18 layers and all the 
convolutional layers are replaced with dilated convolution 
layers (DCL). The Dilated Convolution layer involves 
introducing gaps (zero padding) between the components of 
the convolutional layers to enlarge the convolutional kernel, as 
referenced in the literature. Let's denote the expansion factor 
of the dilated convolution as variable t, which is expressed 
mathematically as 

𝐶𝐶 = 𝐶𝐶 + (𝑑𝑑 − 1)(𝑡𝑡 − 1) (5) 

The C represents the dilated convolution blocks subsequent 
to integrating the perforations, while c denotes the initial 
convolutional kernel. The expansion rate, t, also serves as a 
measure of the original convolutional kernel's expansion 
capacity. Receptive fields are employed to delineate the 
distinct dilation processes. Consequently, dilated convolution 
layers (DCN) have garnered significant attention in research, 
proving highly effective in extracting spatial features without 
sacrificing computational efficiency or imposing additional 
computational overhead. However, the utilization of 
convolution blocks with identical dilation rates may still give 
rise to the gridding phenomenon. To overcome the gridding 
problems, it is found that the combination of different dilation 
rates can reduce the gridding phenomenon with the rich 
extraction of features from the medical images. Hence, 
Multiple Dilated Convolution Block (MDCB) module is 
constructed using MDCB which can aid for rich extraction of 
features. As depicted in Figure 3, it comprises Convolutional 

layer-1, succeeded by the residual units and attention maps. 
The initial Convolutional layer employs 8 kernel filters sized 
3×3, subsequently followed by batch normalization (BN) and 
an activation layer (LReLU). In contrast, residual units 2 and 
3 incorporate a convolutional block succeeded by an identity 
block. The proposed study adopts residual units to address the 
issue of gradient vanishing. The design of the identity block 
mirrors that of the convolutional block. Finally, a Max-
Average pooling (Average Pooling) layer transforms 2D 
feature maps into 1D feature maps. 

Figure 3. Multi dilated residual convolutional network for an 
effective segmentation 

3.4 Segmentation model 

The core segmentation model which depends on the U-Net 
architecture depicted in Figure 4. This architecture can be seen 
as the extension of U-Net and combined it with the designed 
module and networks. The ED-SwinNets++ consist of four 
parts: (a) feature extraction, (b) modified Capsule, (c) 
embedded encoder (Capsule-Encoder) and (d) Decoder (DCL-
Decoder), skip connections up-sampling and down-sampling 
blocks. A significant benefit of the suggested framework lies 
in its capacity to extract intricate underlying characteristics 
and enhance the U-nets' expressive efficacy. Integrating the 
convolutional attention module can additionally enhance the 
encoders' proficiency in capturing pertinent contextual 
features while suppressing irrelevant ones. Conversely, the 
utilization of DCL within decoders will merge low-level 
features with high-level ones, thereby augmenting 
segmentation performance without any overlap. 

Figure 4. Multi dilated convolutional layers based capsule 
networks 

3.5 Feature extraction process 

The primary role of the feature extraction module revolves 
around transforming individual input images (I) into high-
dimensional tensors (T) with dimensions represented as  
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𝑇𝑇𝑇𝑇 ∈ 𝑅𝑅𝑅𝑅/4 × 𝐵𝐵/4 ×
𝐶𝐶
4

(6) 

where L, B, and C denote the height, width, and sequence 
length of each input patch, respectively. In contrast to other 
works, the proposed layer is constructed with four dilated 
consecutive convolutional layers and uses PReLU activation 
functions in place of ReLU. Also, layer normalization is 
adopted for each layer. The addition of the PReLU activation 
function enables the proposed network to achieve high 
accuracy in the spatial extraction of features with less 
computational overhead. 

3.6 Encoder design 

Figure 5 shows the encoder–decoder design based on the 
USAT-Nets++. The extracted characteristics are inputted into 
the suggested encoder, comprising four phases, with each 
phase housing a proposed capsule network alongside down-
sampling. As the network progresses deeper, the quantity of 
characteristics will be diminished to generate a hierarchical 
representation. Within the initial three phases, the inputted 
characteristics will undergo a concatenation process to lower 
feature resolution and enhance dimensionality following the 
transformations of the proposed networks and the down-
sampling network. 

Figure 5. Encoder-decoder architecture for image 
segmentation 

3.7 Decoder design 

The decoder primarily comprises three phases. Unlike prior 
iterations of the U-net model, the suggested decoder integrates 
the novel transformer block before executing up-sampling and 
incorporating skip connections. More precisely, the encoder's 
output serves as the decoder's input. Within each decoder 
stage, the input characteristics undergo a 2x up-sampling, 
subsequently merging with skip connection feature maps from 
the corresponding encoder stage before being directed to the 
proposed MDCB layers. 

After completing the aforementioned three stages, we 
obtain the output with a resolution of L/4 × H/4. Utilizing a 4× 
up-sampling operator directly would result in the loss of 
numerous shallow features. Hence, we opt for down-sampling 
the input image by amalgamating two blocks to acquire low-

level features with resolutions of L×B and L/2×B/2. Each 
block comprises a 3×3 convolutional layer, a group 
normalization layer, and a PReLU layer consecutively. These 
output features are then utilized to derive the final mask 
predictions via skip connections. Following a methodology 
akin to U-Net, skip connections are leveraged to amalgamate 
multiscale features from the encoder with up-sampled features 
from the decoder. 

3.8 Feature concatenation layer 

After gathering the attributes from the dual-branch encoder-
decoder, a feature concatenation layer (FCL) is utilized to 
concatenate the multi-scale features. To perform the 
concatenation operation in an accurate manner, a transformer 
block is constructed by utilizing the MHCSAM to facilitate 
productive communication among the various hierarchical 
characteristics to form the segmented image. In this process, 
tokens are generated from the features formed, and then 
convolutional self-attention maps are computed for each 
token, reshaped by another layer. In these computations, only 
two layers of CSAM are needed, which means computational 
complexity is significantly reduced compared to the 
conventional straightforward self-attention maps. Then, the 
output concatenated maps are calculated as follows: 

𝐺𝐺𝑛𝑛′′ = 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐹𝐹𝐹𝐹𝑠𝑠𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇(𝐺𝐺𝐺𝐺𝑃𝑃𝑅𝑅�𝐺𝐺′(𝑇𝑇)�)) (7) 

𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [𝐺𝐺1′′,𝐺𝐺2′′,𝐺𝐺𝑛𝑛′′] (8) 

where, 𝐺𝐺1′′ is the tokens created from the feature maps, which 
represents the total global abstract information from every 
features. 

For extracting the global features, Flatten and Global 
Average Pooling layers (GAPL) are used and fed to 
transformers for calculating the concatenated features. Hence 
the proposed model facilitates proficient amalgamation of 
features across multiple scales, consequently leading to 
enhanced segmentation efficacy. 

4. IMPLEMENTATION DETAILS

The network framework suggested in this investigation was
constructed utilizing Keras, with TensorFlow serving as the 
backend. Table 1 delineates the hyperparameters employed in 
the model's training process. 

Table 1. Training parameters for the proposed algorithm [1] 

Sl. No. Hyperparameters Used Specifications 
1 Initial learning rate 0.001 
2 No of Epochs used 150 
3 Batch size 30 
4 Optimizer ADAM 
5 Momentum 0.12 

During the training phase, an early termination technique 
was employed to halt the training prematurely, mitigating the 
risk of overfitting. Diverse augmented images were utilized to 
enrich the training regimen. The entire algorithm underwent 
experimentation on a personal computer workstation equipped 
with 16 gigabytes of RAM, a 2-terabyte solid-state drive, an 
Intel i7 processor, an NVIDIA GeForce RTX graphics card, 
and a 3.4 gigahertz operating frequency. And used Python, 
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TensorFlow software. 

4.1 Evaluation metrics 

To evaluate the efficiency of the implemented algorithm, 
DICE, IoU, non-biased accuracy, precision, and F1-score are 
utilized. Table 2 presents the mathematical formulae for 
computing these metrics. 

Table 2. Mathematical expressions for calculating the 
segmentation metrics [2] 

Sl. No Performance Metrics Expression 

1 DICE (DSC) 2(|𝑆𝑆 ∩ 𝑇𝑇|)
/(|𝑆𝑆| + |𝑇𝑇|) 

2 IOU (𝑆𝑆 ∩ 𝑇𝑇)/𝑆𝑆 ∪ 𝑇𝑇 

3 Peak-to-Signal Noise Ratio 
(PSNR) |𝑆𝑆 ∩ 𝑇𝑇|/𝑆𝑆 

4 SSIM 𝑆𝑆 ∩ 𝑇𝑇/|𝑆𝑆| 

In this context, S signifies the authentic data, while T 
denotes the output from the model's predictions. When 
considering DSC and IoU, the spectrum extends from 0 to 1, 
where 0 indicates no intersection and 1 signifies flawless 
segmentation. Higher values in these metrics indicate a greater 
degree of overlap between the model's predictions and the 
ground truth, reflecting increased similarity and improved 
segmentation. 

The paper employs the early stopping technique to tackle 
the problem of overfitting in the network and uplift its 
generalization capability. This approach enables the 
termination of the network training process when there is no 
observable enhancement in the validation performance for N 
consecutive instances, thereby mitigating overfitting and 
enhancing generalization. 

4.2 Result analysis 

In this section, the proposed model was compared with the 
alternate advanced deep learning models in phase of 
performance. In this evaluation, advanced deep learning 
structures such as Resnets [28], U-Nets [29], EfficiNets + 
DenseNets [30], ShuffleNets [31], EfficeiNets + ShuffleNets 
[32], and DE-ResNets [33] are utilized for comparison. It's 
important to note that every model underwent training under 
identical experimental conditions, utilizing datasets [34] 
prepared and metrics specified in the Table 3 for examination 
and comparison. The trained models underwent validation and 
assessment using test data. Across all scenarios, datasets were 
partitioned into 80% for training and 20% for testing. 

Figure 6 shows the segmentation results for sample thermal 

images, comparing the ground truth with the predicted outputs. 
It illustrates the model's accuracy in identifying key features 
in the images. 

Table 3. Mathematical expressions for the performance 
metrics’ calculation [17] 

Sl. No. Performance Metrics Mathematical 
Expression 

1 Accuracy 
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇
2 Recall 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
×100 

3 Specificity 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃
4 Precision 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

5 F1-Score 2 ×
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑠𝑠𝑇𝑇𝑇𝑇 ∗ 𝑅𝑅𝑇𝑇𝑃𝑃𝑠𝑠𝐹𝐹𝐹𝐹
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑇𝑇𝑃𝑃𝑠𝑠𝐹𝐹𝐹𝐹

Note: TP is True Positive Values, TN is True Negative Values, FP is False 
Positive and FN is False negative values 

Figure 6. Segmentation outcomes for the sample thermal 
images with the ground truth and predicted outputs 

4.3 Discussion 

Tables 4-7 display a comparative examination of the 
average results generated by various algorithms utilizing LiTS 
datasets generated in Section 3.1.  

Table 4. Average performance metrics of the state-of-the-art methods for thermal image segmentation process at testing phase 

Algorithms Performance Metrics 
PSNR (dB) SSIM DICE IoU 

ResNets 32.5 0.74 0.73 0.6 
U-Nets 30.45 0.72 0.82 0.57 

EfficientNets+DenseNets 30.4 0.70 0.84 0.62 
ShuffleNets 30.4 0.75 0.87 0.65 

EfficientNets+ShuffleNets 32.5 0.79 0.86 0.75 
DE-ResNets 33.56 0.84 0.89 0.79 

Proposed Model (Dilated Residual Capsule Network) 35.02 0.91 0.92 0.95 
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Table 5. Average performance metrics of the state-of-the-art methods for thermal image segmentation process at validation phase 
 

Algorithms Performance Metrics 
PSNR (dB) SSIM DICE IoU 

ResNets 32.5 0.74 0.73 0.6 
U-Nets 30.45 0.72 0.82 0.57 

EfficientNets + DenseNets 30.4 0.70 0.84 0.62 
ShuffleNets 30.4 0.75 0.87 0.65 

EfficientNets + ShuffleNets 32.5 0.79 0.86 0.75 
DE-ResNets 33.56 0.84 0.89 0.79 

Proposed Model (Dilated Residual Capsule Network) 35.02 0.91 0.92 0.95 
 

Table 6. Average performance metrics of the cutting-edge techniques for the thermal image segmentation at testing phase 
 

Algorithms Performance Metrics 
Accuracy Precision Recall F1-Measure 

ResNets 0.84 0.84 0.83 0.67 
U-Nets 0.80 0.78 0.82 0.54 

EfficientNets + DenseNets 0.89 0.81 0.85 0.5 
ShuffleNets 0.87 0.82 0.85 0.56 

EfficientNets + ShuffleNets 0.86 0.84 0.87 0.52 
DE-ResNets 0.95 0.87 0.88 0.73 

Proposed Model (Dilated Residual Capsule Network) 31.8 0.93 0.92 0.9 
 

Table 7. Average performance metrics of the cutting-edge techniques for the thermal image segmentation at validation phase 
 

Algorithms Performance Metrics 
Accuracy Precision Recall F1-Measure 

ResNets 0.84 0.84 0.83 0.67 
U-Nets 0.80 0.78 0.82 0.54 

EfficientNets + DenseNets 0.89 0.81 0.85 0.5 
ShuffleNets 0.87 0.82 0.85 0.56 

EfficientNets + ShuffleNets 0.86 0.84 0.87 0.52 
DE-ResNets 0.95 0.87 0.88 0.73 

Proposed Model (Dilated Residual Capsule Network) 31.8 0.93 0.92 0.9 
 

The suggested methodology's visual representations make it 
clear that it has surpassed other preexisting models by 
achieving superior segmentation performance. From the 
analysis, proposed model and DE-ResNets has produced the 
similar performances and other models also produced the 
considerable better performance in testing scenario. The DICE 
metric of the suggested methodology demonstrates noticeable 
findings of 0.92 and average segmentation performance is 
found to be 0.94 which is far better than the other models such 
as Resnets, U-Nets, EfficiNets + DenseNets, ShuffleNets, 
EfficeiNets + ShuffleNets and DE-ResNets. Obviously, 
integration of MHCSAM layer in suggested Swin Transformer 
architecture has further enhanced the generation of sharper and 
well-defined images of liver tumours by injecting additional 
resources. From the Table 6 shows the different computational 
evaluation for the various deep learning methodologies used 
for segmenting the liver tumour images using thermal images. 
It is observed from the Table 6, it is evident that the suggested 
methodology consumes only 12.0 secs in segmenting the 
thermal images and it is due to that the suggested technique 
contains of MHCSAM that demonstrated its indispensable 
function in attaining optimal segmentation efficacy 20% 
higher than the existing model. 

 
4.4 Ablation experiments 
 

In this part, ablation experimentation is carried out to 
demonstrate the efficacy of each element within the proposed 
Swin framework, we undertake ablation investigations to 

assess the impact of diverse factors on our model. 
Additionally, we conduct experiments on four different 
iterations of the proposed architecture to gauge their respective 
influences. Table 8 presents a comparative analysis of the 
computational costs associated with various deep learning 
algorithms for segmenting thermal images 
 

Table 8. Computational cost comparison for the deep 
learning algorithms in segmenting thermal images 

 
Deep Learning Algorithms Computational Cost (MB) 

ResNets 23 
U-Nets 20 

EfficientNets + DenseNets 23 
ShuffleNets 19 

EfficientNets + ShuffleNets 18.5 
DE-ResNets 14.5 

Proposed Model (Dilated 
Residual Capsule Network) 12.0 

 
Table 9 shows the ablation analysis of the different variants 

of deep learning techniques in which the suggested 
methodology yields the superior performance beyond all the 
variants. The suggested framework has demonstrated superior 
mDICE and mIoU metrics compared to alternative 
architectures. In general, integration of CSAM in Swin 
Transformer block and inclusion of the feature concatenation 
layer has shown the promising results in achieving the 
segmentation performance. 

 

1781



Table 9. The outcomes of segmentation across various algorithms subsequent to the ablation investigation utilizing the test 
dataset 

Algorithms PSNR SSIM mDSC (%) mIoU (%) 
ResNets 32.5 0.74 0.73 0.6 
U-Nets 30.45 0.72 0.82 0.57 

EfficientNets+DenseNets 30.4 0.70 0.84 0.62 
ShuffleNets 30.4 0.75 0.87 0.65 

EfficientNets+ShuffleNets 32.5 0.79 0.86 0.75 
DE-ResNets 33.56 0.84 0.89 0.79 

Proposed Model (Dilated Residual Capsule Network) 35.02 0.91 0.92 0.95 

5. CONCLUSIONS

In this work, an encoder-decoder-based U-shaped Swin
Transformer framework is proposed for thermal liver CT 
image segmentation. The proposed model is based on the 
hierarchical representation of features. The dual-branch Swin 
transformer (encoder-decoder) is also innovatively added to 
extract the multi-scale features, in which the multi-headed 
convolutional self-attention layers are replaced by traditional 
self-attention layers. This reduces the complexity and also 
extracts the multi-scale features from the images. Moreover, a 
feature concatenation layer is embedded as the fusion module 
in the proposed architecture to build the long-range 
dependencies, allowing features to be effectively concatenated 
for attaining a superior segmentation mechanism. Extensive 
experiments on the thermogram image datasets are conducted, 
and performance metrics such as DICE, PSNR, SSIM, and IoU 
are measured and evaluated. Results demonstrate that the 
suggested methodology significantly surpassed alternative 
deep learning architectures. As the future scope, the proposed 
model needs its improvisation by designing more lightweight 
transformers and better learning the structural pixel-level 
features for segmenting the thermal images. 
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