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This paper proposes an efficient networked control methodology for high degree-of-

freedom (DOF) robot manipulators, offering detailed yet simplified procedures suitable 

for arm-like industrial robots. The methodology aims to precisely capture the behavior of 

contemporary industrial robotic manipulators across varied and challenging environments, 

despite their high DOF and complex characteristics. The automated framework, rooted in 

the Newton-Euler formulation, is assessed using the ABB IRB140 robot manipulator. 

Notably, the paper introduces a three phases-based novel approach to robot networked 

control. The integration of the network into the closed-loop control system of the 

manipulator is presented in three sequential stages, outlining the key factors in choosing 

the appropriate network protocol and reducing the negative impacts of the network on the 

feedback control system. The analysis identifies PROFINET as an effective network 

choice for networked control systems (NCS) applications, especially advantageous for 

highly dynamic manipulators with complex models. Furthermore, an adaptive robust 

proportional derivative control law incorporating gravity compensation is introduced, 

accompanied by a mathematical proof demonstrating the global asymptotic stability for 

position control. An extensive simulation process conducted using TrueTime toolbox 

integrated into Matlab validates the asymptotic stability, proving promising performances 

in high-DOF robot manipulators networked control. 
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1. INTRODUCTION

Networked Control Systems (NCS) are a cutting-edge 

method of control engineering that improves control system 

functionality and performance by utilizing communication 

networks. Sensors, actuators, and controllers have usually 

been connected using specialized point-to-point wiring in 

control systems. But with the development of modern 

communication technologies, NCS have become a viable 

substitute, bringing with them a host of benefits and fresh 

opportunities for a variety of uses. 

In NCS, the different components of the control loop, such 

as sensors, actuators, and controllers, are interconnected 

through a communication network. The control signals, sensor 

measurements, and other control-related data are exchanged 

over this network, enabling distributed and remote control of 

the system. One of the key advantages of NCS is their 

flexibility and scalability [1]. Since the components are 

connected through a network, they can be geographically 

dispersed, allowing for distributed control and monitoring of 

large and complex systems. This decentralization can lead to 

reduced wiring costs and increased ease of maintenance. 

However, the introduction of a communication network also 

introduces new challenges. Delay, packet loss, and network 

jitter can adversely impact the performance of the control 

system. These network-induced phenomena may lead to 

instability, reduced control accuracy, and degraded system 

response [2-5]. Therefore, designing robust control strategies 

that can account for such network imperfections is essential in 

NCS. 

In robotics, a robot manipulator is an industrial robot or 

robotic arm engineered to carry out specific tasks like 

assembly, welding, or material handling in a controlled 

environment. Networked control integrates these robotic 

manipulators with a network infrastructure, allowing for 

remote control, monitoring, and coordination of multiple 

robots from a central location. This decentralization offers 

greater flexibility and scalability in robotic systems. For 

instance, different modules of a robot, such as its arm, gripper, 

and locomotion, can each have their own controllers that 

communicate over the network. Additionally, robot 

manipulators often need real-time communication between 

components to ensure timely and accurate responses. High-

speed communication networks, like Ethernet, are used to 

transmit sensor data, control commands, and feedback 

between the robot's subsystems. Furthermore, NCS allows for 

the remote control and monitoring of robots. With proper 

security measures, operators can control robots from a distance, 

making it possible to operate robots in hazardous or hard-to-

reach environments [6]. 

In recent years several approaches have been developed for 

non-networked control of robot manipulators having a high 
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DOF. Adaptive and robust control methods remain considered 

as the most solicited ones due to the high complexity of 

dynamics and nonlinearity of such systems. 

In adaptive control, neural networks (NNs) excel at 

managing complex, nonlinear systems with uncertain 

dynamics, making them ideal for scenarios where precise 

modeling is challenging. Their application in robot 

manipulator control has been widely demonstrated as found in 

the studies [6-8], but they often require extensive training data 

and must address safety and ethical concerns, especially in 

human-robot interactions [9]. Adaptive fuzzy control, another 

effective method, is frequently combined with techniques like 

reinforcement learning [10], predictive model control [11], 

and NNs [12] for enhanced performance. Feedback adaptive 

control is also suitable for managing uncertainties and 

dynamic changes in robotic systems [13]. However, 

challenges such as stability analysis, parameter tuning, and 

adaptive law design must be addressed to ensure reliable and 

effective implementation [14]. 

Robust control techniques have become critical for ensuring 

stable and accurate operation of robot manipulators in the 

presence of uncertainties and disturbances, enhancing their 

reliability across diverse tasks. Sliding mode control (SMC) is 

a highly effective robust control method for handling 

modeling inaccuracies, using a sliding surface to constrain the 

system’s state and maintain control under uncertainty [15]. 

However, SMC can pose challenges such as high control effort, 

making it less suitable for systems with power or actuation 

constraints, and chattering, which requires mitigation 

strategies [16]. Additionally, PID controllers with robust 

tuning and H-infinity methods are widely utilized in robot 

manipulator control, demonstrating their effectiveness in 

recent studies [17]. 

In networked control of high-DOF robot manipulators, 

adaptive and robust control methods are often considered. 

Adding to the complex nature of dynamics and uncertainties 

of the system, the network-induced effects introduced in the 

closed-loop can significantly impact the performance of any 

control strategy. In the last few years, few research papers 

have been published to cope with these drawbacks. In the 

study [18], a discrete second order sliding mode approach for 

networked control is proposed, the authors tested the scheme 

on a COMAU SMART3-S2 industrial robot manipulator, 

exposing that the chattering effect can be reduced regardless 

of noise and mechanical nonlinearities. More recently, another 

strategy using SMC for robot manipulators is discussed in the 

study [19]. A dynamic triggering process is included to lower 

the number of control updates in which the controller 

parameters are remodeled in an event-based framework to 

ensure the stability of the system. A networked control method 

based on robust H-infinity synthesis is studied [20], taking into 

account the packet drop-out constraint. According to results, 

this approach requires a solid understanding of 

communication theory. The controller design must be tailored 

to the specific network characteristics and the requirements of 

the control application to achieve optimal performance and 

stability in the presence of communication constraints. 

Additionally, a digital control unit design based on the 

Embedded Model Control (EMC) methodology is presented 

[21], targeting robotic applications with varying sampling 

times and asynchronous command execution. The EMC 

method enables real-time estimation and cancellation of 

disturbances, errors, and nonlinearities, efficiently managing 

measurement delays and asynchronicity of the networked 

framework. In the study [22], a nonlinear multirate controller 

for robotic manipulators operating under communication 

constraints and external disturbances is presented. Using an 

estimated discrete-time model, the controller ensures input-to-

state stability for single-rate and multirate sampling. A 

Lyapunov-based method is employed to reject disturbances, 

enabling accurate trajectory tracking without requiring 

detailed knowledge of the robot's nonlinear dynamics. 

The proposed methodology in this paper advances the state-

of-the-art in modeling and control of high-DOF industrial 

robot manipulators through several key contributions. Unlike 

traditional modeling techniques, which often struggle to 

balance complexity and computational efficiency, the 

presented approach streamlines the modeling process for 

modern manipulators. By leveraging a Newton-Euler 

formulation, this methodology provides a more precise yet 

computationally manageable representation of the 

manipulator's dynamics, even in challenging operational 

environments. More notably, the proposed framework 

incorporates the integration of networked control, utilizing the 

PROFINET protocol to address network-induced delays. This 

integration ensures the methodology's relevance to 

contemporary industrial automation scenarios, where network 

effects significantly influence performance. Additionally, the 

paper introduces an adaptive robust PD control law with 

gravity compensation, explicitly designed to handle the 

uncertainties and nonlinearities inherent in high-DOF systems. 

Unlike traditional control laws, this approach is 

mathematically proven to guarantee global asymptotic 

stability for position control via Lyapunov stability analysis. 

The application of this framework to the ABB IRB140 

manipulator demonstrates its practical feasibility and 

robustness, showcasing improvements in both control 

performance and adaptability. Figure 1 summarizes the 

proposed methodology. 

 

 
 

Figure 1. Block diagram of the automated framework 
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The rest of the paper is structured as follows: Section 2 

presents the modeling process applied to the chosen case study 

of the IRB 140 robot manipulator. Section 3 describes the 

procedure of system order reduction for the resulting model. 

Section 4 details how the networked control is designed 

through PROFINET communication and ACO-based adaptive 

PD control law with time delay constraints. Section 5 

demonstrates the effectiveness of the proposed methodology 

with real data simulations. Finally, conclusions are carried out 

in Section 6. 

 

 

2. ROBOT MANIPULATOR MODELING 

 

In numerous cases, the behavior of physical systems could 

find clearer expression through analytical models. When it 

comes to robot modeling and analysis, the focal points 

encompass both its kinematics and dynamics. In this section, 

the kinematic and dynamic models for the IRB140, a 6 DOF 

robot manipulator, are formulated, and its workspace is 

investigated. These models enable precise manipulation of the 

arm, facilitating control over its movements to attain any 

viable position and orientation within an unstructured setting. 

Figure 2 shows the realistic representation of the IRB140. 

 

 
 

Figure 2. The IRB 140 robot manipulator [23] 

 

2.1 Modeling set up 

 

The industrial robot manipulator named IRB 140 has been 

manufactured by ABB. Their website [23] provides 

information about the manipulator, along with articles and 

videos showcasing experiments and the manipulator's 

application in various companies. Figure 3 offers a distinct 

perspective of the manipulator, illustrating its degrees of 

freedom clearly. 

 

 
 

Figure 3. The IRB 140 degrees of freedom [23, 24] 

The IRB 140 manipulator consists of six links (excluding 

the base) and six revolute joints, which are rotary joints 

controlled by AC motors and depending on an angle θ, thereby 

resulting in six degrees of freedom. The initial three DOF are 

situated within the arm, facilitating the determination of the 

robot's position. Subsequently, the remaining three DOF are 

situated within the end effectors, enabling the provision of 

orientation. 

Upon closer examination of the robot, it becomes evident 

that there is some flexibility in how to approach the modeling 

of joint 4. In fact, opting to model the final three joints might 

not be the optimal choice due to the nonzero length and mass 

of the intermediary links (link 4 and 5). To address this, a 

practical approach is to reinterpret the manipulator 

configuration, aligning the center point of joint 3 and 4, as well 

as the center point of joint 5 and 6. Consequently, link 3 and 

link 5 are then depicted with zero length and mass to 

accommodate this arrangement. It is important to emphasize 

the necessity of reducing the computational complexity of the 

dynamic model without compromising its accuracy for 

industrial applications. By aligning these joint centers, the 

model leverages the geometric symmetry of the manipulator 

to simplify the derivation of kinematic and dynamic equations, 

particularly in high-DOF systems. This approach also aids in 

minimizing redundancy in the parameter estimation process, 

making the model more computationally efficient while 

maintaining fidelity to the real-world behavior of the 

manipulator. Figure 4 presents a symbolic depiction of the 

manipulator according to this interpretation, illustrating the 

attachment of frames to the links.  

 

 
 

Figure 4. The IRB 140 symbolic representation 

 

Every rotation matrix can be computed as the outcome of 

combining elemental rotations around the z-axis and the x-axis. 

These fundamental rotation matrices are expressed in a general 

form as follows: 

 

𝑅𝑧,𝜃 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

] , 𝑅𝑥,𝜃

= [

1 0 0
0 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

(1) 

 

Examining Figure 4 makes it relatively simple to compute 

the rotation matrices for the manipulator. This can be achieved 

by plugging in the values of q and the fixed rotations for θ. It's 
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important to recognize the simplifications arising from the fact 

that all constant rotations are in multiples of π/2. The outcome 

is as follows: 

 

𝑅1
0 = [

𝑐𝑜𝑠(𝑞1) 0 −𝑠𝑖𝑛(𝑞1)

𝑠𝑖𝑛(𝑞1) 0 𝑐𝑜𝑠(𝑞1)
0 −1 0

] (2) 

 

𝑅2
1 =

[
 
 
 
 𝑐𝑜𝑠(𝑞2 −

𝜋

2
) −𝑠𝑖𝑛(𝑞2 −

𝜋

2
) 0

𝑠𝑖𝑛(𝑞2 −
𝜋

2
) 𝑐𝑜𝑠(𝑞2 −

𝜋

2
) 0

0 0 1]
 
 
 
 

 (3) 

 

𝑅3
2 = [

𝑐𝑜𝑠(𝑞3) 0 −𝑠𝑖𝑛(𝑞3)

𝑠𝑖𝑛(𝑞3) 0 𝑐𝑜𝑠(𝑞3)
0 −1 0

] (4) 

 

𝑅4
3 = [

𝑐𝑜𝑠(𝑞4) 0 𝑠𝑖𝑛(𝑞4)

𝑠𝑖𝑛(𝑞4) 0 −𝑐𝑜𝑠(𝑞4)
0 −1 0

] (5) 

 

𝑅5
4 =

[
 
 
 
 𝑐𝑜𝑠(𝑞5 +

𝜋

2
) 0 𝑠𝑖𝑛(𝑞5 −

𝜋

2
)

𝑠𝑖𝑛(𝑞5 +
𝜋

2
) 0 −𝑐𝑜𝑠(𝑞5 −

𝜋

2
)

0 1 0 ]
 
 
 
 

 (6) 

 

𝑅6
5 = [

𝑐𝑜𝑠(𝑞6) −𝑠𝑖𝑛(𝑞6) 0

𝑠𝑖𝑛(𝑞6) 𝑐𝑜𝑠(𝑞6) 0
0 0 1

] (7) 

 

2.2 Parameters estimation 

 

This section outlines the process of estimating the dynamic 

parameters. It's noted that these estimations are challenging 

due to the constraints of limited available information. 

However, they are aimed at achieving a proximity to the actual 

unknown parameters, allowing simulations to exhibit behavior 

somewhat consistent with that of an ideal model. For sure, 

estimating the inertia parameters represents the most 

challenging task. The intricate shapes of the links combined 

with the scarcity of available data significantly complicate the 

process of deriving accurate parameters without resorting to 

some form of identification. As a justifiable simplification, the 

links are conceptualized as cylindrical structures with uniform 

mass distribution, wherein the center of mass for each link 

corresponds to the geometric center of the cylinder. Figure 5 

serves as an illustration of how this simplification can be 

implemented, using link 2 as an example. 

 

 
 

Figure 5. Simplified modeling example of link 2 

The diagram in light blue depicts the rear view of link, with 

the center of mass denoted by the red dot. The inertia tensor 

for this cylinder is demonstrated [25] as: 

 

I=

[
 
 
 
 

1

12
𝑚ℎ2 +

1

4
𝑚𝑟2 0 0

0
1

12
𝑚ℎ2 +

1

4
𝑚𝑟2 0

0 0
1

2
𝑚𝑟2

]
 
 
 
 

 (8) 

 

where, m, r and h represent the mass, the radius and the height 

of the link. The cross products are consistently zero, resulting 

in the inertia tensor adopting a diagonal matrix configuration 

in its principal axis formulation. 

Finding the mass, radius, and height of the cylinders 

involves working within specific limitations. These limitations 

dictate that the combined mass should be 97kg. Additionally, 

the cylinders' radius and height must align with the dimensions 

of the manipulator outlined in Figure 4. Similar to the physical 

links, the cylinders will exhibit overlapping due to the non-

central placement of their centers of mass between frames. 

These considerations were made under the assumption of 

uniform mass distribution. 

According to the study [24], it is reasonable to assume that 

the mass density of each link is approximately equal. The links 

are constructed with a metal shell containing internal 

components like motors, gearboxes, cables, and belts. 

Additionally, a significant portion of the total volume is 

simply air between these components. Through a trial-and-

error approach, the masses, radius, and heights were 

eventually determined to match the physical shape of the 

manipulator using a uniform mass density. 

 

2.3 Dynamic modeling 

 

Dynamic modeling is crucial for understanding how the 

robot manipulator responds to external forces, such as gravity, 

friction, or applied loads. It involves deriving equations of 

motion that govern the robot's behavior, accounting for its 

mass distribution, inertial properties, and joint configurations 

[26]. The proposed process based on Newton-Euler Method 

relies on Newton's laws of motion and recursive algorithms to 

calculate the forces and torques acting on each link. It involves 

propagating the forces and torques from the end-effector back 

to the base of the robot, taking into account the kinematics of 

the robot. 

 

2.3.1 Forward recursion 

The process of forward recursion delineates the progression 

of linear and angular motion through the series of links, 

commencing from link 1 and ending at link 6. Within this 

framework, a crucial step involves the determination of 𝑏𝑖 , the 

rotational axis for each joint i as denoted in frame i. Preceding 

the initiation of the recursions, these calculations will be 

promptly executed for all joints, underscoring a significant 

benefit of the Newton-Euler formulation. 

Considering the study [27], angular velocity and 

acceleration can be calculated as follows: 

 

𝜔𝑖 = (𝑅𝑖
𝑖−1)𝑇𝜔𝑖−1+𝑏𝑖�̇�𝑖 (9) 

 

where, 

 

𝑏𝑖= ( 𝑅𝑖
0 )𝑇 𝑅𝑖−1

0   𝑧0 (10) 

z 

x 

r 

h 

y 
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𝒶𝑖 = ( 𝑅𝑖
𝑖−1 )𝑇𝒶𝑖−1 + 𝑏𝑖�̈�𝑖+𝜔𝑖×𝑏𝑖�̇�𝑖 (11) 

 

The equation describing the acceleration of the center of 

mass of link i, as expressed within frame i, transforms into: 

 

αc,i = ( Ri
i−1 )Tαe,i−1+ω̇i×ri−1,ci+ωi×(ωi × ri−1,ci) (12) 

 

To determine the acceleration of the end of the link, 𝑟𝑖−1,𝑐𝑖 

is substituted with 𝑟𝑖−1,𝑖. 

 

αe,i = ( Ri
i−1 )Tαe,i−1+ω̇i×ri−1,i+ωi×(ωi × ri−1,i) (13) 

 

The rotational axis within frame 0 is directly provided as 

follows: 

 

z0=[0 0 1]T (14) 

 

Subsequently, the computation of the rotation axes for the 

joints is as follows: 

 

𝑏1 = (𝑅1
0)𝑇𝑧0 =[0 -1 0]T (15) 

 

𝑏2 = (𝑅2
0)𝑇 𝑅1

0 𝑧0 =[0 0 1]T (16) 
 

𝑏3 = (𝑅3
0)𝑇 𝑅2

0 𝑧0 =[0 -1 0]T (17) 
 

𝑏4 = (𝑅4
0)𝑇 𝑅3

0 𝑧0 =[0 1 0]T (18) 
 

𝑏5 = (𝑅5
0)𝑇 𝑅4

0 𝑧0 =[0 1 0]T (19) 

 

𝑏6 = (𝑅6
0)𝑇 𝑅5

0 𝑧0 =[0 0 1]T (20) 
 

Because of the interrelated nature of kinematics, these 

rotation axes typically become functions of q, akin to the 

rotation matrices. Their behavior is contingent upon the 

specifications of the coordinate frames, thus exerting a direct 

impact on the effectiveness of the Newton-Euler formulation. 

Upon examining the frame definitions in Figure 4, it becomes 

evident that when observing from frame i to frame i-1, the 

angular velocity ωi is unaffected by qi itself; rather, it hinges 

entirely on the rotational axis. As a result, the rotation axes bi  

remain independent of q. 

 

Link 1 

The starting parameters are as follows: 

 

ω0=α0=αc,0=αe,0=0 (21) 

 

According to Eqs. (9-11), angular velocity and acceleration 

are calculated as follows: 

 

𝜔1 = 𝑏1 �̇�1 (22) 

 

𝛼1 = 𝑏1�̈�1 + 𝜔1 × 𝑏1 �̇�1 (23) 

 

According to Eq. (12) and Eq. (13), acceleration of the end 

of the link and acceleration of the center of mass of the link 

are calculated as follows: 

 

αe,1 = ω̇1 × r0,1 + ω1 × (ω1 × r0,1) (24) 

 

αc,1 = ω̇1 × r0,c1 + ω1 × (ω1 × r0,c1) (25) 

 

Link 2 

 

𝜔2 = (𝑅2
1)𝜔1 + 𝑏2 �̇�2 (26) 

 

𝛼2 = (𝑅2
1)𝛼1 + 𝑏2�̈�2 + 𝜔2 × 𝑏2 �̇�2 (27) 

 

𝛼𝑒,2 = (𝑅2
1)𝛼𝑒,1 + �̇�2 × 𝑟1,2 + 𝜔2 × (𝜔2 × 𝑟1,2) (28) 

 
𝛼𝑐,2 = (𝑅2

1)𝛼𝑒,1 + �̇�2 × 𝑟1,𝑐2 + 𝜔2 × (𝜔2 × 𝑟1,𝑐2) (29) 

 

And so on till the last link: 

Link 6 

 

𝜔6 = (𝑅6
5)𝜔5 + 𝑏6 �̇�6 (30) 

 

𝛼6 = (𝑅6
5) 𝛼5 + 𝑏6�̈�6 + 𝜔6 × 𝑏6 �̇�6 (31) 

 

𝛼𝑐,6 = (𝑅5
6)𝛼𝑒,5 + �̇�6 × 𝑟5,𝑐6 + 𝜔6 × (𝜔6 × 𝑟5,𝑐6) (32) 

 

2.3.2 Backward recursion 

The backward recursion computes the forces and joint 

torques that influence the links, starting from the first link and 

concluding at the last one. The primary objective of the 

Newton-Euler formulation is to establish the joint torques, as 

these torques constitute the external inputs to the model. 

Based on the law of action and reaction, and according to 

the study [28] the force balance equation expressed in frame i 

can be stated as: 

 

∑ 𝑓 =

𝑙𝑖𝑛𝑘

𝑚𝑎 (33) 

 

𝑓𝑖 = 𝑅𝑖+1 
𝑖 𝑓𝑖+1 + 𝑚𝑖𝛼𝑐,𝑖 − 𝑚𝑖𝑔𝑖 (34) 

 

This principle also applies to torque, where the equation for 

moment balance can be formulated as follows: 

 

∑ 𝜏 =

𝑙𝑖𝑛𝑘

Iω̇ + ω × Iω (35) 

 

𝜏𝑖=𝑅𝑖+1 
𝑖 𝜏𝑖+𝑖 − 𝑓𝑖×𝑟𝑖−1,𝑐𝑖+(𝑅𝑖+1 

𝑖 𝑓𝑖+1)×𝑟𝑖,𝑐𝑖+𝜔𝑖 ×

(𝐼𝑖𝜔𝑖)+𝐼𝑖𝛼𝑖 
(36) 

 

It's important to observe that the force equation takes into 

account the gravitational vector. This vector varies for each 

link, yet its computation can be readily accomplished using 

rotation matrices, as exemplified in the subsequent recursions. 

The final condition is: 

 

F7=τ7=0 (37) 

 

Link 6 

The gravity vector transforms into: 

 

𝑔6 = (𝑅6
0)𝑇𝑔0 (38) 

 

where, 

 

𝑔0=[0 0-g]T (39) 

 

The force and joint torque applied to the link are determined 

according to Eq. (34) and Eq. (36) as follows: 
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𝑓6 = 𝑚6𝛼𝑐,6 − 𝑚6𝑔6 (40) 

 

𝜏6 = −𝑓6 × 𝑟5,𝑐6+𝜔6 ×(𝐼6𝜔6)+𝐼6𝛼6 (41) 

 

Link 5 

 

𝑔5 = (𝑅5
0)𝑇𝑔0 (42) 

 

𝑓5 = 𝑅6
5 𝑓6 (43) 

 

𝜏5 = 𝑅6
5 𝜏6 − 𝑓5 × 𝑟4,𝑐5+𝜔5 ×(𝐼5𝜔5)+𝐼5𝛼5 (44) 

 

And so on till the first link: 

Link 1 

 

𝑔1 = (𝑅1
0)𝑇𝑔0 (45) 

 

𝑓1 = 𝑅2
1 𝑓1 + 𝑚1𝛼𝑐,1 − 𝑚1𝑔1 (46) 

 

𝜏1 = 𝑅2
1 𝜏2 − 𝑓1 × 𝑟0,𝑐1+𝑅2

1 𝑓2 ×

𝑟1,𝑐1+𝜔1 ×(𝐼1𝜔1)+𝐼1𝛼1 
(47) 

 

The findings in this section are compelling and validate the 

reasons behind the frequent preference for the Newton-Euler 

formulation in manipulators with numerous degrees of 

freedom. The recursive algorithm is straightforward to deploy, 

which minimizes the likelihood of errors during derivation. 

Anomalies in the model's behavior generally trace back to the 

setup stages, encompassing aspects like kinematic chain 

configuration, frame definitions, rotation matrices, vector 

delineations, and inertia tensors. 

It's important to acknowledge that even though link 3 and 5 

possess negligible length and mass, they must still be taken 

into account during the recursions. The Newton-Euler 

formulation is established on a kinematic chain featuring 

single degree-of-freedom joints, ensuring that there are always 

'n' steps in each recursion for 'n' degrees of freedom. 

Nevertheless, specific terms within the expressions for link 3 

and 5 are nullified. 

Another intriguing observation within the Newton-Euler 

formulation emerges from the terminal joint torque vectors 

during the reverse recursion process. In this kinematic chain, 

all joints are characterized by having a solitary degree of 

freedom. Consequently, the torques exerted are scalar values 

revolving around the rotation axes calculated through Eqs. 

(15-20). The remaining two components of the torque vectors 

can be elucidated as follows: Whenever torque is applied to 

any of the joints, it inevitably generates torque components 

around the other axes of the joints due to the interconnected 

kinematics within the system. While these torque components 

are not integrated into the dynamic model because they don't 

induce motion (and thus don't impact q), they still offer 

valuable insights into the manipulator's physical dynamics. If 

the joints in the manipulator aren't constructed to endure these 

specific torque magnitudes, there's a risk of joint failure. 

Though the application of the Newton-Euler formulation 

may appear to be a relatively straightforward process, it is 

essential to emphasize the inherent complexity within the 

resulting model. The fundamental principle behind recursion 

is that solving a larger problem is dependent on resolving 

smaller instances of the same problem. The backward 

recursion for link 1 is built upon the backward recursion for 

link 2, and so forth. Consequently, the backward recursion for 

link 1 is basically influenced by all the preceding 11 steps of 

the forward recursion for the same link. This connection leads 

to the computation of τ1 resulting in a significantly extensive 

vector. 

 

 

3. MODEL REDUCTION 

 

System order reduction in robotics is crucial for achieving 

responsive and stable control of robotic systems, especially in 

applications where low-latency control is essential. It involves 

simplifying the mathematical or computational representation 

of the robot's dynamics or control system. This reduction can 

help make the robot control algorithms more efficient, reduce 

computational complexity, and improve real-time control 

capabilities. 

In high-DOF robot manipulators, it is very likely to end up 

with a high-order dynamic model that accurately describes the 

robot's behavior, considering various physical parameters and 

constraints. However, in practical control applications, it may 

be necessary to reduce this model's order to make it suitable 

for real-time control. Techniques such as simplifying the 

model, approximating it with lower-order representations, or 

applying model reduction methods can be used to achieve this. 

This allows for efficient control of the robot's movements 

while maintaining acceptable accuracy and performance. 

As commonly known in literature, the dynamic model can 

be expressed in matrix form as follows: 

 

M(q)�̈�+C(q,�̇�) �̇�+G (q)=𝑢 (48) 

 

In order to simulate the system's behavior, it is essential to 

represent it in the nonlinear first-order form: 

 

�̇� = 𝑓(𝑥, 𝑢) (49) 

 

where, x represents the state vector, and u denotes the torque 

vector. 

To initiate the process, the terms in Eq. (48) are restructured 

as follows: 

 

�̈� = 𝑀−1(−𝐶�̇� − 𝑔 + 𝑢) (50) 

 

In cases where we make the assumption that the inertia 

matrix M is capable of being inverted, it serves as the primary 

determinant in the expression for kinetic energy, denoted as 
1

2
�̇�𝑇M(q) �̇�. It is important to note that kinetic energy remains 

consistently nonnegative, reaching a value of zero only when 

all joint velocities are null. Consequently, the invertibility of 

M is established, confirming the validity of Eq. (50). 

The second stage involves transforming the system from 6 

second-order equations into 12 first-order equations. This is 

based on the robot manipulator's 6 DOF, with two dominant 

states (position and velocity) per joint, capturing the core 

rigid-body dynamics. Modal analysis showed that these states 

account for over 95% of the system’s energy, with higher-

order modes contributing minimally to operational 

performance. This is achieved by: 

 

x1=q1,          x2 = ẋ1 = q̇1 (51) 

 

x3=q2,           x4 = ẋ3 = q̇2 (52) 

 

x11=q6,          x12 = ẋ11 = q̇6 (53) 
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The dynamic system can be represented in the format 

outlined in Eq. (49) as: 

 

ẋ1 = x2 (54) 

 

�̇�2 = 𝑓2(𝑥, 𝑢) (55) 

 

�̇�3 = 𝑥4 (56) 

 

�̇�4 = 𝑓4(𝑥, 𝑢) (57) 

 

�̇�5 = 𝑥6 (58) 

 

�̇�6 = 𝑓6(𝑥, 𝑢) (59) 

 

�̇�7 = 𝑥8 (60) 

 

�̇�8 = 𝑓8(𝑥, 𝑢) (61) 

 

�̇�9 = 𝑥10 (62) 

 

�̇�10 = 𝑓10(𝑥, 𝑢) (63) 

 

�̇�11 = 𝑥12 (64) 

 

�̇�12 = 𝑓12(𝑥, 𝑢) (65) 

 

where, 𝑓2𝑖(𝑥, 𝑢) represents the expression of q in Eq. (50), for 

i values ranging from 1 to 6, we can substitute x to obtain q 

and �̇�. 

 

 

4. ROBOT MANIPULATOR NETWORKED CONTROL 

 

As introduced in the first section, classical control theory 

operates under the assumption that communication between 

sensors, actuators, and controllers is perfect, where data is 

transmitted and processed instantaneously and with infinite 

accuracy. However, in reality, digital communication (and 

computation) introduces some delay and limited precision due 

to physical constraints. Despite this, this assumption remains 

valid when the hardware used for control is significantly faster 

than the system dynamics. However, the assumption of 

sufficiently fast hardware can be (extremely) expensive to 

accommodate in practice, and in some situations, this 

assumption simply cannot be met. An emerging solution is to 

develop and use NCS theory to be able to specify under what 

conditions slower, less expensive, hardware can be used 

reliably in the sense of still guaranteeing proper closed-loop 

behavior.  

This section presents results which work towards making 

this option possible by contributing towards the development 

of NCS theory for controlling high-DOF robot manipulators 

such as the presented case study the IRB 140. 

With the purpose of achieving this objective, the suggested 

approach consists of three sequential phases: 

 

1) Initially, it's crucial to develop an effective control 

algorithm that can enable the desired movements of the 

end-effector while maintaining both safety and 

operational efficiency. Given the complexity of the 

resulting model, it becomes evident that robust and 

adaptive control approaches are indispensable. The 

chosen control method may differ according to the 

specific application depending on the robot’s 

kinematics and dynamics. 

2) The following step consists of integrating the network 

communication in the feedback control system. The 

process must be done with careful consideration of 

various factors, including: network delay, jitter 

(variability in delay), packet loss probability, 

bandwidth, network topology etc. Moreover, the 

choosing of the network type may also differ depending 

on the physical environment where the network will 

operate, the network size and scalability, and also cost 

and budget constraints. 

3) The final phase involves minimizing the impact of 

network delay and packet dropout in the closed-loop 

feedback system. Reducing network delay in the 

control system typically requires a combination of 

hardware, software, and network infrastructure 

optimizations. The specific approach will depend on 

the application and the criticality of real-time control in 

the system. It's essential to assess the requirements and 

constraints of the control system and custom the 

solutions accordingly. On the other hand, reducing 

packet dropout in a control system often requires a 

combination of network design, communication 

protocols, and error-handling mechanisms. Regular 

monitoring and maintenance are also keys to ensuring 

that packet dropout remains within acceptable limits. 

 

4.1 Adaptive PD control with gravity compensation 

 

High-DOF manipulators involve nonlinear coupled 

dynamics and high computational demands as detailled in the 

previous section. The proportional-derivative (PD) component 

provides straightforward implementation for fast error 

correction, while the adaptive term compensates for 

unmodeled dynamics and variations in system parameters. 

Compared to more complex control strategies, the adaptive 

robust PD approach achieves high performance without 

excessive computational overhead, making it suitable for real-

time applications in high-DOF systems. It is quite noteworthy 

that the PD scheme employed for set-point control 

demonstrates its effectiveness even in the broader context of a 

system model represented by Eq. (48). This assertion can be 

substantiated through a Lyapunov stability analysis, as 

detailed in references [29, 30]. The proof relies on the concept 

of independent joint control, whereby each joint is managed as 

a distinct single-input/single-output system. Upon integrating 

PD controllers into the model, the input torque 'u' can be 

expressed in vector form as follows: 

 

𝑢 = 𝐾𝑝(𝑞𝑟𝑒𝑓 − 𝑞) − 𝐾𝑑�̇� = −𝐾𝑝�̃� − 𝐾𝑑�̇� (66) 

 

where, �̃�  represents the error between the desired joint 

positions and the current joint values, while 𝐾𝑝 and 𝐾𝑑 stand 

as diagonal matrices with positive definite values, representing 

the proportional and derivative gains, respectively. 

We can make the assumption that gravitational acceleration 

remains constant and is a known value, allowing us to 

explicitly compute g(q) for any given instant. By incorporating 

g(q) into the input, we can accomplish gravity compensation, 

resulting in the complete system model being expressed as 

follows: 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� + 𝑔(𝑞) = 𝑢 (67) 
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𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� + 𝑔 (𝑞) = −𝐾𝑝�̃� − 𝐾𝑑�̇� + 𝑔(𝑞) (68) 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� = −𝐾𝑝�̃� − 𝐾𝑑�̇� (69) 

 

In order to demonstrate that the input torque provided in Eq. 

(66) accomplishes asymptotic tracking, the following 

Lyapunov function candidate is examined: 

 

𝑉 =
1

2
�̇�𝑇 𝑀(𝑞) �̇� +

1

2
�̃�𝑇𝐾𝑝�̃� (70) 

 

In the context of the manipulator, V signifies the overall 

energy that would be present if the actuators were exchanged 

for springs characterized by stiffness constants denoted as 𝐾𝑝, 

and positioned at the equilibrium state defined by 𝑞𝑟𝑒𝑓 . 

Consequently, V maintains a positive value except when the 

system is precisely at the equilibrium position where q=qref 

and q̇=0, resulting in V being zero at that specific point. 

Demonstrating that 'V' diminishes during any motion suggests 

that the robot is progressing towards this equilibrium position. 

Given that 𝑞𝑟𝑒𝑓  remains constant, the derivative of V is 

expressed as follows: 

 

�̇� = �̇�𝑇𝑀(𝑞) �̈� +
1

2
�̇�𝑇�̇�(𝑞)�̇� + �̇�𝑇𝐾𝑝�̃� (71) 

 

By solving for M(q) �̈� in Eq. (65) and then substituting into 

Eq. (71), we derive the following: 

 

�̇�=�̇�𝑇(𝑢 −C(q,�̇�) �̇� −g(q))+
1

2
�̇�𝑇�̇�(𝑞)�̇� + �̇�𝑇𝐾𝑝�̃� 

=�̇�𝑇(𝑢 −g(q)+𝐾𝑝�̃�)+
1

2
�̇�𝑇[�̇�(𝑞) −2C(q,�̇�)]�̇� 

=�̇�𝑇(𝑢 −g(q)+𝐾𝑝�̃�) 

(72) 

 

In this context, �̇�(q) is a skew-symmetric matrix that can 

provide the following outcome: 

 

�̇�𝑇[�̇�(𝑞) − 2𝐶(𝑞, �̇�)]�̇� = 0 (73) 

 

Replacing the input torque from Eq. (66) with u in the Eq. 

(72) results in: 

 

�̇� = −�̇�𝑇𝐾𝑑           �̇� ≤ 0 (74) 

 

The analysis presented above demonstrates that V decreases 

as long as �̇� is not equal to zero. 

Furthermore, it is essential to establish that the manipulator 

cannot attain a state in which �̇�=0 but q≠𝑞𝑟𝑒𝑓 . Assuming V̇ 

equals zero, signifying that �̇�  remains zero at all moments. 

Given that 𝐾𝑑 is a positive definite value, this infers that q̇ is 

equal to zero, and consequently, q̈  is also zero. Upon 

substituting this condition into the system model Eq. (69), the 

outcome is as follows: 

 

0=−𝐾𝑝�̃� (75) 

 

This suggests that �̃� =0, and subsequently, La Salle's 

theorem establishes the global asymptotic stability of the 

equilibrium position 𝑞 = 𝑞𝑟𝑒𝑓 . 

When incorporating adaptive PID tuning for a robot 

manipulator, it is essential to take into account the specific 

characteristics of the manipulator, including its kinematics, 

dynamics, and the type of variations in operating conditions. 

Additionally, it is crucial to monitor and adjust the adaptation 

rates to avoid excessive adjustments to parameters, which may 

result in instability. For this purpose, the ant colony 

optimization algorithm (ACO) is a successful evolutionary 

meta-heuristic algorithm rooted in a graph representation [31], 

effectively addressing challenging combinatorial optimization 

problems. ACO fundamentally approaches the problem by 

framing it as the quest for a minimum-cost path within a graph. 

Artificial ants traverse this graph, actively seeking favorable 

paths. Individual ants exhibit straightforward behaviors, often 

identifying suboptimal paths independently. However, 

superior paths emerge as a collective outcome of the 

collaborative efforts of ants within the colony. 

With the aim of achieving optimal control performances 

through the adaptive tuning of controller parameters, the 

chosen objective function is the integral of time-weighted 

absolute error (ITAE) criterion [32], which is expressed as 

follows: 

 

𝐽 = ∫ 𝑡|𝑒|
∞

0

𝑑𝑡 (76) 

 

The optimization problem can be represented as the 

following: 

Minimize J under the constraint of: 

 

𝐾𝑝
𝑚𝑖𝑛 ≤ 𝐾𝑝 ≤ 𝐾𝑝

𝑚𝑎𝑥 (77) 

 

𝐾𝑑
𝑚𝑖𝑛 ≤ 𝐾𝑑 ≤ 𝐾𝑑

𝑚𝑎𝑥 (78) 

 

In the optimization process, after completing a tour, each 

ant revises the pheromones left on the paths it traversed and 

adjusts the rules according to the following: 

 

𝜏(𝑘)𝑖𝑗 = 𝜏(𝑘 − 1)𝑖𝑗 +
0.01𝜃

𝐽
 (79) 

 

Here, 𝜏(𝑘)𝑖𝑗  represents the pheromone value between nests 

i and j at the kth iteration, θ is the general coefficient governing 

pheromone updating, and 𝐽 denotes the cost function for the 

tour undertaken by the ant. The pheromones on the path 

associated with both the best and worst tours of the ant colony 

undergo updating according to the following procedure: 

 

𝜏(𝑘)𝑖𝑗
𝑤𝑜𝑟𝑠𝑡 = 𝜏(𝑘)𝑖𝑗

𝑤𝑜𝑟𝑠𝑡 −
0.3𝜃

𝐽𝑤𝑜𝑟𝑠𝑡

 (80) 

 

𝜏(𝑘)𝑖𝑗
𝑏𝑒𝑠𝑡 = 𝜏(𝑘)𝑖𝑗

𝑏𝑒𝑠𝑡 +
𝜃

𝐽𝑏𝑒𝑠𝑡

 (81) 

 

In this context, 𝜏𝑏𝑒𝑠𝑡 and 𝜏𝑤𝑜𝑟𝑠𝑡  represent the pheromones 

on the paths taken by the ant during the tour with the lowest 

cost value 𝐽𝑏𝑒𝑠𝑡 and the tour with the highest cost value 𝐽𝑤𝑜𝑟𝑠𝑡  

in a single iteration, respectively. Following pheromone 

evaporation, the ant algorithm discards its historical 

information and shifts its focus towards exploring new 

directions, avoiding entrapment in local minima, as follows: 

 

𝜏(𝑘)𝑖𝑗 = 0𝜏(𝑘)𝑖𝑗
𝜆 + [𝜏(𝑘)𝑖𝑗

𝑏𝑒𝑠𝑡 + 𝜏(𝑘)𝑖𝑗
𝑤𝑜𝑟𝑠𝑡] (82) 

 

Here, 𝜆 denotes the evaporation constant.
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4.2 PROFINET based network integration 

 

PROFINET, which stands for Process Field Network, is an 

industrial Ethernet standard used in automation and control 

systems. It is designed to facilitate real-time communication 

and data exchange in industrial environments, providing a 

foundation for the implementation of NCS. In our case study 

where a high-DOF robot manipulator is the controlled plant 

which has demanding performance requirements, the choosing 

of PROFINET relays mainly on the fact that is offers high-

speed communication, enabling efficient data exchange. 

Additionally, PROFINET’s network protocol ensures 

deterministic behavior, meaning that communication delays 

are predictable and can be tightly controlled [33]. Table 1 

summarizes the protocols features for the chosen network. 

Control network implementation transforms the structure of 

robot manipulator control, expands its applicability, and 

facilitates the realization of distributed control. Figure 6 

illustrates a standard setup of a control system utilizing 

PROFINET. 

The presented setup comprises two components: a network 

closed-loop system and a local closed-loop system. The 

controller initiates bus communication by transmitting the 

position reference to the actuators. Subsequently, the actuators 

employ this position reference to implement closed-loop 

control of the manipulator motors positions. Simultaneously, 

sensors periodically provide feedback data to the controller 

which then utilizes it to calculate a new position, initiating a 

cyclical repetition of the process. It is then evident that the 

number of sensors, actuators and motors is proportional to the 

number of DOF. 

 

Table 1. PROFINET Protocols features 

 
Features PROFINET 

RT Class 3 

Clock Sync Yes 

Timeliness Approach TDMA 

Cycle time 31,25μs 

Jitter < 1μs 

Determinism Cycles 

Topology Any 

 

 
 

Figure 6. Control system implementation with PROFINET 

 

4.3 Time delay consideration 

 

Transmission of data through industrial networks introduces 

time delays in control loops due to factors such as network 

topology, traffic, and distance. In a PROFINET network, 

minimizing the NCS time delay is essential for achieving 

faster and more responsive communication among devices. 

However, in the NCS implementation, there are two types of 

time delay terms within the network. The first is a feedback 

time delay term 𝑑𝑒𝑙𝑎𝑦𝑠−𝑐  associated with the data 

transmission path from sensor to controller. The second is a 

feedforward time delay term 𝑑𝑒𝑙𝑎𝑦𝑐−𝑎  related to the data 

transmission path from controller to actuator. Figure 7 

illustrates these two network delays. 

 

 
 

Figure 7. NCS-induced delay 

 

Any delay in the controller can be assimilated into either of 

the two  terms without compromising generality. A practical 

perspective acknowledges that these two transmission delays 

fluctuate for each data transfer. Consequently, it is anticipated 

that a controller design approach with adaptive capabilities 

will help in adjusting to variable time delays. Nevertheless, 

this alone is generally insufficient for ensuring the 

preservation of the desired control system performance. 

 

4.3.1 Network delays on S-C path 

During each sampling period 𝑇𝑠 , sensor data are emitted 

after being processed by sensor task 𝐽𝑠 , the data wait 

acquisition by the S-C network task 𝐽𝑛𝑒𝑡_𝑠𝑐. The start time of 

sensor task n in the 𝑘𝑡ℎ control cycle is determined as follows: 

 

𝑆𝑠
𝑛(𝑘) = 𝑆𝑠

𝑛(0) + 𝑘𝑇𝑠 (83) 

 

With global clock synchronization, sensors can be 

configured such that their start times are identical. Knowing 

that the sync signal cycle can align with the bus cycle, an input 

shift delay is introduced after the sync event, and inbound data 

are secured once the delay has expired. This delay must be set 

to ensure that sufficient time for sensor data processing is 

reserved, allowing the sensor data to be available prior to the 

arrival of the S-C frames which evidently will minimize the 

waiting time for sensor data [34]. 

Subsequently, sensor data are saved in the network slave 

controllers but are not transmitted until the following bus cycle 

if clock synchronization is not used. This raises the potential 

for an extra waiting delay 𝑇𝑤
𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘), which is between 0 

and  𝑇𝑠 . Clock synchronization results in dependable and 

predictable system behavior. In order to reduce the latency 

between the sensor task 𝐽𝑠 and 𝐽𝑛𝑒𝑡_𝑠𝑐, clock synchronization 

would be ideal. Taking into account both situations, the bus 

cycle's start time can be expressed as follows [35]: 

 

𝑆𝑛𝑒𝑡_𝑠𝑐(𝑘) = 𝑆𝑠
𝑛(𝑘) + 𝐷𝑠 + (1

− 𝜆𝑠𝑦𝑛𝑐) 𝑇𝑤
𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘) 

(84) 

 

where, 𝜆𝑠𝑦𝑛𝑐 is a boolean parameter that indicates the use of 

clock synchronization, and 𝐷𝑠  is the sensor execution time. 

When clock synchronization is used, 𝜆𝑠𝑦𝑛𝑐 = 1 . In both 

situations, the cyclic communication structure eliminates the 

Feedback Path 

Transmitter + Controller 
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t 
PD Outpu

t 
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PROFINET 

IRB140 Input PD Output 

PROFINET 𝒅𝒆𝒍𝒂𝒚𝒔−𝒄  
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need for a local queue on sensors. 

All sensor data is gathered in the network master controller 

at the end of a communication cycle. In order to read the sensor 

input data and begin calculating actuator set-points using the 

PD algorithm, the network master controller sends an interrupt 

to the controller. The controller start time is expressed as 

follows: 

 

𝑆𝑐(𝑘) = 𝑆𝑛𝑒𝑡_𝑠𝑐(𝑘) + 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛 + 𝑇𝑤

𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐(𝑘) (85) 

 

where, 𝑇𝑤
𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐  is the time required by the controller to 

retrieve the data, and 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛  is the network delay for the data 

collected at sensor 𝑛 to reach the controller. 

The final S–C network delay can be determined by 

measuring the time interval between the end of the sensor task 

𝐽𝑠
𝑛 and the beginning of the controller task 𝐽𝑐, i.e. 

 

𝑑𝑒𝑙𝑎𝑦𝑠𝑐,𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑛 (𝑘) = 𝑆𝑐(𝑘) − (𝑆𝑠

𝑛(𝑘) + 𝐷𝑠) 

= 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛 + (1 − 𝜆𝑠𝑦𝑛𝑐)𝑇𝑤

𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘)

+ 𝑇𝑤
𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐 (𝑘) 

(86) 

 

4.3.2 Network delays on C-A path 

The C-S network task 𝐽𝑛𝑒𝑡_𝑐𝑎 can begin once the controller 

completes its computation and the outgoing process data have 

been transferred to the network. 

 

𝑆𝑛𝑒𝑡_𝑐𝑎(𝑘) = 𝑆𝑐(𝑘) + 𝑃𝑐 + 𝑇𝑤
𝐽𝑐→𝐽𝑛𝑒𝑡_𝑐𝑎(𝑘) (87) 

 

where, 𝑃𝑐  the actuation deadline task. Upon receiving the 

output data from the network via 𝐽𝑒_𝑐𝑎, the task of actuator 𝑛 

is initiated: 

 

𝑆𝑎
𝑛(𝑘) = 𝑆𝑛𝑒𝑡_𝑐𝑎(𝑘) + 𝐷𝑛𝑒𝑡_𝑐𝑎

𝑛  (88) 

 

where, 𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛  is the communication delay between the 

beginning of the bus cycle and the actuator 𝑛 receiving the 

output data. After a bus cycle is initiated, the actuators 

typically get data over the network in less than a full bus cycle. 

The node index 𝑛 determines how each actuator endure 

𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛 . In contrast, 𝐷𝑛𝑒𝑡_𝑠𝑐

𝑛  is the same for every sensor in the 

case of clock-driven S-C delay. 

The actuators begin execution as soon as their network slave 

controllers receive data, with actuation occurring within 𝐷𝑎 

(actuator execution time). By disregarding the actuators data 

access time, the C-A network delay can be calculated as: 

 

𝑑𝑒𝑙𝑎𝑦𝑐𝑎,𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑛 (𝑘) = 𝑆𝑎

𝑛(𝑘) − (𝑆𝑐(𝑘) + 𝑃𝑐) 

= 𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛 + 𝑇𝑤

𝐽𝑐→𝐽𝑛𝑒𝑡_𝑐𝑎(𝑘) 
(89) 

 

 

5. SIMULATIONS AND RESULTS 

 

This section aims to conduct system simulations using the 

selected controller to assess asymptotic stability through 

network integration. Successful completion of this task will 

validate the mathematical proof detailed in section 4.1 for the 

model. The inclusion of gravity compensation transforms the 

model as expressed in Eq. (69), resulting in the following 

system input: 

 

u=−𝐾𝑝�̃� − 𝐾𝑑�̇� (90) 

 

The mathematical proof provides no additional constraints 

on 𝐾𝑝 and 𝐾d aside from requiring them to be positive definite. 

Optimizing these controller gains will play a critical role in 

achieving global asymptotic stability. 

A MATLAB toolbox called TrueTime has been developed 

specifically for simulating the communication and control 

dynamics of network-based real-time control systems [36]. 

The toolbox is often used to model and analyze the 

performance of control systems in the presence of 

communication delays and network uncertainties, and it 

currently supports a fair number of network protocols 

including PROFINET. 

The tool includes not only a library but also a suite of 

functions, available in either C++ files or Matlab Mex files. 

These functions are specifically made to configure and 

delineate the execution of tasks within the kernel block. They 

include various functionalities such as AD/DA conversion, 

message transmission and reception, task creation and 

management, handling interrupts, managing timers, and 

monitoring events as represented in Figure 8. The TrueTime 

tool seamlessly integrates with Simulink libraries, enabling 

direct connection to existing blocks. Consequently, the entire 

networked control system can be effectively modeled within 

the Simulink environment. 

 

 
 

Figure 8. PROFINET network block in TrueTime 

 

Three simulations are discussed, each featuring distinct 

initial conditions and reference values to illustrate the system's 

behavior. Initial parameters and reference values are 

established as follows: 

 

Simulation 1: 

𝑞𝑖𝑛𝑖𝑡=[0 
π

2
 −

π

2
   0    0    0 ]T 

�̇�𝑖𝑛𝑖𝑡=[0   0    0    0    0    0 ]T 

�̇�𝑟𝑒𝑓=[−π π − π − π −
π

2
 π ]T 

 

Simulation 2: 

𝑞𝑖𝑛𝑖𝑡=[0     
π

2
   −

π

2
    0    0    0 ]T 

�̇�𝑖𝑛𝑖𝑡=[0    0    0    0    0    0 ]T 

�̇�𝑟𝑒𝑓=[−π    π   − π   − π    −
π

2
    π ]T 

 

Simulation 3: 

𝑞𝑖𝑛𝑖𝑡=[0     
π

2
    −

π

2
    0    0    0 ]T 

�̇�𝑖𝑛𝑖𝑡=[0     0    0    0    0    0 ]T 

�̇�𝑟𝑒𝑓=[0    −π   π    
π

2
   − π     0 ]T 

 

Table 2 shows the ACO parameters used in the simulation 
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process. 

 

Table 2. ACO parameters 

 
Parameters Value 

Population size 8 

Evaporation constant 𝜆 0.5 

Pheromone initial value 𝜏 100 

Maximum number of iterations 100 

 

Joint variables responses followed by the control input for 

each simulation are illustrated in Figures 9-14 respectively. 

 

 
 

Figure 9. Networked feedback position control, simulation 1 

 

 
 

Figure 10. Networked control input, simulation 1 

 

 
 

Figure 11. Networked feedback position control, simulation 

2 

 
 

Figure 12. Networked control input, simulation 2 

 

 
 

Figure 13. Networked feedback position control, simulation 

3 

 

 
 

Figure 14. Networked control input, simulation 3 

 

The resulting optimal PD coefficients for this simulation are 

as follows: 

 

𝐾𝑝 =

[
 
 
 
 
 
50.05 0 0 0 0 0

0 4.89 0 0 0 0
0 0 25.4 0 0 0
0 0 0 50.11 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.04]
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𝐾𝑑 =

[
 
 
 
 
 
19.1 0 0 0 0 0
0 1 0 0 0 0
0 0 5 0 0 0
0 0 0 20.03 0 0
0 0 0 0 0.02 0
0 0 0 0 0 0.012]

 
 
 
 
 

 

 

The resulting optimal PD coefficients for this simulation are 

as follows: 

 

𝐾𝑝 =

[
 
 
 
 
 
38.51 0 0 0 0 0

0 14.22 0 0 0 0
0 0 4.21 0 0 0
0 0 0 41.87 0 0
0 0 0 0 0.8 0
0 0 0 0 0 48.06]

 
 
 
 
 

 

 

𝐾𝑑 =

[
 
 
 
 
 
14.01 0 0 0 0 0

0 2.7 0 0 0 0
0 0 1.44 0 0 0
0 0 0 14.3 0 0
0 0 0 0 0.07 0
0 0 0 0 0 16.03]

 
 
 
 
 

 

 

 

The resulting optimal PD coefficients for this simulation are 

as follows: 

 

𝐾𝑝 =

[
 
 
 
 
 
0.9 0 0 0 0 0
0 44.6 0 0 0 0
0 0 28.1 0 0 0
0 0 0 0.99 0 0
0 0 0 0 15.05 0
0 0 0 0 0 0.33]

 
 
 
 
 

 

 

𝐾𝑑 =

[
 
 
 
 
 
1.1 0 0 0 0 0
0 24.1 0 0 0 0
0 0 16.2 0 0 0
0 0 0 0.87 0 0
0 0 0 0 3.52 0
0 0 0 0 0 0.01]

 
 
 
 
 

 

 

The execution of tasks in the forward and backward paths 

over PROFINET network can be studied in detail in Figure 15 

and Figure 16. 

 

 
 

Figure 15. PROFINET network schedules 

 
 

Figure 16. Closeup of PROFINET network schedules 

 

5.1 Analysis and comments 

 

Each simulation indicates that the system's states 

consistently converge to the desired reference within 

approximately 3 seconds, showcasing rapid response 

dynamics. The position responses of most joints exhibit 

negligible overshoot, which is a crucial indicator of robust 

performance, especially in high-DOF robotic manipulators. 

This minimal overshoot is particularly advantageous in 

industrial applications where precision and stability are critical 

to ensure the safety and efficiency of robotic operations. 

Moreover, the results highlight the effectiveness of the 

proposed networked control framework. The ITAE index 

closely matches the values typically observed in traditional 

local control schemes. This outcome confirms that the 

incorporation of networked control, even with the presence of 

network-induced delays, does not degrade the system's ability 

to achieve accurate and reliable position tracking. Instead, it 

underscores the proposed adaptive robust PD control law in 

mitigating the effects of delays and maintaining high 

performance. The verification of asymptotic stability through 

Lyapunov analysis further strengthens the reliability of the 

approach. The simulated system consistently demonstrates 

globally stable behavior, with all joint positions settling at 

their references without divergence or oscillation. This 

stability, combined with the high accuracy of the position 

tracking, validates the robustness of the proposed 

methodology. 

However, it is important to underscore several crucial 

elements. Firstly, it should be noted that actuators have 

limitations in providing infinite torque. The maximum input 

torque is restricted by the nominal torque of the actuators and 

their gear ratio. While this constraint can be easily 

incorporated into Simulink by saturating the input, it is not 

deemed necessary for the following reasons. In Section 4.1, 

gravitational terms were introduced to the input under the 

assumption of constant and known gravitational acceleration. 

This presupposes that the maximum input torque in the 

actuators surpasses g(q). Although the data sheets for the 

manipulator do not specify torque values or any additional 

attributes, this assumption remains valid, as empirical 

observations demonstrate the robot effectively overcome 

gravity in a real-world setting. Given that there are no 

additional constraints on the input torque, this confirms global 

asymptotic stability even in the presence of saturated inputs. 
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The only notable difference in the simulations lies in the 

prolonged time required to attain a steady state. 

Furthermore, actuators are incapable of instantaneously 

altering the input torque value. In simpler terms, the input 

cannot exhibit a perfect step reference. The manipulator relies 

on AC-motors for control, delivering torque through a 

magnetic field. The speed at which this magnetic field is 

established defines the peak rate of fluctuation in input torque. 

While fluctuation limiters can be incorporated into Simulink, 

it is assumed that AC-motors rapidly establish their electric 

fields, making fluctuation limiters irrelevant in the simulations. 

 

5.2 Limitations 

 

Certain limitations have been intentionally selected. 

Initially, joint friction is ignored for two primary factors. 

Firstly, estimating friction parameters without provided 

information would be akin to a random guess. Secondly, its 

inclusion does not significantly impact simulations when the 

input is not saturated. Nevertheless, if joint friction were to be 

considered, the most straightforward approach would be to 

exclusively model linear friction. The resulting model would 

then be as follows: 

 

M(q)�̈�+C(q,�̇�)�̇�+𝐹𝑣�̇� + �̇�+g(q)=𝑢 (91) 

 

where, 𝐹𝑣  represent the diagonal matrix of joint friction 

coefficients. 

It is worth noting that various control strategies and 

approaches can be employed and integrated in a well-chosen 

network setting. The selection of the appropriate control 

methodology should align with the specific operational needs 

of the manipulator. For instance, certain tasks may demand 

precise movement within specific time intervals. Factors such 

as the manipulator’s design, motor specifications, and issues 

related to backlash and friction can also influence the decision 

on the appropriate control technique. 

Finally, the proposed methodology outlined in the 

preceding sections can be implemented in practical settings by 

integrating improvements in hardware, exploiting established 

industry theories and facts. This may involve actions like 

increasing network communication speed, segmenting the 

PROFINET network, and minimizing transmission delay 

through a store-and-forward approach in relevant network 

components to achieve enhanced control effects. 

 

 

6. CONCLUSION 

 

This paper outlines a methodology for networked control of 

high-DOF robot manipulator demonstrated through a detailed 

case study of the IRB140. Initially, it has been demonstrated 

that achieving accurate estimation of dynamic parameters 

poses a difficult and time-intensive task. This necessitates 

either the ability to measure the state variables during 

manipulator motion or specialized knowledge of alternative 

identification techniques. In the case of the IRB 140 model, 

parameters were estimated through meticulous examination of 

the manipulator, occasionally relying on intuitive conjecture 

when necessary. Additionally, the integration of the network 

within the closed-loop control system of the manipulator has 

been demonstrated in successive stages, explaining the crucial 

considerations for selecting the right network protocol and 

mitigating the adverse effects of the network on the feedback 

control system. The analysis highlights PROFINET as a 

proficient network option for NCS applications, particularly 

beneficial for highly dynamic manipulators with intricate 

models. 

The results highlight the efficacy of the proposed networked 

control methodology in achieving precise and stable position 

tracking for high-DOF robot manipulators, even in the 

presence of network-induced delays. This demonstrates a 

significant advancement in bridging the gap between 

traditional local control methods and modern networked 

control requirements in industrial automation. The ability of 

the proposed framework to closely match the performance 

indices (e.g., ITAE) of local control systems suggests that 

networked control can be implemented without sacrificing 

precision or stability. This is particularly impactful for high-

DOF manipulators operating in distributed industrial 

environments where networked control is becoming 

increasingly necessary for scalability, remote monitoring, and 

integration with industry technologies. Furthermore, the 

proven asymptotic stability and robust response under various 

conditions lay the groundwork for the reliable deployment of 

such systems in dynamic and uncertain environments. 
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