
A Novel Automated Framework for Networked Control of High-DOF Robot Manipulators:

A Case Study of IRB140

Rochdi Bouchebbat1* , Abdellah Amoura2

1 Department of Electrical Engineering, Faculty of Technology, University of Skikda, Skikda 21000, Algeria
2 Department of Automation, Mouloud Mammeri University of Tizi Ouzou, Tizi Ouzou 15000, Algeria

Corresponding Author Email: r.bouchebbat@univ-skikda.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570621 ABSTRACT

Received: 25 November 2024

Revised: 13 December 2024

Accepted: 21 December 2024

Available online: 31 December 2024

This paper proposes an efficient networked control methodology for high degree-of-

freedom (DOF) robot manipulators, offering detailed yet simplified procedures suitable

for arm-like industrial robots. The methodology aims to precisely capture the behavior of

contemporary industrial robotic manipulators across varied and challenging environments,

despite their high DOF and complex characteristics. The automated framework, rooted in

the Newton-Euler formulation, is assessed using the ABB IRB140 robot manipulator.

Notably, the paper introduces a three phases-based novel approach to robot networked

control. The integration of the network into the closed-loop control system of the

manipulator is presented in three sequential stages, outlining the key factors in choosing

the appropriate network protocol and reducing the negative impacts of the network on the

feedback control system. The analysis identifies PROFINET as an effective network

choice for networked control systems (NCS) applications, especially advantageous for

highly dynamic manipulators with complex models. Furthermore, an adaptive robust

proportional derivative control law incorporating gravity compensation is introduced,

accompanied by a mathematical proof demonstrating the global asymptotic stability for

position control. An extensive simulation process conducted using TrueTime toolbox

integrated into Matlab validates the asymptotic stability, proving promising performances

in high-DOF robot manipulators networked control.

Keywords:

robot manipulator, robot control, network

control system, PROFINET network

1. INTRODUCTION

Networked Control Systems (NCS) are a cutting-edge

method of control engineering that improves control system

functionality and performance by utilizing communication

networks. Sensors, actuators, and controllers have usually

been connected using specialized point-to-point wiring in

control systems. But with the development of modern

communication technologies, NCS have become a viable

substitute, bringing with them a host of benefits and fresh

opportunities for a variety of uses.

In NCS, the different components of the control loop, such

as sensors, actuators, and controllers, are interconnected

through a communication network. The control signals, sensor

measurements, and other control-related data are exchanged

over this network, enabling distributed and remote control of

the system. One of the key advantages of NCS is their

flexibility and scalability [1]. Since the components are

connected through a network, they can be geographically

dispersed, allowing for distributed control and monitoring of

large and complex systems. This decentralization can lead to

reduced wiring costs and increased ease of maintenance.

However, the introduction of a communication network also

introduces new challenges. Delay, packet loss, and network

jitter can adversely impact the performance of the control

system. These network-induced phenomena may lead to

instability, reduced control accuracy, and degraded system

response [2-5]. Therefore, designing robust control strategies

that can account for such network imperfections is essential in

NCS.

In robotics, a robot manipulator is an industrial robot or

robotic arm engineered to carry out specific tasks like

assembly, welding, or material handling in a controlled

environment. Networked control integrates these robotic

manipulators with a network infrastructure, allowing for

remote control, monitoring, and coordination of multiple

robots from a central location. This decentralization offers

greater flexibility and scalability in robotic systems. For

instance, different modules of a robot, such as its arm, gripper,

and locomotion, can each have their own controllers that

communicate over the network. Additionally, robot

manipulators often need real-time communication between

components to ensure timely and accurate responses. High-

speed communication networks, like Ethernet, are used to

transmit sensor data, control commands, and feedback

between the robot's subsystems. Furthermore, NCS allows for

the remote control and monitoring of robots. With proper

security measures, operators can control robots from a distance,

making it possible to operate robots in hazardous or hard-to-

reach environments [6].

In recent years several approaches have been developed for

non-networked control of robot manipulators having a high

Journal Européen des Systèmes Automatisés
Vol. 57, No. 6, December, 2024, pp. 1729-1742

Journal homepage: http://iieta.org/journals/jesa

1729

https://orcid.org/0000-0002-4027-2786
https://orcid.org/0009-0001-3857-2851
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.570621&domain=pdf

DOF. Adaptive and robust control methods remain considered

as the most solicited ones due to the high complexity of

dynamics and nonlinearity of such systems.

In adaptive control, neural networks (NNs) excel at

managing complex, nonlinear systems with uncertain

dynamics, making them ideal for scenarios where precise

modeling is challenging. Their application in robot

manipulator control has been widely demonstrated as found in

the studies [6-8], but they often require extensive training data

and must address safety and ethical concerns, especially in

human-robot interactions [9]. Adaptive fuzzy control, another

effective method, is frequently combined with techniques like

reinforcement learning [10], predictive model control [11],

and NNs [12] for enhanced performance. Feedback adaptive

control is also suitable for managing uncertainties and

dynamic changes in robotic systems [13]. However,

challenges such as stability analysis, parameter tuning, and

adaptive law design must be addressed to ensure reliable and

effective implementation [14].

Robust control techniques have become critical for ensuring

stable and accurate operation of robot manipulators in the

presence of uncertainties and disturbances, enhancing their

reliability across diverse tasks. Sliding mode control (SMC) is

a highly effective robust control method for handling

modeling inaccuracies, using a sliding surface to constrain the

system’s state and maintain control under uncertainty [15].

However, SMC can pose challenges such as high control effort,

making it less suitable for systems with power or actuation

constraints, and chattering, which requires mitigation

strategies [16]. Additionally, PID controllers with robust

tuning and H-infinity methods are widely utilized in robot

manipulator control, demonstrating their effectiveness in

recent studies [17].

In networked control of high-DOF robot manipulators,

adaptive and robust control methods are often considered.

Adding to the complex nature of dynamics and uncertainties

of the system, the network-induced effects introduced in the

closed-loop can significantly impact the performance of any

control strategy. In the last few years, few research papers

have been published to cope with these drawbacks. In the

study [18], a discrete second order sliding mode approach for

networked control is proposed, the authors tested the scheme

on a COMAU SMART3-S2 industrial robot manipulator,

exposing that the chattering effect can be reduced regardless

of noise and mechanical nonlinearities. More recently, another

strategy using SMC for robot manipulators is discussed in the

study [19]. A dynamic triggering process is included to lower

the number of control updates in which the controller

parameters are remodeled in an event-based framework to

ensure the stability of the system. A networked control method

based on robust H-infinity synthesis is studied [20], taking into

account the packet drop-out constraint. According to results,

this approach requires a solid understanding of

communication theory. The controller design must be tailored

to the specific network characteristics and the requirements of

the control application to achieve optimal performance and

stability in the presence of communication constraints.

Additionally, a digital control unit design based on the

Embedded Model Control (EMC) methodology is presented

[21], targeting robotic applications with varying sampling

times and asynchronous command execution. The EMC

method enables real-time estimation and cancellation of

disturbances, errors, and nonlinearities, efficiently managing

measurement delays and asynchronicity of the networked

framework. In the study [22], a nonlinear multirate controller

for robotic manipulators operating under communication

constraints and external disturbances is presented. Using an

estimated discrete-time model, the controller ensures input-to-

state stability for single-rate and multirate sampling. A

Lyapunov-based method is employed to reject disturbances,

enabling accurate trajectory tracking without requiring

detailed knowledge of the robot's nonlinear dynamics.

The proposed methodology in this paper advances the state-

of-the-art in modeling and control of high-DOF industrial

robot manipulators through several key contributions. Unlike

traditional modeling techniques, which often struggle to

balance complexity and computational efficiency, the

presented approach streamlines the modeling process for

modern manipulators. By leveraging a Newton-Euler

formulation, this methodology provides a more precise yet

computationally manageable representation of the

manipulator's dynamics, even in challenging operational

environments. More notably, the proposed framework

incorporates the integration of networked control, utilizing the

PROFINET protocol to address network-induced delays. This

integration ensures the methodology's relevance to

contemporary industrial automation scenarios, where network

effects significantly influence performance. Additionally, the

paper introduces an adaptive robust PD control law with

gravity compensation, explicitly designed to handle the

uncertainties and nonlinearities inherent in high-DOF systems.

Unlike traditional control laws, this approach is

mathematically proven to guarantee global asymptotic

stability for position control via Lyapunov stability analysis.

The application of this framework to the ABB IRB140

manipulator demonstrates its practical feasibility and

robustness, showcasing improvements in both control

performance and adaptability. Figure 1 summarizes the

proposed methodology.

Figure 1. Block diagram of the automated framework

 Dynamic model

Rotation matrices

Industrial

robot

Geometric

constraints

Newton-Euler

approach

Inertia

tensors

n-link

equations

3 Phases network

integration

Modeling set up

Parameters estimation

Recursive formulations

System order reduction

Networked control

1730

The rest of the paper is structured as follows: Section 2

presents the modeling process applied to the chosen case study

of the IRB 140 robot manipulator. Section 3 describes the

procedure of system order reduction for the resulting model.

Section 4 details how the networked control is designed

through PROFINET communication and ACO-based adaptive

PD control law with time delay constraints. Section 5

demonstrates the effectiveness of the proposed methodology

with real data simulations. Finally, conclusions are carried out

in Section 6.

2. ROBOT MANIPULATOR MODELING

In numerous cases, the behavior of physical systems could

find clearer expression through analytical models. When it

comes to robot modeling and analysis, the focal points

encompass both its kinematics and dynamics. In this section,

the kinematic and dynamic models for the IRB140, a 6 DOF

robot manipulator, are formulated, and its workspace is

investigated. These models enable precise manipulation of the

arm, facilitating control over its movements to attain any

viable position and orientation within an unstructured setting.

Figure 2 shows the realistic representation of the IRB140.

Figure 2. The IRB 140 robot manipulator [23]

2.1 Modeling set up

The industrial robot manipulator named IRB 140 has been

manufactured by ABB. Their website [23] provides

information about the manipulator, along with articles and

videos showcasing experiments and the manipulator's

application in various companies. Figure 3 offers a distinct

perspective of the manipulator, illustrating its degrees of

freedom clearly.

Figure 3. The IRB 140 degrees of freedom [23, 24]

The IRB 140 manipulator consists of six links (excluding

the base) and six revolute joints, which are rotary joints

controlled by AC motors and depending on an angle θ, thereby

resulting in six degrees of freedom. The initial three DOF are

situated within the arm, facilitating the determination of the

robot's position. Subsequently, the remaining three DOF are

situated within the end effectors, enabling the provision of

orientation.

Upon closer examination of the robot, it becomes evident

that there is some flexibility in how to approach the modeling

of joint 4. In fact, opting to model the final three joints might

not be the optimal choice due to the nonzero length and mass

of the intermediary links (link 4 and 5). To address this, a

practical approach is to reinterpret the manipulator

configuration, aligning the center point of joint 3 and 4, as well

as the center point of joint 5 and 6. Consequently, link 3 and

link 5 are then depicted with zero length and mass to

accommodate this arrangement. It is important to emphasize

the necessity of reducing the computational complexity of the

dynamic model without compromising its accuracy for

industrial applications. By aligning these joint centers, the

model leverages the geometric symmetry of the manipulator

to simplify the derivation of kinematic and dynamic equations,

particularly in high-DOF systems. This approach also aids in

minimizing redundancy in the parameter estimation process,

making the model more computationally efficient while

maintaining fidelity to the real-world behavior of the

manipulator. Figure 4 presents a symbolic depiction of the

manipulator according to this interpretation, illustrating the

attachment of frames to the links.

Figure 4. The IRB 140 symbolic representation

Every rotation matrix can be computed as the outcome of

combining elemental rotations around the z-axis and the x-axis.

These fundamental rotation matrices are expressed in a general

form as follows:

𝑅𝑧,𝜃 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

] , 𝑅𝑥,𝜃

= [

1 0 0
0 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
]

(1)

Examining Figure 4 makes it relatively simple to compute

the rotation matrices for the manipulator. This can be achieved

by plugging in the values of q and the fixed rotations for θ. It's

1731

important to recognize the simplifications arising from the fact

that all constant rotations are in multiples of π/2. The outcome

is as follows:

𝑅1
0 = [

𝑐𝑜𝑠(𝑞1) 0 −𝑠𝑖𝑛(𝑞1)

𝑠𝑖𝑛(𝑞1) 0 𝑐𝑜𝑠(𝑞1)
0 −1 0

] (2)

𝑅2
1 =

[

 𝑐𝑜𝑠(𝑞2 −

𝜋

2
) −𝑠𝑖𝑛(𝑞2 −

𝜋

2
) 0

𝑠𝑖𝑛(𝑞2 −
𝜋

2
) 𝑐𝑜𝑠(𝑞2 −

𝜋

2
) 0

0 0 1]

 (3)

𝑅3
2 = [

𝑐𝑜𝑠(𝑞3) 0 −𝑠𝑖𝑛(𝑞3)

𝑠𝑖𝑛(𝑞3) 0 𝑐𝑜𝑠(𝑞3)
0 −1 0

] (4)

𝑅4
3 = [

𝑐𝑜𝑠(𝑞4) 0 𝑠𝑖𝑛(𝑞4)

𝑠𝑖𝑛(𝑞4) 0 −𝑐𝑜𝑠(𝑞4)
0 −1 0

] (5)

𝑅5
4 =

[

 𝑐𝑜𝑠(𝑞5 +

𝜋

2
) 0 𝑠𝑖𝑛(𝑞5 −

𝜋

2
)

𝑠𝑖𝑛(𝑞5 +
𝜋

2
) 0 −𝑐𝑜𝑠(𝑞5 −

𝜋

2
)

0 1 0]

 (6)

𝑅6
5 = [

𝑐𝑜𝑠(𝑞6) −𝑠𝑖𝑛(𝑞6) 0

𝑠𝑖𝑛(𝑞6) 𝑐𝑜𝑠(𝑞6) 0
0 0 1

] (7)

2.2 Parameters estimation

This section outlines the process of estimating the dynamic

parameters. It's noted that these estimations are challenging

due to the constraints of limited available information.

However, they are aimed at achieving a proximity to the actual

unknown parameters, allowing simulations to exhibit behavior

somewhat consistent with that of an ideal model. For sure,

estimating the inertia parameters represents the most

challenging task. The intricate shapes of the links combined

with the scarcity of available data significantly complicate the

process of deriving accurate parameters without resorting to

some form of identification. As a justifiable simplification, the

links are conceptualized as cylindrical structures with uniform

mass distribution, wherein the center of mass for each link

corresponds to the geometric center of the cylinder. Figure 5

serves as an illustration of how this simplification can be

implemented, using link 2 as an example.

Figure 5. Simplified modeling example of link 2

The diagram in light blue depicts the rear view of link, with

the center of mass denoted by the red dot. The inertia tensor

for this cylinder is demonstrated [25] as:

I=

[

1

12
𝑚ℎ2 +

1

4
𝑚𝑟2 0 0

0
1

12
𝑚ℎ2 +

1

4
𝑚𝑟2 0

0 0
1

2
𝑚𝑟2

]

 (8)

where, m, r and h represent the mass, the radius and the height

of the link. The cross products are consistently zero, resulting

in the inertia tensor adopting a diagonal matrix configuration

in its principal axis formulation.

Finding the mass, radius, and height of the cylinders

involves working within specific limitations. These limitations

dictate that the combined mass should be 97kg. Additionally,

the cylinders' radius and height must align with the dimensions

of the manipulator outlined in Figure 4. Similar to the physical

links, the cylinders will exhibit overlapping due to the non-

central placement of their centers of mass between frames.

These considerations were made under the assumption of

uniform mass distribution.

According to the study [24], it is reasonable to assume that

the mass density of each link is approximately equal. The links

are constructed with a metal shell containing internal

components like motors, gearboxes, cables, and belts.

Additionally, a significant portion of the total volume is

simply air between these components. Through a trial-and-

error approach, the masses, radius, and heights were

eventually determined to match the physical shape of the

manipulator using a uniform mass density.

2.3 Dynamic modeling

Dynamic modeling is crucial for understanding how the

robot manipulator responds to external forces, such as gravity,

friction, or applied loads. It involves deriving equations of

motion that govern the robot's behavior, accounting for its

mass distribution, inertial properties, and joint configurations

[26]. The proposed process based on Newton-Euler Method

relies on Newton's laws of motion and recursive algorithms to

calculate the forces and torques acting on each link. It involves

propagating the forces and torques from the end-effector back

to the base of the robot, taking into account the kinematics of

the robot.

2.3.1 Forward recursion

The process of forward recursion delineates the progression

of linear and angular motion through the series of links,

commencing from link 1 and ending at link 6. Within this

framework, a crucial step involves the determination of 𝑏𝑖 , the

rotational axis for each joint i as denoted in frame i. Preceding

the initiation of the recursions, these calculations will be

promptly executed for all joints, underscoring a significant

benefit of the Newton-Euler formulation.

Considering the study [27], angular velocity and

acceleration can be calculated as follows:

𝜔𝑖 = (𝑅𝑖
𝑖−1)𝑇𝜔𝑖−1+𝑏𝑖�̇�𝑖 (9)

where,

𝑏𝑖= (𝑅𝑖
0)𝑇 𝑅𝑖−1

0 𝑧0 (10)

z

x

r

h

y

1732

𝒶𝑖 = (𝑅𝑖
𝑖−1)𝑇𝒶𝑖−1 + 𝑏𝑖�̈�𝑖+𝜔𝑖×𝑏𝑖�̇�𝑖 (11)

The equation describing the acceleration of the center of

mass of link i, as expressed within frame i, transforms into:

αc,i = (Ri
i−1)Tαe,i−1+ω̇i×ri−1,ci+ωi×(ωi × ri−1,ci) (12)

To determine the acceleration of the end of the link, 𝑟𝑖−1,𝑐𝑖

is substituted with 𝑟𝑖−1,𝑖.

αe,i = (Ri
i−1)Tαe,i−1+ω̇i×ri−1,i+ωi×(ωi × ri−1,i) (13)

The rotational axis within frame 0 is directly provided as

follows:

z0=[0 0 1]T (14)

Subsequently, the computation of the rotation axes for the

joints is as follows:

𝑏1 = (𝑅1
0)𝑇𝑧0 =[0 -1 0]T (15)

𝑏2 = (𝑅2
0)𝑇 𝑅1

0 𝑧0 =[0 0 1]T (16)

𝑏3 = (𝑅3
0)𝑇 𝑅2

0 𝑧0 =[0 -1 0]T (17)

𝑏4 = (𝑅4
0)𝑇 𝑅3

0 𝑧0 =[0 1 0]T (18)

𝑏5 = (𝑅5
0)𝑇 𝑅4

0 𝑧0 =[0 1 0]T (19)

𝑏6 = (𝑅6
0)𝑇 𝑅5

0 𝑧0 =[0 0 1]T (20)

Because of the interrelated nature of kinematics, these

rotation axes typically become functions of q, akin to the

rotation matrices. Their behavior is contingent upon the

specifications of the coordinate frames, thus exerting a direct

impact on the effectiveness of the Newton-Euler formulation.

Upon examining the frame definitions in Figure 4, it becomes

evident that when observing from frame i to frame i-1, the

angular velocity ωi is unaffected by qi itself; rather, it hinges

entirely on the rotational axis. As a result, the rotation axes bi

remain independent of q.

Link 1

The starting parameters are as follows:

ω0=α0=αc,0=αe,0=0 (21)

According to Eqs. (9-11), angular velocity and acceleration

are calculated as follows:

𝜔1 = 𝑏1 �̇�1 (22)

𝛼1 = 𝑏1�̈�1 + 𝜔1 × 𝑏1 �̇�1 (23)

According to Eq. (12) and Eq. (13), acceleration of the end

of the link and acceleration of the center of mass of the link

are calculated as follows:

αe,1 = ω̇1 × r0,1 + ω1 × (ω1 × r0,1) (24)

αc,1 = ω̇1 × r0,c1 + ω1 × (ω1 × r0,c1) (25)

Link 2

𝜔2 = (𝑅2
1)𝜔1 + 𝑏2 �̇�2 (26)

𝛼2 = (𝑅2
1)𝛼1 + 𝑏2�̈�2 + 𝜔2 × 𝑏2 �̇�2 (27)

𝛼𝑒,2 = (𝑅2
1)𝛼𝑒,1 + �̇�2 × 𝑟1,2 + 𝜔2 × (𝜔2 × 𝑟1,2) (28)

𝛼𝑐,2 = (𝑅2

1)𝛼𝑒,1 + �̇�2 × 𝑟1,𝑐2 + 𝜔2 × (𝜔2 × 𝑟1,𝑐2) (29)

And so on till the last link:

Link 6

𝜔6 = (𝑅6
5)𝜔5 + 𝑏6 �̇�6 (30)

𝛼6 = (𝑅6
5) 𝛼5 + 𝑏6�̈�6 + 𝜔6 × 𝑏6 �̇�6 (31)

𝛼𝑐,6 = (𝑅5
6)𝛼𝑒,5 + �̇�6 × 𝑟5,𝑐6 + 𝜔6 × (𝜔6 × 𝑟5,𝑐6) (32)

2.3.2 Backward recursion

The backward recursion computes the forces and joint

torques that influence the links, starting from the first link and

concluding at the last one. The primary objective of the

Newton-Euler formulation is to establish the joint torques, as

these torques constitute the external inputs to the model.

Based on the law of action and reaction, and according to

the study [28] the force balance equation expressed in frame i

can be stated as:

∑ 𝑓 =

𝑙𝑖𝑛𝑘

𝑚𝑎 (33)

𝑓𝑖 = 𝑅𝑖+1
𝑖 𝑓𝑖+1 + 𝑚𝑖𝛼𝑐,𝑖 − 𝑚𝑖𝑔𝑖 (34)

This principle also applies to torque, where the equation for

moment balance can be formulated as follows:

∑ 𝜏 =

𝑙𝑖𝑛𝑘

Iω̇ + ω × Iω (35)

𝜏𝑖=𝑅𝑖+1
𝑖 𝜏𝑖+𝑖 − 𝑓𝑖×𝑟𝑖−1,𝑐𝑖+(𝑅𝑖+1

𝑖 𝑓𝑖+1)×𝑟𝑖,𝑐𝑖+𝜔𝑖 ×

(𝐼𝑖𝜔𝑖)+𝐼𝑖𝛼𝑖
(36)

It's important to observe that the force equation takes into

account the gravitational vector. This vector varies for each

link, yet its computation can be readily accomplished using

rotation matrices, as exemplified in the subsequent recursions.

The final condition is:

F7=τ7=0 (37)

Link 6

The gravity vector transforms into:

𝑔6 = (𝑅6
0)𝑇𝑔0 (38)

where,

𝑔0=[0 0-g]T (39)

The force and joint torque applied to the link are determined

according to Eq. (34) and Eq. (36) as follows:

1733

𝑓6 = 𝑚6𝛼𝑐,6 − 𝑚6𝑔6 (40)

𝜏6 = −𝑓6 × 𝑟5,𝑐6+𝜔6 ×(𝐼6𝜔6)+𝐼6𝛼6 (41)

Link 5

𝑔5 = (𝑅5
0)𝑇𝑔0 (42)

𝑓5 = 𝑅6
5 𝑓6 (43)

𝜏5 = 𝑅6
5 𝜏6 − 𝑓5 × 𝑟4,𝑐5+𝜔5 ×(𝐼5𝜔5)+𝐼5𝛼5 (44)

And so on till the first link:

Link 1

𝑔1 = (𝑅1
0)𝑇𝑔0 (45)

𝑓1 = 𝑅2
1 𝑓1 + 𝑚1𝛼𝑐,1 − 𝑚1𝑔1 (46)

𝜏1 = 𝑅2
1 𝜏2 − 𝑓1 × 𝑟0,𝑐1+𝑅2

1 𝑓2 ×

𝑟1,𝑐1+𝜔1 ×(𝐼1𝜔1)+𝐼1𝛼1
(47)

The findings in this section are compelling and validate the

reasons behind the frequent preference for the Newton-Euler

formulation in manipulators with numerous degrees of

freedom. The recursive algorithm is straightforward to deploy,

which minimizes the likelihood of errors during derivation.

Anomalies in the model's behavior generally trace back to the

setup stages, encompassing aspects like kinematic chain

configuration, frame definitions, rotation matrices, vector

delineations, and inertia tensors.

It's important to acknowledge that even though link 3 and 5

possess negligible length and mass, they must still be taken

into account during the recursions. The Newton-Euler

formulation is established on a kinematic chain featuring

single degree-of-freedom joints, ensuring that there are always

'n' steps in each recursion for 'n' degrees of freedom.

Nevertheless, specific terms within the expressions for link 3

and 5 are nullified.

Another intriguing observation within the Newton-Euler

formulation emerges from the terminal joint torque vectors

during the reverse recursion process. In this kinematic chain,

all joints are characterized by having a solitary degree of

freedom. Consequently, the torques exerted are scalar values

revolving around the rotation axes calculated through Eqs.

(15-20). The remaining two components of the torque vectors

can be elucidated as follows: Whenever torque is applied to

any of the joints, it inevitably generates torque components

around the other axes of the joints due to the interconnected

kinematics within the system. While these torque components

are not integrated into the dynamic model because they don't

induce motion (and thus don't impact q), they still offer

valuable insights into the manipulator's physical dynamics. If

the joints in the manipulator aren't constructed to endure these

specific torque magnitudes, there's a risk of joint failure.

Though the application of the Newton-Euler formulation

may appear to be a relatively straightforward process, it is

essential to emphasize the inherent complexity within the

resulting model. The fundamental principle behind recursion

is that solving a larger problem is dependent on resolving

smaller instances of the same problem. The backward

recursion for link 1 is built upon the backward recursion for

link 2, and so forth. Consequently, the backward recursion for

link 1 is basically influenced by all the preceding 11 steps of

the forward recursion for the same link. This connection leads

to the computation of τ1 resulting in a significantly extensive

vector.

3. MODEL REDUCTION

System order reduction in robotics is crucial for achieving

responsive and stable control of robotic systems, especially in

applications where low-latency control is essential. It involves

simplifying the mathematical or computational representation

of the robot's dynamics or control system. This reduction can

help make the robot control algorithms more efficient, reduce

computational complexity, and improve real-time control

capabilities.

In high-DOF robot manipulators, it is very likely to end up

with a high-order dynamic model that accurately describes the

robot's behavior, considering various physical parameters and

constraints. However, in practical control applications, it may

be necessary to reduce this model's order to make it suitable

for real-time control. Techniques such as simplifying the

model, approximating it with lower-order representations, or

applying model reduction methods can be used to achieve this.

This allows for efficient control of the robot's movements

while maintaining acceptable accuracy and performance.

As commonly known in literature, the dynamic model can

be expressed in matrix form as follows:

M(q)�̈�+C(q,�̇�) �̇�+G (q)=𝑢 (48)

In order to simulate the system's behavior, it is essential to

represent it in the nonlinear first-order form:

�̇� = 𝑓(𝑥, 𝑢) (49)

where, x represents the state vector, and u denotes the torque

vector.

To initiate the process, the terms in Eq. (48) are restructured

as follows:

�̈� = 𝑀−1(−𝐶�̇� − 𝑔 + 𝑢) (50)

In cases where we make the assumption that the inertia

matrix M is capable of being inverted, it serves as the primary

determinant in the expression for kinetic energy, denoted as
1

2
�̇�𝑇M(q) �̇�. It is important to note that kinetic energy remains

consistently nonnegative, reaching a value of zero only when

all joint velocities are null. Consequently, the invertibility of

M is established, confirming the validity of Eq. (50).

The second stage involves transforming the system from 6

second-order equations into 12 first-order equations. This is

based on the robot manipulator's 6 DOF, with two dominant

states (position and velocity) per joint, capturing the core

rigid-body dynamics. Modal analysis showed that these states

account for over 95% of the system’s energy, with higher-

order modes contributing minimally to operational

performance. This is achieved by:

x1=q1, x2 = ẋ1 = q̇1 (51)

x3=q2, x4 = ẋ3 = q̇2 (52)

x11=q6, x12 = ẋ11 = q̇6 (53)

1734

The dynamic system can be represented in the format

outlined in Eq. (49) as:

ẋ1 = x2 (54)

�̇�2 = 𝑓2(𝑥, 𝑢) (55)

�̇�3 = 𝑥4 (56)

�̇�4 = 𝑓4(𝑥, 𝑢) (57)

�̇�5 = 𝑥6 (58)

�̇�6 = 𝑓6(𝑥, 𝑢) (59)

�̇�7 = 𝑥8 (60)

�̇�8 = 𝑓8(𝑥, 𝑢) (61)

�̇�9 = 𝑥10 (62)

�̇�10 = 𝑓10(𝑥, 𝑢) (63)

�̇�11 = 𝑥12 (64)

�̇�12 = 𝑓12(𝑥, 𝑢) (65)

where, 𝑓2𝑖(𝑥, 𝑢) represents the expression of q in Eq. (50), for

i values ranging from 1 to 6, we can substitute x to obtain q

and �̇�.

4. ROBOT MANIPULATOR NETWORKED CONTROL

As introduced in the first section, classical control theory

operates under the assumption that communication between

sensors, actuators, and controllers is perfect, where data is

transmitted and processed instantaneously and with infinite

accuracy. However, in reality, digital communication (and

computation) introduces some delay and limited precision due

to physical constraints. Despite this, this assumption remains

valid when the hardware used for control is significantly faster

than the system dynamics. However, the assumption of

sufficiently fast hardware can be (extremely) expensive to

accommodate in practice, and in some situations, this

assumption simply cannot be met. An emerging solution is to

develop and use NCS theory to be able to specify under what

conditions slower, less expensive, hardware can be used

reliably in the sense of still guaranteeing proper closed-loop

behavior.

This section presents results which work towards making

this option possible by contributing towards the development

of NCS theory for controlling high-DOF robot manipulators

such as the presented case study the IRB 140.

With the purpose of achieving this objective, the suggested

approach consists of three sequential phases:

1) Initially, it's crucial to develop an effective control

algorithm that can enable the desired movements of the

end-effector while maintaining both safety and

operational efficiency. Given the complexity of the

resulting model, it becomes evident that robust and

adaptive control approaches are indispensable. The

chosen control method may differ according to the

specific application depending on the robot’s

kinematics and dynamics.

2) The following step consists of integrating the network

communication in the feedback control system. The

process must be done with careful consideration of

various factors, including: network delay, jitter

(variability in delay), packet loss probability,

bandwidth, network topology etc. Moreover, the

choosing of the network type may also differ depending

on the physical environment where the network will

operate, the network size and scalability, and also cost

and budget constraints.

3) The final phase involves minimizing the impact of

network delay and packet dropout in the closed-loop

feedback system. Reducing network delay in the

control system typically requires a combination of

hardware, software, and network infrastructure

optimizations. The specific approach will depend on

the application and the criticality of real-time control in

the system. It's essential to assess the requirements and

constraints of the control system and custom the

solutions accordingly. On the other hand, reducing

packet dropout in a control system often requires a

combination of network design, communication

protocols, and error-handling mechanisms. Regular

monitoring and maintenance are also keys to ensuring

that packet dropout remains within acceptable limits.

4.1 Adaptive PD control with gravity compensation

High-DOF manipulators involve nonlinear coupled

dynamics and high computational demands as detailled in the

previous section. The proportional-derivative (PD) component

provides straightforward implementation for fast error

correction, while the adaptive term compensates for

unmodeled dynamics and variations in system parameters.

Compared to more complex control strategies, the adaptive

robust PD approach achieves high performance without

excessive computational overhead, making it suitable for real-

time applications in high-DOF systems. It is quite noteworthy

that the PD scheme employed for set-point control

demonstrates its effectiveness even in the broader context of a

system model represented by Eq. (48). This assertion can be

substantiated through a Lyapunov stability analysis, as

detailed in references [29, 30]. The proof relies on the concept

of independent joint control, whereby each joint is managed as

a distinct single-input/single-output system. Upon integrating

PD controllers into the model, the input torque 'u' can be

expressed in vector form as follows:

𝑢 = 𝐾𝑝(𝑞𝑟𝑒𝑓 − 𝑞) − 𝐾𝑑�̇� = −𝐾𝑝�̃� − 𝐾𝑑�̇� (66)

where, �̃� represents the error between the desired joint

positions and the current joint values, while 𝐾𝑝 and 𝐾𝑑 stand

as diagonal matrices with positive definite values, representing

the proportional and derivative gains, respectively.

We can make the assumption that gravitational acceleration

remains constant and is a known value, allowing us to

explicitly compute g(q) for any given instant. By incorporating

g(q) into the input, we can accomplish gravity compensation,

resulting in the complete system model being expressed as

follows:

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� + 𝑔(𝑞) = 𝑢 (67)

1735

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� + 𝑔 (𝑞) = −𝐾𝑝�̃� − 𝐾𝑑�̇� + 𝑔(𝑞) (68)

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) �̇� = −𝐾𝑝�̃� − 𝐾𝑑�̇� (69)

In order to demonstrate that the input torque provided in Eq.

(66) accomplishes asymptotic tracking, the following

Lyapunov function candidate is examined:

𝑉 =
1

2
�̇�𝑇 𝑀(𝑞) �̇� +

1

2
�̃�𝑇𝐾𝑝�̃� (70)

In the context of the manipulator, V signifies the overall

energy that would be present if the actuators were exchanged

for springs characterized by stiffness constants denoted as 𝐾𝑝,

and positioned at the equilibrium state defined by 𝑞𝑟𝑒𝑓 .

Consequently, V maintains a positive value except when the

system is precisely at the equilibrium position where q=qref

and q̇=0, resulting in V being zero at that specific point.

Demonstrating that 'V' diminishes during any motion suggests

that the robot is progressing towards this equilibrium position.

Given that 𝑞𝑟𝑒𝑓 remains constant, the derivative of V is

expressed as follows:

�̇� = �̇�𝑇𝑀(𝑞) �̈� +
1

2
�̇�𝑇�̇�(𝑞)�̇� + �̇�𝑇𝐾𝑝�̃� (71)

By solving for M(q) �̈� in Eq. (65) and then substituting into

Eq. (71), we derive the following:

�̇�=�̇�𝑇(𝑢 −C(q,�̇�) �̇� −g(q))+
1

2
�̇�𝑇�̇�(𝑞)�̇� + �̇�𝑇𝐾𝑝�̃�

=�̇�𝑇(𝑢 −g(q)+𝐾𝑝�̃�)+
1

2
�̇�𝑇[�̇�(𝑞) −2C(q,�̇�)]�̇�

=�̇�𝑇(𝑢 −g(q)+𝐾𝑝�̃�)

(72)

In this context, �̇�(q) is a skew-symmetric matrix that can

provide the following outcome:

�̇�𝑇[�̇�(𝑞) − 2𝐶(𝑞, �̇�)]�̇� = 0 (73)

Replacing the input torque from Eq. (66) with u in the Eq.

(72) results in:

�̇� = −�̇�𝑇𝐾𝑑 �̇� ≤ 0 (74)

The analysis presented above demonstrates that V decreases

as long as �̇� is not equal to zero.

Furthermore, it is essential to establish that the manipulator

cannot attain a state in which �̇�=0 but q≠𝑞𝑟𝑒𝑓 . Assuming V̇

equals zero, signifying that �̇� remains zero at all moments.

Given that 𝐾𝑑 is a positive definite value, this infers that q̇ is

equal to zero, and consequently, q̈ is also zero. Upon

substituting this condition into the system model Eq. (69), the

outcome is as follows:

0=−𝐾𝑝�̃� (75)

This suggests that �̃� =0, and subsequently, La Salle's

theorem establishes the global asymptotic stability of the

equilibrium position 𝑞 = 𝑞𝑟𝑒𝑓 .

When incorporating adaptive PID tuning for a robot

manipulator, it is essential to take into account the specific

characteristics of the manipulator, including its kinematics,

dynamics, and the type of variations in operating conditions.

Additionally, it is crucial to monitor and adjust the adaptation

rates to avoid excessive adjustments to parameters, which may

result in instability. For this purpose, the ant colony

optimization algorithm (ACO) is a successful evolutionary

meta-heuristic algorithm rooted in a graph representation [31],

effectively addressing challenging combinatorial optimization

problems. ACO fundamentally approaches the problem by

framing it as the quest for a minimum-cost path within a graph.

Artificial ants traverse this graph, actively seeking favorable

paths. Individual ants exhibit straightforward behaviors, often

identifying suboptimal paths independently. However,

superior paths emerge as a collective outcome of the

collaborative efforts of ants within the colony.

With the aim of achieving optimal control performances

through the adaptive tuning of controller parameters, the

chosen objective function is the integral of time-weighted

absolute error (ITAE) criterion [32], which is expressed as

follows:

𝐽 = ∫ 𝑡|𝑒|
∞

0

𝑑𝑡 (76)

The optimization problem can be represented as the

following:

Minimize J under the constraint of:

𝐾𝑝
𝑚𝑖𝑛 ≤ 𝐾𝑝 ≤ 𝐾𝑝

𝑚𝑎𝑥 (77)

𝐾𝑑
𝑚𝑖𝑛 ≤ 𝐾𝑑 ≤ 𝐾𝑑

𝑚𝑎𝑥 (78)

In the optimization process, after completing a tour, each

ant revises the pheromones left on the paths it traversed and

adjusts the rules according to the following:

𝜏(𝑘)𝑖𝑗 = 𝜏(𝑘 − 1)𝑖𝑗 +
0.01𝜃

𝐽
 (79)

Here, 𝜏(𝑘)𝑖𝑗 represents the pheromone value between nests

i and j at the kth iteration, θ is the general coefficient governing

pheromone updating, and 𝐽 denotes the cost function for the

tour undertaken by the ant. The pheromones on the path

associated with both the best and worst tours of the ant colony

undergo updating according to the following procedure:

𝜏(𝑘)𝑖𝑗
𝑤𝑜𝑟𝑠𝑡 = 𝜏(𝑘)𝑖𝑗

𝑤𝑜𝑟𝑠𝑡 −
0.3𝜃

𝐽𝑤𝑜𝑟𝑠𝑡

 (80)

𝜏(𝑘)𝑖𝑗
𝑏𝑒𝑠𝑡 = 𝜏(𝑘)𝑖𝑗

𝑏𝑒𝑠𝑡 +
𝜃

𝐽𝑏𝑒𝑠𝑡

 (81)

In this context, 𝜏𝑏𝑒𝑠𝑡 and 𝜏𝑤𝑜𝑟𝑠𝑡 represent the pheromones

on the paths taken by the ant during the tour with the lowest

cost value 𝐽𝑏𝑒𝑠𝑡 and the tour with the highest cost value 𝐽𝑤𝑜𝑟𝑠𝑡

in a single iteration, respectively. Following pheromone

evaporation, the ant algorithm discards its historical

information and shifts its focus towards exploring new

directions, avoiding entrapment in local minima, as follows:

𝜏(𝑘)𝑖𝑗 = 0𝜏(𝑘)𝑖𝑗
𝜆 + [𝜏(𝑘)𝑖𝑗

𝑏𝑒𝑠𝑡 + 𝜏(𝑘)𝑖𝑗
𝑤𝑜𝑟𝑠𝑡] (82)

Here, 𝜆 denotes the evaporation constant.

1736

4.2 PROFINET based network integration

PROFINET, which stands for Process Field Network, is an

industrial Ethernet standard used in automation and control

systems. It is designed to facilitate real-time communication

and data exchange in industrial environments, providing a

foundation for the implementation of NCS. In our case study

where a high-DOF robot manipulator is the controlled plant

which has demanding performance requirements, the choosing

of PROFINET relays mainly on the fact that is offers high-

speed communication, enabling efficient data exchange.

Additionally, PROFINET’s network protocol ensures

deterministic behavior, meaning that communication delays

are predictable and can be tightly controlled [33]. Table 1

summarizes the protocols features for the chosen network.

Control network implementation transforms the structure of

robot manipulator control, expands its applicability, and

facilitates the realization of distributed control. Figure 6

illustrates a standard setup of a control system utilizing

PROFINET.

The presented setup comprises two components: a network

closed-loop system and a local closed-loop system. The

controller initiates bus communication by transmitting the

position reference to the actuators. Subsequently, the actuators

employ this position reference to implement closed-loop

control of the manipulator motors positions. Simultaneously,

sensors periodically provide feedback data to the controller

which then utilizes it to calculate a new position, initiating a

cyclical repetition of the process. It is then evident that the

number of sensors, actuators and motors is proportional to the

number of DOF.

Table 1. PROFINET Protocols features

Features PROFINET

RT Class 3

Clock Sync Yes

Timeliness Approach TDMA

Cycle time 31,25μs

Jitter < 1μs

Determinism Cycles

Topology Any

Figure 6. Control system implementation with PROFINET

4.3 Time delay consideration

Transmission of data through industrial networks introduces

time delays in control loops due to factors such as network

topology, traffic, and distance. In a PROFINET network,

minimizing the NCS time delay is essential for achieving

faster and more responsive communication among devices.

However, in the NCS implementation, there are two types of

time delay terms within the network. The first is a feedback

time delay term 𝑑𝑒𝑙𝑎𝑦𝑠−𝑐 associated with the data

transmission path from sensor to controller. The second is a

feedforward time delay term 𝑑𝑒𝑙𝑎𝑦𝑐−𝑎 related to the data

transmission path from controller to actuator. Figure 7

illustrates these two network delays.

Figure 7. NCS-induced delay

Any delay in the controller can be assimilated into either of

the two terms without compromising generality. A practical

perspective acknowledges that these two transmission delays

fluctuate for each data transfer. Consequently, it is anticipated

that a controller design approach with adaptive capabilities

will help in adjusting to variable time delays. Nevertheless,

this alone is generally insufficient for ensuring the

preservation of the desired control system performance.

4.3.1 Network delays on S-C path

During each sampling period 𝑇𝑠 , sensor data are emitted

after being processed by sensor task 𝐽𝑠 , the data wait

acquisition by the S-C network task 𝐽𝑛𝑒𝑡_𝑠𝑐. The start time of

sensor task n in the 𝑘𝑡ℎ control cycle is determined as follows:

𝑆𝑠
𝑛(𝑘) = 𝑆𝑠

𝑛(0) + 𝑘𝑇𝑠 (83)

With global clock synchronization, sensors can be

configured such that their start times are identical. Knowing

that the sync signal cycle can align with the bus cycle, an input

shift delay is introduced after the sync event, and inbound data

are secured once the delay has expired. This delay must be set

to ensure that sufficient time for sensor data processing is

reserved, allowing the sensor data to be available prior to the

arrival of the S-C frames which evidently will minimize the

waiting time for sensor data [34].

Subsequently, sensor data are saved in the network slave

controllers but are not transmitted until the following bus cycle

if clock synchronization is not used. This raises the potential

for an extra waiting delay 𝑇𝑤
𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘), which is between 0

and 𝑇𝑠 . Clock synchronization results in dependable and

predictable system behavior. In order to reduce the latency

between the sensor task 𝐽𝑠 and 𝐽𝑛𝑒𝑡_𝑠𝑐, clock synchronization

would be ideal. Taking into account both situations, the bus

cycle's start time can be expressed as follows [35]:

𝑆𝑛𝑒𝑡_𝑠𝑐(𝑘) = 𝑆𝑠
𝑛(𝑘) + 𝐷𝑠 + (1

− 𝜆𝑠𝑦𝑛𝑐) 𝑇𝑤
𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘)

(84)

where, 𝜆𝑠𝑦𝑛𝑐 is a boolean parameter that indicates the use of

clock synchronization, and 𝐷𝑠 is the sensor execution time.

When clock synchronization is used, 𝜆𝑠𝑦𝑛𝑐 = 1 . In both

situations, the cyclic communication structure eliminates the

Feedback Path

Transmitter + Controller

IRB140 Inpu

t
PD Outpu

t

Actuator + Sensor

Feedforward Path

PROFINET

IRB140 Input PD Output

PROFINET 𝒅𝒆𝒍𝒂𝒚𝒔−𝒄

𝒅𝒆𝒍𝒂𝒚𝒄−𝒂

1737

need for a local queue on sensors.

All sensor data is gathered in the network master controller

at the end of a communication cycle. In order to read the sensor

input data and begin calculating actuator set-points using the

PD algorithm, the network master controller sends an interrupt

to the controller. The controller start time is expressed as

follows:

𝑆𝑐(𝑘) = 𝑆𝑛𝑒𝑡_𝑠𝑐(𝑘) + 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛 + 𝑇𝑤

𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐(𝑘) (85)

where, 𝑇𝑤
𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐 is the time required by the controller to

retrieve the data, and 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛 is the network delay for the data

collected at sensor 𝑛 to reach the controller.

The final S–C network delay can be determined by

measuring the time interval between the end of the sensor task

𝐽𝑠
𝑛 and the beginning of the controller task 𝐽𝑐, i.e.

𝑑𝑒𝑙𝑎𝑦𝑠𝑐,𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑛 (𝑘) = 𝑆𝑐(𝑘) − (𝑆𝑠

𝑛(𝑘) + 𝐷𝑠)

= 𝐷𝑛𝑒𝑡_𝑠𝑐
𝑛 + (1 − 𝜆𝑠𝑦𝑛𝑐)𝑇𝑤

𝐽𝑠
𝑛→𝐽𝑛𝑒𝑡_𝑠𝑐 (𝑘)

+ 𝑇𝑤
𝐽𝑛𝑒𝑡_𝑠𝑐→𝐽𝑐 (𝑘)

(86)

4.3.2 Network delays on C-A path

The C-S network task 𝐽𝑛𝑒𝑡_𝑐𝑎 can begin once the controller

completes its computation and the outgoing process data have

been transferred to the network.

𝑆𝑛𝑒𝑡_𝑐𝑎(𝑘) = 𝑆𝑐(𝑘) + 𝑃𝑐 + 𝑇𝑤
𝐽𝑐→𝐽𝑛𝑒𝑡_𝑐𝑎(𝑘) (87)

where, 𝑃𝑐 the actuation deadline task. Upon receiving the

output data from the network via 𝐽𝑒_𝑐𝑎, the task of actuator 𝑛

is initiated:

𝑆𝑎
𝑛(𝑘) = 𝑆𝑛𝑒𝑡_𝑐𝑎(𝑘) + 𝐷𝑛𝑒𝑡_𝑐𝑎

𝑛 (88)

where, 𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛 is the communication delay between the

beginning of the bus cycle and the actuator 𝑛 receiving the

output data. After a bus cycle is initiated, the actuators

typically get data over the network in less than a full bus cycle.

The node index 𝑛 determines how each actuator endure

𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛 . In contrast, 𝐷𝑛𝑒𝑡_𝑠𝑐

𝑛 is the same for every sensor in the

case of clock-driven S-C delay.

The actuators begin execution as soon as their network slave

controllers receive data, with actuation occurring within 𝐷𝑎

(actuator execution time). By disregarding the actuators data

access time, the C-A network delay can be calculated as:

𝑑𝑒𝑙𝑎𝑦𝑐𝑎,𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑛 (𝑘) = 𝑆𝑎

𝑛(𝑘) − (𝑆𝑐(𝑘) + 𝑃𝑐)

= 𝐷𝑛𝑒𝑡_𝑐𝑎
𝑛 + 𝑇𝑤

𝐽𝑐→𝐽𝑛𝑒𝑡_𝑐𝑎(𝑘)
(89)

5. SIMULATIONS AND RESULTS

This section aims to conduct system simulations using the

selected controller to assess asymptotic stability through

network integration. Successful completion of this task will

validate the mathematical proof detailed in section 4.1 for the

model. The inclusion of gravity compensation transforms the

model as expressed in Eq. (69), resulting in the following

system input:

u=−𝐾𝑝�̃� − 𝐾𝑑�̇� (90)

The mathematical proof provides no additional constraints

on 𝐾𝑝 and 𝐾d aside from requiring them to be positive definite.

Optimizing these controller gains will play a critical role in

achieving global asymptotic stability.

A MATLAB toolbox called TrueTime has been developed

specifically for simulating the communication and control

dynamics of network-based real-time control systems [36].

The toolbox is often used to model and analyze the

performance of control systems in the presence of

communication delays and network uncertainties, and it

currently supports a fair number of network protocols

including PROFINET.

The tool includes not only a library but also a suite of

functions, available in either C++ files or Matlab Mex files.

These functions are specifically made to configure and

delineate the execution of tasks within the kernel block. They

include various functionalities such as AD/DA conversion,

message transmission and reception, task creation and

management, handling interrupts, managing timers, and

monitoring events as represented in Figure 8. The TrueTime

tool seamlessly integrates with Simulink libraries, enabling

direct connection to existing blocks. Consequently, the entire

networked control system can be effectively modeled within

the Simulink environment.

Figure 8. PROFINET network block in TrueTime

Three simulations are discussed, each featuring distinct

initial conditions and reference values to illustrate the system's

behavior. Initial parameters and reference values are

established as follows:

Simulation 1:

𝑞𝑖𝑛𝑖𝑡=[0
π

2
 −

π

2
 0 0 0]T

�̇�𝑖𝑛𝑖𝑡=[0 0 0 0 0 0]T

�̇�𝑟𝑒𝑓=[−π π − π − π −
π

2
 π]T

Simulation 2:

𝑞𝑖𝑛𝑖𝑡=[0
π

2
 −

π

2
 0 0 0]T

�̇�𝑖𝑛𝑖𝑡=[0 0 0 0 0 0]T

�̇�𝑟𝑒𝑓=[−π π − π − π −
π

2
 π]T

Simulation 3:

𝑞𝑖𝑛𝑖𝑡=[0
π

2
 −

π

2
 0 0 0]T

�̇�𝑖𝑛𝑖𝑡=[0 0 0 0 0 0]T

�̇�𝑟𝑒𝑓=[0 −π π
π

2
 − π 0]T

Table 2 shows the ACO parameters used in the simulation

1738

process.

Table 2. ACO parameters

Parameters Value

Population size 8

Evaporation constant 𝜆 0.5

Pheromone initial value 𝜏 100

Maximum number of iterations 100

Joint variables responses followed by the control input for

each simulation are illustrated in Figures 9-14 respectively.

Figure 9. Networked feedback position control, simulation 1

Figure 10. Networked control input, simulation 1

Figure 11. Networked feedback position control, simulation

2

Figure 12. Networked control input, simulation 2

Figure 13. Networked feedback position control, simulation

3

Figure 14. Networked control input, simulation 3

The resulting optimal PD coefficients for this simulation are

as follows:

𝐾𝑝 =

[

50.05 0 0 0 0 0

0 4.89 0 0 0 0
0 0 25.4 0 0 0
0 0 0 50.11 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.04]

0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

Time [s]

R
ad

ia
n

s

q
1

q
2

q
3

q
4

q
5

q
6

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

T
o
rq

u
e
 [

N
m

]


1


2


3


4


5


6

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

Time [s]

R
a

d
ia

n
s

q
1

q
2

q
3

q
4

q
5

q
6

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

T
o
rq

u
e
 [

N
m

]


1


2


3


4


5


6

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

Time [s]

R
a
d
ia

n
s

Response of q

q
1

q
2

q
3

q
4

q
5

q
6

0 0.5 1 1.5 2 2.5 3
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

T
o

rq
u

e
 [

N
m

]


1


2


3


4


5


6

1739

𝐾𝑑 =

[

19.1 0 0 0 0 0
0 1 0 0 0 0
0 0 5 0 0 0
0 0 0 20.03 0 0
0 0 0 0 0.02 0
0 0 0 0 0 0.012]

The resulting optimal PD coefficients for this simulation are

as follows:

𝐾𝑝 =

[

38.51 0 0 0 0 0

0 14.22 0 0 0 0
0 0 4.21 0 0 0
0 0 0 41.87 0 0
0 0 0 0 0.8 0
0 0 0 0 0 48.06]

𝐾𝑑 =

[

14.01 0 0 0 0 0

0 2.7 0 0 0 0
0 0 1.44 0 0 0
0 0 0 14.3 0 0
0 0 0 0 0.07 0
0 0 0 0 0 16.03]

The resulting optimal PD coefficients for this simulation are

as follows:

𝐾𝑝 =

[

0.9 0 0 0 0 0
0 44.6 0 0 0 0
0 0 28.1 0 0 0
0 0 0 0.99 0 0
0 0 0 0 15.05 0
0 0 0 0 0 0.33]

𝐾𝑑 =

[

1.1 0 0 0 0 0
0 24.1 0 0 0 0
0 0 16.2 0 0 0
0 0 0 0.87 0 0
0 0 0 0 3.52 0
0 0 0 0 0 0.01]

The execution of tasks in the forward and backward paths

over PROFINET network can be studied in detail in Figure 15

and Figure 16.

Figure 15. PROFINET network schedules

Figure 16. Closeup of PROFINET network schedules

5.1 Analysis and comments

Each simulation indicates that the system's states

consistently converge to the desired reference within

approximately 3 seconds, showcasing rapid response

dynamics. The position responses of most joints exhibit

negligible overshoot, which is a crucial indicator of robust

performance, especially in high-DOF robotic manipulators.

This minimal overshoot is particularly advantageous in

industrial applications where precision and stability are critical

to ensure the safety and efficiency of robotic operations.

Moreover, the results highlight the effectiveness of the

proposed networked control framework. The ITAE index

closely matches the values typically observed in traditional

local control schemes. This outcome confirms that the

incorporation of networked control, even with the presence of

network-induced delays, does not degrade the system's ability

to achieve accurate and reliable position tracking. Instead, it

underscores the proposed adaptive robust PD control law in

mitigating the effects of delays and maintaining high

performance. The verification of asymptotic stability through

Lyapunov analysis further strengthens the reliability of the

approach. The simulated system consistently demonstrates

globally stable behavior, with all joint positions settling at

their references without divergence or oscillation. This

stability, combined with the high accuracy of the position

tracking, validates the robustness of the proposed

methodology.

However, it is important to underscore several crucial

elements. Firstly, it should be noted that actuators have

limitations in providing infinite torque. The maximum input

torque is restricted by the nominal torque of the actuators and

their gear ratio. While this constraint can be easily

incorporated into Simulink by saturating the input, it is not

deemed necessary for the following reasons. In Section 4.1,

gravitational terms were introduced to the input under the

assumption of constant and known gravitational acceleration.

This presupposes that the maximum input torque in the

actuators surpasses g(q). Although the data sheets for the

manipulator do not specify torque values or any additional

attributes, this assumption remains valid, as empirical

observations demonstrate the robot effectively overcome

gravity in a real-world setting. Given that there are no

additional constraints on the input torque, this confirms global

asymptotic stability even in the presence of saturated inputs.

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

Time [s]

T
im

e
S

ta
p

m
s

Forward networked path

Backward networked path

2 2.1 2.2 2.3 2.4 2.5
0.5

1

1.5

2

2.5

3

Time [s]

T
im

e
S

ta
p
m

s

Forward networked path

Backward networked path

1740

The only notable difference in the simulations lies in the

prolonged time required to attain a steady state.

Furthermore, actuators are incapable of instantaneously

altering the input torque value. In simpler terms, the input

cannot exhibit a perfect step reference. The manipulator relies

on AC-motors for control, delivering torque through a

magnetic field. The speed at which this magnetic field is

established defines the peak rate of fluctuation in input torque.

While fluctuation limiters can be incorporated into Simulink,

it is assumed that AC-motors rapidly establish their electric

fields, making fluctuation limiters irrelevant in the simulations.

5.2 Limitations

Certain limitations have been intentionally selected.

Initially, joint friction is ignored for two primary factors.

Firstly, estimating friction parameters without provided

information would be akin to a random guess. Secondly, its

inclusion does not significantly impact simulations when the

input is not saturated. Nevertheless, if joint friction were to be

considered, the most straightforward approach would be to

exclusively model linear friction. The resulting model would

then be as follows:

M(q)�̈�+C(q,�̇�)�̇�+𝐹𝑣�̇� + �̇�+g(q)=𝑢 (91)

where, 𝐹𝑣 represent the diagonal matrix of joint friction

coefficients.

It is worth noting that various control strategies and

approaches can be employed and integrated in a well-chosen

network setting. The selection of the appropriate control

methodology should align with the specific operational needs

of the manipulator. For instance, certain tasks may demand

precise movement within specific time intervals. Factors such

as the manipulator’s design, motor specifications, and issues

related to backlash and friction can also influence the decision

on the appropriate control technique.

Finally, the proposed methodology outlined in the

preceding sections can be implemented in practical settings by

integrating improvements in hardware, exploiting established

industry theories and facts. This may involve actions like

increasing network communication speed, segmenting the

PROFINET network, and minimizing transmission delay

through a store-and-forward approach in relevant network

components to achieve enhanced control effects.

6. CONCLUSION

This paper outlines a methodology for networked control of

high-DOF robot manipulator demonstrated through a detailed

case study of the IRB140. Initially, it has been demonstrated

that achieving accurate estimation of dynamic parameters

poses a difficult and time-intensive task. This necessitates

either the ability to measure the state variables during

manipulator motion or specialized knowledge of alternative

identification techniques. In the case of the IRB 140 model,

parameters were estimated through meticulous examination of

the manipulator, occasionally relying on intuitive conjecture

when necessary. Additionally, the integration of the network

within the closed-loop control system of the manipulator has

been demonstrated in successive stages, explaining the crucial

considerations for selecting the right network protocol and

mitigating the adverse effects of the network on the feedback

control system. The analysis highlights PROFINET as a

proficient network option for NCS applications, particularly

beneficial for highly dynamic manipulators with intricate

models.

The results highlight the efficacy of the proposed networked

control methodology in achieving precise and stable position

tracking for high-DOF robot manipulators, even in the

presence of network-induced delays. This demonstrates a

significant advancement in bridging the gap between

traditional local control methods and modern networked

control requirements in industrial automation. The ability of

the proposed framework to closely match the performance

indices (e.g., ITAE) of local control systems suggests that

networked control can be implemented without sacrificing

precision or stability. This is particularly impactful for high-

DOF manipulators operating in distributed industrial

environments where networked control is becoming

increasingly necessary for scalability, remote monitoring, and

integration with industry technologies. Furthermore, the

proven asymptotic stability and robust response under various

conditions lay the groundwork for the reliable deployment of

such systems in dynamic and uncertain environments.

REFERENCES

[1] Mittapally, H., Ghosh, S., Kamal, S. (2023). Predictive

control of networked control system with event-

triggering in two channels. European Journal of Control,

72: 100810. https://doi.org/10.1016/j.ejcon.2023.100810

[2] Wang, H., Wang, J., Xu, H., Zhao, S. (2023). A self-

triggered stochastic model predictive control for

uncertain networked control system. International

Journal of Control, 96(8): 2113-2123.

https://doi.org/10.1080/00207179.2022.2084163

[3] El Abbadi, R., Jamouli, H. (2023). Fault detection of a

networked control system and its application to a DC

motor. International Journal of Control, Automation and

Systems, 21(6): 1769-1779.

https://doi.org/10.1007/s12555-022-0339-6

[4] Sakthivel, R., Santra, S., Mathiyalagan, K., Su, H. (2015).

Robust reliable control design for networked control

system with sampling communication. International

Journal of Control, 88(12): 2510-2522.

https://doi.org/10.1080/00207179.2015.1048294

[5] Dahake, V.R., Patil, M.D., Vyawahare, V.A. (2024).

Analysis of networked control system with integer-order

and fractional-order PID controllers. International

Journal of Control, Automation and Systems, 22(2): 373-

386. https://doi.org/10.1007/s12555-023-0181-5

[6] Rahmani, B., Belkheiri, M. (2019). Adaptive neural

network output feedback control for flexible multi-link

robotic manipulators. International Journal of Control,

92(10): 2324-2338.

https://doi.org/10.1080/00207179.2018.1436774

[7] Xia, J., Zhang, Y., Yang, C., Wang, M., Annamalai, A.

(2019). An improved adaptive online neural control for

robot manipulator systems using integral Barrier

Lyapunov functions. International Journal of Systems

Science, 50(3): 638-651.

https://doi.org/10.1080/00207721.2019.1567863

[8] Zhao, X., Liu, Z., Zhu, Q. (2023). Neural network-based

adaptive controller design for robotic manipulator

subject to varying loads and unknown dead-zone.

1741

Neurocomputing, 546: 126293.

https://doi.org/10.1016/j.neucom.2023.126293

[9] Garcia-Hernandez, R., Lopez-Franco, M., Sanchez, E.N.,

Alanis, A.Y., Ruz-Hernandez, J.A. (2017). Decentralized

Neural Control: Application to Robotics. Springer, Cham,

Switzerland.

[10] Goharimanesh, M., Mehrkish, A., Janabi-Sharifi, F.

(2020). A fuzzy reinforcement learning approach for

continuum robot control. Journal of Intelligent & Robotic

Systems, 100(3): 809-826.
https://doi.org/10.1007/s10846-020-01237-6

[11] Cronin, J., Escano, J.M., Roshany-Yamchi, S., Canty, N.

(2014). Fuzzy-based generalized predictive control of a

robotic arm. In 25th IET Irish Signals & Systems

Conference 2014 and 2014 China-Ireland International

Conference on Information and Communications

Technologies (ISSC 2014/CIICT 2014), Limerick, IET,

pp. 153-157. https://doi.org/10.1049/cp.2014.0676

[12] Tang, L., Liu, Y.J., Tong, S. (2014). Adaptive neural

control using reinforcement learning for a class of robot

manipulator. Neural Computing and Applications, 25:

135-141. https://doi.org/10.1007/s00521-013-1455-2

[13] Purwar, S., Kar, I.N., Jha, A.N. (2008). Adaptive output

feedback tracking control of robot manipulators using

position measurements only. Expert Systems with

Applications, 34(4): 2789-2798.

https://doi.org/10.1016/j.eswa.2007.05.030

[14] Ullah, H., Malik, F.M., Raza, A., Mazhar, N., Khan, R.,

Saeed, A., Ahmad, I. (2021). Robust output feedback

control of single-link flexible-joint robot manipulator

with matched disturbances using high gain observer.

Sensors, 21(9): 3252. https://doi.org/10.3390/s21093252

[15] Ghoul, A., Kara, K., Benrabah, M., Hadjili, M.L. (2022).

Optimized nonlinear sliding mode control of a

continuum robot manipulator. Journal of Control,

Automation and Electrical Systems, 33(5): 1355-1363.

https://doi.org/10.1007/s40313-022-00914-1

[16] Jung, S. (2023). Sliding mode control for a hybrid force

control scheme of a robot manipulator under uncertain

dynamics. International Journal of Control, Automation

and Systems, 21(5): 1634-1643.

https://doi.org/10.1007/s12555-022-0756-6

[17] Rigatos, G., Siano, P., Raffo, G. (2016). An H-infinity

nonlinear control approach for multi-DOF robotic

manipulators. IFAC-PapersOnLine, 49(12): 1406-1411.

https://doi.org/10.1016/j.ifacol.2016.07.766

[18] Capisani, L.M., Facchinetti, T., Ferrara, A. (2010). Real-

time networked control of an industrial robot

manipulator via discrete-time second-order sliding

modes. International Journal of Control, 83(8): 1595-

1611. https://doi.org/10.1080/00207179.2010.48407

[19] Nath, K., Bera, M.K. (2023). Integral sliding mode

control of networked robotic manipulator: A dynamic

event-triggered design. Advanced Robotics, 37(1-2):

141-153.

https://doi.org/10.1080/01691864.2022.2123255

[20] Kheirkhah, A., Aschenbrenner, D., Fritscher, M., Sittner,

F., Schilling, K. (2015). Networked control systems with

application in the industrial tele-robotics. IFAC-

PapersOnLine, 48(10): 147-152.

https://doi.org/10.1016/j.ifacol.2015.08.123

[21] Nanu, L., Colangelo, L., Novara, C., Montenegro, C.P.

(2024). Embedded model control of networked control

systems: An experimental robotic application.

Mechatronics, 99: 103160.

https://doi.org/10.1016/j.mechatronics.2024.103160

[22] Ghasemzadeh Ebli, H., Nekoui, M.A. (2019). Multirate

control of nonlinear robotic manipulators with network

structure under bounded disturbances. Journal of

Vibration and Control, 25(18): 2523-2533.

https://doi.org/10.1177/1077546319858847

[23] ABB Library. IRB 140 Data Sheet.

https://library.abb.com/d/PR10031EN_R15_HR.

[24] ABB Library. IRB 140 Product Specication.

https://library.abb.com/d/3HAC041346-001.

[25] Bajd, T., Mihelj, M., Lenarcic, J., Stanovnikb, A., Munih,

M., Rejc, J., Slajpah, S. (2010). Robotics. Springer.
https://www.springerprofessional.de/robotics/15978442#TOC.

[26] Beatty, M. (2006). Principles of Engineering Mechanics.

Volume 2 Dynamics: The Analysis of Motion. Springer

Verlag. https://doi.org/10.1007/978-0-387-31255-2

[27] Siciliano, B., Khatib, O., Kroger, T. (2016). Springer

Handbook of Robotics. Springer.

https://doi.org/10.1007/978-3-319-32552-1

[28] Wei, B., Zhang, D. (2021). A review of dynamic

balancing for robotic mechanisms. Robotica, 39(1): 55-

71. https://doi.org/10.1017/S0263574720000168

[29] Sciavicco, L., Siciliano, B. (2012). Modelling and

control of robot manipulators. Springer Science &

Business Media.

[30] Spong, M.W., Hutchinson, S., Vidyasagar, M. (2006).

Robot Modeling and Control. Wiley, New Jersey.

[31] Dorigo, M., Stutzle, T. (2004). Ant Colony Optimization.

MIT Press.

https://doi.org/10.7551/mitpress/1290.001.0001

[32] Martins, G. (2005). Tuning PID controllers using ITAE

criterion. International Journal of Engineering, 21(5):

867-873.

[33] Wisniewski, L. (2017). New Methods to Engineer and

Seamlessly Reconfigure Time Triggered Ethernet Based

Systems During Runtime Based on the PROFINET IRT

Example. Springer Vieweg. https://doi.org/10.1007/978-

3-662-54650-5

[34] Wu, X., Xie, L., Lim, F. (2014). Network delay analysis

of EtherCAT and PROFINET IRT protocols. In IECON

2014-40th Annual Conference of the IEEE Industrial

Electronics Society, Dallas, TX, USA, pp. 2597-2603.

https://doi.org/10.1109/IECON.2014.7048872

[35] Robert, J., Georges, J.P., Rondeau, É., Divoux, T. (2012).

Minimum cycle time analysis of Ethernet-based real-

time protocols. International Journal of Computers,

Communications and Control, 7(4): 743-757.

[36] Ohlin, M., Henriksson, D., Cervin, A. (2010). TrueTime

2.0 reference manual. Internal Report, Department of

Automatic Control, Lund University, Sweden.

http://archive.control.lth.se/media/Research/Tools/True

Time/report_2016-02-10.pdf.

1742

