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Neurological disorders affect the brain, spine and nervous system. Many neurological 
disorders result in substantial morbidity, therefore early and accurate diagnosis is 
necessary for rehabilitation. This study proposes a brain abnormality descriptor using 
local binary pattern and stationary wavelet transform (LBP-SWT). LBP depicts the 
local structure of MR brain image and SWT coefficients provide multi-scale directional 
representation for brain abnormalities encoded in the extracted LBP. Three features 
namely energy, Shannon entropy and standard deviation are calculated from LBP-SWT 
decomposed subbands. For binary and multi-class disorder classification, four datasets 
are used. Cross-validation is employed with the backpropagation neural network 
(BPNN) classifier. Among three features, standard deviation achieved highest binary 
classification average accuracy of 100%, 100%, 99.84% and 99.04% and multi-class 
classification average accuracy of 98.08%, 97.83%, 95.97% and 92.78% on 
(Dataset)DS:66, DS:160, DS:255, and DS:612 datasets respectively. Also, 
experimentation is carried out on 1836 images obtained by rotating and translating the 
images of dataset DS:612. For dataset, DS:1836, the standard deviation achieved the 
highest multi-disease classification average accuracy of 92.32%. The comparative 
results using three features show the standard deviation feature has more discriminating 
capacity than energy and Shannon entropy. The experimental results reveal 
improvement in the proposed work regarding evaluation metrics compared with state-
of-the-art methods. In this paper, we proposed LBP-SWT approach to generate affluent 
representation of brain image whose features have more discriminating power to 
categorize brain disorders. The translation invariant feature of SWT contributes in LBP-
SWT approach in accurate diagnosis of shifted brain images also. It is useful in clinical 
applications. 
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1. INTRODUCTION

The diagnosis of different disorders is the most important
step in deciding the treatment for the disease. Recently, brain 
disorders that strike at different phases of human life are 
among society’s most severe pathological states. Various 
imaging techniques and methods have emerged for brain 
disease identification. The approaches using wavelets are 
widely used in different image processing and diagnosis 
applications [1, 2]. The structural MRI modality presents brain 
disorders non-invasively and with better contrast [3]. 
However, the capacious MR imaging data can be arduous to 
interpret manually. Therefore, computer aided detection 
(CAD) systems are being developed to help physicians in the 
interpretation of medical images, resulting in improved 
diagnostic accuracy. Various CAD systems have been 
proposed by researchers for classifying normal and abnormal 
MR brain images. Zhang et al. [4] used wavelet coefficients 

and BPNN classifier for classification of brain disorders, and 
the study [5] developed an algorithm using ripplet transform 
(RT) along with multi-scale geometric analysis. They utilized 
the least square support vector machine for classification. El-
Dahshan et al. [6] segmented MR images using feedback 
pulse-coupled neural networks. The study [7] achieved 
97.78% classification accuracy over 90 MR images using 
wavelet energy as a feature and support vector machine (SVM) 
classifier. Zhang et al. [8] calculated wavelet entropy of 
approximation wavelet coefficients and used BBO and PSO to 
optimize NN for classification. Zhang et al. [9] extracted SWT 
coefficients from MR images. The features were classified 
using a variant of the SVM classifier. Wang et al. [10] utilized 
a twin SVM classifier to classify the extracted dual-tree 
complex wavelet transform features. Wang et al. [11] reduced 
the stationary wavelet transform (SWT) coefficients using 
PCA. They proposed a classifier using variants of feed-
forward neural network (FNN) based on hybridization 
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methods of PSO and ABC. Zhang et al. [12] classified the 
entropies of wavelet packet transform coefficients using 
generalized eigenvalue proximal SVM (GEPSVM). In the 
study [13], wavelet entropy (WE) feature was calculated from 
approximation and detail wavelet coefficients. Features were 
selected using binary particle swarm optimization (BPSO) and 
its variants. Nayak et al. [14] employed probabilistic PCA 
(PPCA) to reduce the 2D DWT coefficients and perform 
classification using Adaboost algorithm with random forest 
(ADBRF). Nayak et al. [15] used energy and entropy values, 
calculated from SWT coefficients, as features. They employed 
Adaboost algorithm with SVM classifier. Nayak et al. [16] 
classified MR brain images using curvelet features and three 
kernels in the least squares SVM classifier. They described 
promising results. Khalil et al. [17] employed various features, 
such as local binary pattern (LBP), gray level co-occurrence 
matrix (GLCM), and histogram of oriented gradient (HOG). 
They combined the classifiers of these feature extraction 
techniques using different fusion operators. Gudigar et al. [18] 
compared three different multi-resolution analysis techniques 
to classify a dataset of 612 MR brain images using SVM as a 
classifier and achieved 97.38% accuracy with shearlet 
coefficients. 

Nayak et al. [19] proposed transfer learning approach and 
Tamilarasiand and Gopinathan [20] proposed Inception 
Architecture for brain abnormalities detection. Hu et al. [21] 
explored the approach of fuzzy system for feature recognition 
and predicting the brain disease. Shanker and Bhattacharya [22] 
segmented region of interest of MR brain images using their 
developed Pulse-Coupled Neural Network and classified the 
brain images using Twin Support Vector Machine. 
Convolutional neural networks are being widely used in 
biomedical image examination [23]. Takrouni and Douik [24] 
combined Curvelet Pooling (CP) and Adam gradient 
calculation method for improving classification accuracy of 
brain pathological images. Dora et al. [25] suggested multiple 
kernel-based convolutional neural network (MK-CNN) to 
classify the pathological brain images, which is a flexible and 
high-capacity approach. Zhou et al. [26] addressed the dual 
challenges of data privacy and MRI brain tumor disease 
detection using an innovative approach of leveraging 
Federated Learning (FL). Akter et al. [27] proposed a model 
using deep Convolutional Neural Network (CNN) for 
automatic brain image classification and a U-Net-based 
segmentation. Kale et al. [28] suggested new feature extraction 
method using local binary pattern and steerable pyramid (SP) 
and then MR brain images were classified using neural 
network.  

The literature review reveals that wavelet-related 
transforms are the most widely used feature extraction 
methods in CAD systems. The multi-resolution property of 
these transforms retains significant information about images. 
PCA is the extensively employed feature reduction method 
whereas SVM, ANN, and KNN are used as classifiers in most 
of the work. In these works, promising accuracies are achieved. 
However, the number of images used in these methods is small; 
therefore, Gudigar et al. [18] introduced a new dataset DS:612 
compromising 612 MR images. 

In this paper, we compared the classifier performance 
results using three features individually. The following is the 
contribution of this work: 

• MR image is encoded in local binary pattern using LBP.
The wavelet coefficients of LBP coded image are extracted 
using SWT. The statistical feature of SWT coefficients give 

multi scale directional representation for brain abnormalities 
encoded in the LBP transformed image. 

• 612 images of dataset DS:612 are rotated and translated by 
different angles and coordinates respectively to obtain dataset 
DS:1836 of 1836 images. 

• Energy, entropy and standard deviation values of each
multi scale sub band of LBP-SWT decomposed image are 
calculated. 

• The performance measures of the back propagation neural
network classifier are compared using each feature 
individually over all datasets. 

By performing cross-validation with the Harvard Medical 
School Datasets [29], the proposed method achieved 
promising performance for binary and multi-class disease 
classification. The article is arranged as follow. Section 2 
presents material. Methodology of presented system is 
delineated in Section 3. Section 4 highlights the results along 
with discussion, leading to conclusion in Section 5. 

2. MATERIAL

Datasets from the Harvard Medical School website [29] are
taken for evaluation purpose. The website contains brain 
images of various disorders under category of stroke, tumour, 
degenerative disease, infectious disease.  The images available 
are of imaging modalities like MRI (T1 weighted, T2 weighted 
and proton density (PD) weighted), computed tomography 
(CT) or single-photon emission computed tomography 
(SPECT). 

Figure 1. Brain MRI image samples: (a) Alzheimer, (b) 
Alzheimer with visual agnosia, (c) Cerebral Calcinosis, (d) 
Huntington, (e) Motor Neuron, (f) Pick’s disease, (g) AIDS 
dementia, (h) Cerebral Toxoplasmosis, (i) Creutzfeld-Jakob, 

(j) Herpes encephalitis, (k) Lyme encephalopathy, (l)
Multiple sclerosis 

Table 1. Harvard Medical School datasets: Distribution of 
normal and abnormal images 

Title of 
Dataset 

Count 
of Total 
Images 

Count of 
Normal 
Images 

Count of 
Pathological 

Images 

Count of 
Brain 

Disorders 
DS:66 66 18 48 7 
DS:160 160 20 140 7 
DS:255 255 35 220 11 
DS:612 612 83 529 24 

In state-of-the-art techniques, datasets with 66(DS:66), 
160(DS:160) and 255(DS:255) MRI images of size 256 × 256 
resolution and T2-weighted are extensively used. Datasets DS: 
160 and DS: 66 contain brain disorders namely Pick’s disease, 
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Alzheimer, Huntington, Alzheimer’s disease plus visual 
agnosia, Glioma, Meningioma, and Sarcoma. Additional 
abnormalities namely Herpes encephalitis, Multiple sclerosis, 
Chronic subdural, and Cerebral toxoplasmosis hematoma have 
been included in Dataset DS:255. Gudigar et al. [18] 
introduced a new dataset DS:612. Further, thirteen new 
abnormal medical data types are included in dataset DS:612 
resulting in a total of twenty-four brain abnormalities. Sample 
MR brain images are shown in Figure 1. The distribution of 
normal and pathological images of the datasets used in this 
work is given in Table 1. 

3. METHODOLOGY

The methodology of proposed feature extraction and
classification system is summarized in Figure 2. 

Figure 2. Proposed feature extraction and classification 
method 

3.1 Local binary pattern (LBP) 

LBP operator is applied to each MR image. A small cell size 
of 3 × 3 is selected, as local abnormalities can be detected 
effectively with a smaller size.  

LBP computes binary code of each pixel. In 3 × 3 
neighbourhood, the LBP code of central pixel is calculated by 
following equations, 

𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃,𝑅𝑅  =  �(𝑠𝑠(𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐))2𝑝𝑝 
𝑝𝑝−1

𝑝𝑝=0

(1) 

𝑠𝑠(𝑥𝑥) = 0,        𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 <  0; 
 1,       𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 >=  0 (2) 

where, (P, R) specifies a neighbourhood of P, equally spaced 
points on a circle of radius R, s(x) is the thresholding function, 
gc is the centre pixel and p = 0, 1,…., p−1 are the pixels in the 
neighbourhood. 

3.2 Stationary wavelet transforms (SWT) 

The lack of translation invariance of the DWT is overcome 
in SWT. This is accomplished by removing the down samplers 
and up samplers in the DWT and up-sampling the filter 
coefficients. Due to this property, it is used in various 
applications despite being redundant [9, 15]. Figure 3 
describes decomposition steps of image using 2D-SWT. At 
level j, 2D-SWT decomposes approximation coefficients (cAj) 

in four components namely the approximation coefficients 
(cAj+1), and the details (horizontal (cDh

j+1), vertical (cDv
j+1), 

and diagonal (cDd
j+1)) in three orientations. The merits of SWT 

are shift invariance and it also removes the limitation of size 
constrains of standard DWT (power of 2). As SWT does not 
use decimation operation, it can be applied to image of any 
size. 

Figure 3. Decomposition steps of image using SWT 

3.3 LBP-SWT approach 

Wavelet transform (WT) has been used in combination with 
LBP to describe texture images [30-33]. In most of the 
applications, wavelet-decomposed sub-bands are used from 
which LBP features are extracted. In this paper, LBP [34] is 
used with SWT to provide a robust brain disease descriptor. In 
this work, the wavelet used is Symlet2. Its smaller compact 
support is useful in detecting smaller changes in the image. 
SWT is applied on LBP-transformed image and 
decomposition is carried out to level 8. The 4 sub-bands 
namely approximation, horizontal, vertical, and diagonal of 
each decomposition level contribute to a total of 32 sub-bands. 
All 32 sub-bands are considered for feature calculation. The 
LBP-SWT approach combines the power of LBP as a local 
texture descriptor and the power of the SWT in detecting 
spatial changes. 

3.4 Feature extraction 

Feature represents measure of image structure. In this work, 
three features namely energy, Shannon entropy, and standard 
deviation are calculated from 32 multi-scale directional sub-
bands of the LBP-SWT image. The features are tabulated in 
Table 2. In Table 2, Xk (i, j) indicates the kth sub-band and its 
dimension is M × N. k varies from 1 to 8. µk indicates mean of 
kth sub-band. Energy quantifies the strength of the image 
details in different sub-bands. As an individual feature, it has 
been shown to be effective in analysis of MR brain images [7, 
35]. Entropy reflects randomness and in turn complexity 
within brain image. In the classification of normal and 
abnormal MR brain images [15, 36, 37], entropy feature has 
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been proved to be competent. Standard deviation provides 
dispersion measure of coefficient values around mean. It has 
been used in different applications [38, 39]. The 
discriminating power of these features varies with the different 
resolution levels of the image. Such a multi-scale resolution 
strategy is useful for pattern recognition, and classification 
[40]. This work, evaluates the competency of these three 
features in differentiating brain disorders. 

Table 2. Feature formula 

Feature Formula 

Energy ��(𝑋𝑋𝑘𝑘(𝑖𝑖, 𝑗𝑗))2
𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 

Standard deviation �
∑ ∑ (𝑋𝑋𝑘𝑘(𝑖𝑖, 𝑗𝑗) − µ𝑘𝑘)2𝑗𝑗𝑖𝑖

𝑀𝑀 × 𝑁𝑁

Shannon entropy −��(𝑋𝑋𝑘𝑘(𝑖𝑖, 𝑗𝑗))2
𝑗𝑗

𝑙𝑙𝑓𝑓𝑔𝑔2(𝑋𝑋𝑘𝑘(𝑖𝑖, 𝑗𝑗))2
𝑖𝑖

 

3.5 Back propagation neural network (BPNN) Classifier 

To perform the classification, a supervised learning method, 
BPNN is used. It is biologically inspired [41]. It can generalize 
to new using past examples. With these properties, it has 
achieved considerable success when it is used to solve 
multivariate, difficult, non-linear, and diverse problems [41-
43]. Ojha et al. [44] have given a very good review of the 
neural network. Optimal selection of hidden layers and also 
hidden neurons is a crucial part of NN architecture design as it 
can lead to under-fitting or over-fitting issues. In this work, to 
overcome the generalization and over-fitting problem of 
BPNN, the Bayesian regularization method is proposed along 
with stratified cross-validation. For binary classification, one 
hidden layer with 5 neurons is used. In multi-class 
classification, the increase in the number of classes to 
distinguish, results in increased training equations. So, BPNN 
with 5 hidden neurons can cause under-fitting issues. To 
overcome this issue, one hidden layer with 15 neurons is used 
in multi-class classification for the first three datasets. 

4. EXPERIMENTAL RESULTS AND DISCUSSION

Experimentation has been performed on a system with 4 GB 
of RAM and core i5 (1.60 GHz), for validation of the proposed 
method under MATLAB environment. The proposed method 
was evaluated using binary and multi-class disease 
classifications. The accuracy (ACC), sensitivity (SEN), 
specificity (SPE) and precision (PRE) were used as 
performance measures. 

4.1 Multi-class disease classification 

In multi-class disease classification, the transform 
techniques namely SWT, LBP-SWT and SWT-LBP were 
employed with three features energy, Shannon entropy and 
standard deviation individually to evaluate the classification 
performance. In SWT approach, MR image was decomposed 
using SWT only. With LBP-SWT technique, initially image 
was coded using LBP code and afterwards SWT was used to 
decompose LBP coded image into LBP-SWT sub-bands. In 
SWT-LBP approach, the operations were in reverse order as 
compared with LBP-SWT approach. 

All the three techniques with three features were evaluated 
using datasets DS:66, DS:160, DS:255, DS:612 and DS:1836. 
DS:1836 contains translated and rotated versions of images of 
DS:612. 

4.1.1 Rotated and translated form of images of DS:612 
Dataset DS:612 is having the largest number of images. 

These images were translated and rotated to form a new 
dataset DS:1836 of 1836 images. The 612 images of dataset 
DS:612 were rotated by angles 45°, 90° and 120° and 
translated by co-ordinates [22, 13], [0, -14.3] and [-7.5, -14.7] 
respectively to form testing dataset. Similarly, 612 images of 
dataset DS:612 were rotated by angles 0°, 20° and 70° and 
translated by co-ordinates [5, 8], [-12, -4.3] and [15, -10] 
respectively to form training dataset. The dataset DS:1836 
consists of 1836 images. The rotation angles and translation 
co-ordinates were selected randomly. The details are given in 
Table 3. The sample images of rotated and translated form of 
original images are shown in Figure 4. 

Table 3. Rotation and translation parameters of dataset 
DS:1836 

Testing Dataset Training Dataset 
Rotation 

angle 
[degree] 

Translation co-
ordinates [x, y] 

Rotation 
angle 

[degree] 

Translation co-
ordinates [x, y] 

45° [22, 13] 0° [5, 8] 
90° [0, -14.3] 20° [-12, -4.3] 

120° [-7.5, -14.7] 70° [15, -10] 

Figure 4. Samples of rotated and translated form of original 
images of dataset DS:612 

4.1.2 Evaluation of classification performance using different 
transforms and different features 

The classification performance accuracy values for multi-
class disease classification using three transform techniques, 
three features and five datasets are presented in Table 4. For 
fair comparison purpose, the training and test samples were 
kept same for each method during every run. The average test 
accuracy values obtained over 5-runs are given in Table 4. 
Table 4 reveals that the LBP-SWT approach yielded the 
highest accuracy values using all three features than the 
counter approaches. The results obtained using SWT method 
are competent with LBP-SWT method. However, if the order 
of operation of LBP and SWT is reversed then with SWT-LBP 
approach, the accuracy results differ considerably. With LBP-
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SWT approach, the standard deviation feature attained the 
maximum test accuracy values of 97.22%, 96.08%, 95.22%, 
91.55 and 90.81% for datasets DS:66, DS:160, DS:255, 
DS:612 and DS:1836. The other two features namely energy 
and entropy proved to be more effective with LBP-SWT 
approach than the remaining two approaches namely SWT and 

SWT-LBP. Also, the LBP-SWT-std + BPNN method 
generalized well on dataset DS:1836 having larger number of 
images than other datasets. Therefore, for in further 
experimentations LBP-SWT-std + BPNN approach was 
employed. 

Table 4. Performance measures using different transforms, different features and BPNN classifier of multi-class classification 

Methods 
Datasets 

DS:66 DS:160 DS:255 DS:612 DS: 1836 
Avg. Test Accuracy (%) 

LBP-SWT-energy+BPNN 95.10 95.84 94.70 91.02 83.46 
LBP-SWT-entropy+BPNN 96.60 95.24 93.39 90.88 87.03 
LBP-SWT-std+BPNN 97.22 96.08 95.22 91.55 90.81 
SWT-LBP-energy+BPNN 73.13 65.00 54.80 60.42 64.37 
SWT-LBP-entropy+BPNN 83.47 80.63 76.49 62.87 61.26 
SWT-LBP-std+BPNN 86.81 84.00 78.55 62.00 59.43 
SWT-energy+BPNN 95.21 86.13 93.67 82.98 86.66 
SWT-entropy+BPNN 93.54  90.25 91.08  84.43 89.89 
SWT-std+BPNN 93.75 87.13  93.00 84.32 86.42 

4.1.3 Performance results of class wise classification accuracy 
The class wise classification accuracy was calculated for all 

the datasets. The plots of average classification accuracies and 
average standard deviation in accuracy values are plotted in 
the following figures. As shown in Figure 5, Glioma, Pick’s 
disease, Huntington and Sarcoma brain diseases are identified 
with 100% accuracy. 

Figure 5. Class wise classification accuracy of dataset DS:66 

As shown in Figure 6, Glioma, Alzheimer’s disease plus 
visual agnosia, Huntington and Sarcoma brain diseases are 
identified with 100% accuracy. As shown in Figure 7, Glioma, 
Alzheimer’s disease plus visual agnosia and Huntington brain 
diseases are identified with 100% accuracy. As shown in 
Figure 8, Glioma and Huntington brain diseases are identified 
with 100% accuracy. As shown in Figure 9, Huntington brain 
diseases are identified with 100% accuracy. 

Figure 6. Class wise classification accuracy of dataset 
DS:160 

Figure 7. Class wise classification accuracy of dataset 
DS:255 

Figure 8. Class wise classification accuracy of dataset 
DS:612 

Figure 9. Class wise classification accuracy of dataset 
DS:1836 
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4.2 Binary classification 

The performance measures for binary classification over 
four datasets were calculated using (LBP-SWT-std + BPNN) 
method. The results are given in Table 5. For dataset DS:66, 
with each feature the classifier could reach up to 100% 
accuracy, 100% sensitivity and 100% specificity in testing and 
training phase, as number of images is small. With increasing 

number of images of datasets DS:160, DS:255 and DS:612, 
feature standard deviation achieved better performance 
measures than energy and entropy. For dataset DS:612 having 
largest number of images, features energy and entropy could 
not model the training data with 100% accuracy and both of 
them results in poor performance measures as compared to 
standard deviation. In brief, for all datasets, standard deviation 
provides better results than energy and entropy. 

Table 5. Comparison of performance measures using different features and BPNN classifier for binary classification 

Datasets Features Testing Performance Measures 
ACC (%) SEN (%) SPE (%) PRE (%) 

Classification 

DS:66 
Energy 100 100 100 100 

Standard Deviation 100 100 100 100 
Entropy 100 100 100 100 

DS:160 
Energy 99.63 99.57 100 100 

Standard Deviation 100 100 100 100 
Entropy 99.50 99.43 100 100 

Binary 

DS:255 
Energy 99.61 99.94 97.52 99.61 

Standard Deviation 99.84 99.94 99.24 100 
Entropy 99.61 100 97.14 99.56 

DS:612 
Energy 98.79 98.90 98.04 99.7 

Standard Deviation 99.04 99.24 97.78 99.65 
Entropy 98.92 99.11 97.75 99.65 

Table 6. Comparison with existing binary classification approaches 

Paper Method Images Accuracy (%) 
[4] DWT + PCA +BPNN 66 100 
[5] RT+MGA+PCA+LS-SVM 255 99.39 
[6] FP-CNN + DWT + PCA + BPNN 101 99 
[7] DWT + BBO+ SVM 90 97.78 
[8] DWT + BBO-PSO + ANN 255 99.49 
[9] SWT + PCA + GEPSVM 255 99.41 

[10] DT-CWT+ twin SVM 255 99.57 
[11] SWT+PCA+HPA-FNN 255 99.45 
[12] DWT +GEPSVM 255 99.33 
[13] WE+BPSO+PNN 255 99.53 
[14] DWT+PPCA+ADBRF 255 99.53 
[15] SWT+ADBSVM 255 99.45 
[16] Curvelet transform+PCA+SVM 255 99.61 
[17] Combined Operator 160 100 
[18] Shearlet transform + PSO + SVM 612 97.38 

Proposed LBP + SWT + Std + BPNN 

66 100 
160 100 
255 99.84 
612 99.04 

4.3 Comparison with existing classification methods 

4.3.1 Binary classification 
In this section, the results of proposed work are compared 

with state-of-the-art techniques and tabulated in Table 6. In the 
existing methods, the researchers achieved 100% accuracy in 
case of widely used datasets DS:66 and DS:160. Also, 
promising accuracies are achieved for DS:255. However, the 
number of images used in these methods are small, so the 
study [18] introduced new dataset DS:612 consisting of 612 
images. With our proposed method, we achieved higher 
accuracy of 99.84% and 99.04% for datasets DS:255 and 
DS:612 respectively than existing methods. 

The studies [7, 8, 10, 12, 15] utilised WT and its variants 
and wavelets used were Haar and Db-4. Using these 
techniques, they decomposed MR images to the maximum 
level of 6 and they calculated statistical features like energy, 
entropy or variants over the decomposed sub-bands. 

Some of the methods [16, 18] employed transform 
techniques other than DWT namely Curvelet, Shearlet 
transforms and achieved promising results. In the proposed 
method, we used Symlet2 wavelet. Its’s smaller compact 
support is useful in detecting smaller changes in the image. 
Selection of wavelet Symlet2 (which can detect smaller 
changes in images), the transform technique SWT (which 
contains all the coefficients and the information is retained) 
and statistical values calculated over decomposed sub-bands 
compositely resulted in achieving better performance results 
than state of-the-art methods. We compared other performance 
measures with dataset DS:612. Table 7 shows that along with 
accuracy, sensitivity and specificity values are also increased 
in our proposed method as compare to dataset DS:612 of the 
study [18].  

4.3.2 Multi-class classification 
The wavelet multi-class classification is more complex than 
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binary classification and is relatively less considered in the 
previous studies. However, the diagnosis of disease type is 
very important to provide correct treatment. Table 8 
summarizes the multi-class classification results of state-of-
the-art methods. The study [45] used deep neural network to 
classify the wavelet extracted features of 4 different types of 
MR images and they achieved accuracy of 96.97% on 66 
images. The study [46] employed DWT to extract features and 
random forest as classifier. They attained 95.70% accuracy 
while classifying 6 classes of 310 MR images. However, with 
our proposed system, we achieved higher accuracy of 96.52% 

than the study [46]. The studies [45, 46] employed DWT 
technique using Haar wavelet and decomposed images to level 
3. Further, they reduced the approximate coefficients at level
3 using PCA. We could reach up to 97.22%, 96.08%,
95.22%,96.52% and 91.55% accuracies using 66, 160, 255,
310 and 612 MR images incorporating 8,8,12,6 and 25
different MR brain image classes respectively. Table 8 depicts
that with increase in the number of images and classes to
distinguish, our proposed system attained better results than
the existing methods.

Table 7. Comparison of performance measures of existing technique with dataset DS:612 

Method Images ACC (%) SEN (%) SPE (%) 
Gudigar et al. [18]: Shearlet transform + PSO + SVM 612 97.38 99.05 80.69 

Proposed method: LBP + SWT + Std + BPNN 612 99.04 99.24 97.78 

Table 8. Result of multi-class disease classification 

Paper Method Total Images Brain Disorders Total Number of Classes Accuracy (%) 
[45] DWT + PCA + DNN 66 3 4 96.97 
[46] DWT + PCA + RF 310 5 6 95.70 

Proposed method LBP + SWT + Std + BPNN 

66 7 8 97.22 
160 7 8 96.08 
255 11 12 95.22 
310 5 6 96.52 
612 24 25 91.55 

Table 9. Comparison of performance measure of BPNN architectures for dataset DS:612 

Classification Features Testing Phase ACC (%) 
In-15-10-Out In-20-15-Out In-20-20-Out 

Multi-class 
Energy 86.05 89.77 91.02 

Standard Deviation 86.08 90.98 91.55 
Entropy 84.25 89.58 90.88 

4.4 Experimentation on dataset DS:612 

4.4.1 BPNN architecture 
In multi-class classification for Dataset DS:612, total 612 

images were classified into 25 types of MR brain images.  

Figure 10. Average computation time for multi-class 
classification by using different BPNN architectures and 

features for dataset DS:612 

The resulting number of training equations was very large, 
so a single hidden layer with 15 neurons, which could achieve 
better results for other three datasets, could not model training 
data of DS:612 efficiently. So, two hidden layers with different 

combinations of neurons in first and second layer were tested. 
The hidden neurons combinations and their performance 
measures are tabulated in Table 9, which indicates input layer 
neurons and out indicates output layer neurons. Table 9 depicts 
that, with 20 hidden neurons in each layer, BPNN attained 
highest testing accuracy of 91.55% using standard deviation 
feature. The Bayesian regularization algorithm conquer the 
over fitting issue. 

All the three features achieved comparable accuracy in 
Training phase but the computation time required by energy 
feature is the largest and by standard deviation is the least. The 
computation time analysis is shown in Figure 10. The average 
computation for one image is 14.77 sec, 1.94 sec and 2.91 sec 
using energy, standard deviation and entropy feature 
respectively.  

4.5 Discussion 

The comparative results tabulated in Table 4, reveal that the 
LBP-SWT approach yielded the highest accuracy values using 
all three features than the counter methods, SWT and SWT-
LBP. With the LBP-SWT approach, the standard deviation 
feature attained more classification accuracy values in the case 
of all datasets than the energy and entropy feature, as given in 
Table 5. In the case of various architectures of the BPNN 
classifier, standard deviation values of LBP-SWT 
decomposed sub-bands have more discriminating power to 
categorize multiple brain-diseased images, as shown in Table 
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9. For the aforementioned binary and multi-class disease
classifications, Tables 6, 7 and 8 show that our proposed
method, using standard deviation as a feature, is better and
more robust than existing methods. Therefore, more accurate
identification of brain disease can be done using the proposed
brain disease descriptor (LBP-SWT + Std dev + BPNN). The
LBP-SWT approach is producing better results for MR brain
images than other proposed methods, when the images are
rotated and translated by varying degree and co-ordinates
respectively. It tells LBP-SWT feature extraction approach
can be used as rotation and translation invariant transform.
And, it can assist radiologists to improve the diagnostic
accuracy when images are rotated and translated.

5. CONCLUSION

In this paper, the LBP-SWT approach is presented for
diagnosis of MR brain Images. LBP gives details about the 
local structure of MR brain image while SWT coefficients 
provide multi-scale directional representation for brain 
abnormalities encoded in the extracted LBP descriptor. Energy, 
standard deviation, and Shannon entropy feature calculated 
from LBP-SWT image are tested on widely used four MR 
image datasets using BPNN classifier. Standard deviation¬ 
outperforms other features in terms of performance parameters 
and also in comparison with existing techniques. Standard 
deviation proved to be an efficient parameter in the case of 
LBP-SWT decomposed sub-bands of rotated and translated 
images also. Experimental results reveal proposed method is 
efficient and promising for the diagnosis of different MR brain 
abnormalities in clinical applications. 

In this work, T2-weighted MR images are used. The 
proposed method can be extended to other types of MR images, 
like proton density, T1-weighted images. Also, the proposed 
algorithm can be used for the analysis of other imaging 
modalities like MR spectroscopic imaging (MRSI), Computed 
Tomography (CT) and Positron-emission tomography (PET). 
Feature extraction and feature selection are major tasks in the 
existing CAD systems which require rigorous design 
information. The deep learning algorithms try to extract 
features directly from medical images by employing their 
hierarchical architectures. Therefore, deep learning approach 
can be widely preferred to make CAD systems 
computationally efficient, robust which will assist radiologists. 
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