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The burgeoning demand for wireless networking and its associated applications has 

spurred academic endeavors to devise more efficient routing protocols. Wireless sensor 

networks (WSNs) operating on battery power, grapple with constraints such as quality of 

services (QoS) issues, energy dissipation, processing overhead, and link failures. 

Preserving the QoS is paramount for WSNs, as it directly impacts data transmission and 

overall network performance, rendering them unsuitable for real-time applications. So, 

this paper introduces a secure energy-efficient optimal routing framework. It is designed 

using Bayesian network and an Elicit Genetic Algorithm (EGA). The proposed model goal 

is to mitigate routing issues, enhance the QoS, and optimize energy efficiency. Path 

selection involves learning information about node/network connectivity and availability, 

enabling the derivation of disjoint paths without shared communication components. The 

simulation is done using the network simulator 2 tool to demonstrates the proposed routing 

protocol effectively facilitates communication by elevating quality of services, reducing 

energy consumption, and ensuring suitability for real-time applications. The evaluation of 

network communication effectiveness employs performance parameters such as end-to-

end delay, throughput, energy dissipation, and packet loss, highlighting the robustness and 

efficiency of the proposed framework. 
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1. INTRODUCTION

The rapid expansion of wireless communication networks 

and associated applications has sparked a resurgence in 

research and industry efforts to develop more effective and 

resilient routing methods [1] to meet escalating demands. In 

the contemporary human existence, a communication system 

is indispensable, enabling users to share both known and 

undiscovered information, facilitating informed decision-

making. However, there is a growing need for advancements 

in network computing and decision-making processes to 

enhance the quality of service in communication [2]. This 

involves ensuring timely, reliable, and energy-efficient 

communication among the network nodes. With the 

proliferation of internet of things (IoT) and machine-to-

machine (M2M) communication, wireless communication 

protocols have become foundational for facilitating real-time 

data transfer across nodes to support efficient energy decision-

making [3, 4]. These applications have expanded to 

encompass Big Data analytics, corporate communication, 

monitoring and control, and enhanced observational methods. 

Among the various proposed network models, wireless sensor 

networks (WSNs) have emerged as a prominent solution [5]. 

WSNs, known for their decentralized and infrastructure-less 

communication approach, consist of multiple sensor nodes 

distributed throughout the network. These nodes collaborate to 

relay detected data from source to sink nodes through one or 

more hops [6]. However, the dynamic natured network and the 

varying conditions of nodes often impact transmission 

efficiency, leading to challenges such as connection 

interruptions, congestion, packet loss, and the need for 

retransmissions. These issues result in increased energy 

consumption, thereby reducing the network's lifespan and 

compromising QoS standards. Both quality of service [7] and 

quality of experience (QoE) are critical aspects in traditional 

communication frameworks, necessitating WSNs to ensure 

optimal information transmission. Additionally, as WSNs 

operate on battery power, prudent routing decisions are 

essential to minimize packet loss, retransmission rates, and 

subsequent node failures, thereby maximizing network 

longevity. 

In proposed research, we have developed a robust 

evolutionary computing (EC)-aided routing mechanism for 

dynamic network-aware routing decisions in WSNs. 

evolutionary computing, inspired by biological systems, 

encompasses a family of global optimization algorithms. 

Genetic algorithms, a type of EC [8] algorithm, that mimic 

biological evolution processes. These algorithms offer optimal 
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solutions for global problems, making them suitable for 

optimizing routing in WSNs to minimize energy consumption. 

Within the realm of EC, including Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO), Agent-based 

modeling, distribution algorithms, multi-phase evolution, and 

artificial immune systems, are employed. Genetic algorithms, 

renowned for their ability to generate optimal solutions 

through the production of multiple individuals and the 

evaluation of fitness functions, are particularly noteworthy in 

this context. 

The GA [9] initiates with a population of random 

chromosomes, each consisting of genes represented as binary 

digits. Through iterative processes involving mutation, 

crossover, and selection operators, the algorithm guides the 

population towards the optimal solution. There are variations 

such as steady-state GA and EGA, where one or two 

individuals from the population are replaced in each 

generation or every individual is replaced in every generation, 

respectively. Additionally, in the initialization phase, the 

communication radius between nodes, represented by the 

distance threshold, is set. Parent selection, a crucial step in the 

algorithm, involves identifying parents for producing 

offspring in the next generation through mating and 

recombination processes. Overall, this EC-based approach 

offers a promising solution for optimizing routing decisions in 

WSNs, thus enhancing energy efficiency and network 

performance. 

The primary objective of this research is to enhance the 

longevity of energy-stressed networks by minimizing the 

power consumption of sensor nodes. In Wireless Sensor 

Networks (WSNs), the critical issue of energy scarcity 

necessitates innovative approaches to optimize the utilization 

of available resources. Various techniques, including topology 

management, smart routing, sleep cycle scheduling, and 

clustering, can be employed to mitigate power consumption 

within the network. Given the energy constraints in WSNs, 

where constant battery replenishment is challenging, this 

research concentrates on the development of energy-efficient 

routing technologies. The aim is to extend the operational life 

of WSNs by implementing strategies such as multi-sink 

repositioning, cluster-based reliable routing, and QoS-

enhanced routing. 

The proposed approach is designed to address such 

challenges based on the concept of disjoint paths with 

minimum or no-connected components. However, 

formulating such a routing model can pose a challenge as it 

falls into the realm of NP-hard problems. This entails 

dynamically learning node and network parameters and 

predicting a set of paths with minimal or no shared 

components. With this objective in mind, this paper presents a 

robust Optimal Routing Framework assisted by a Bayesian 

network and an EGA. The proposed EGA model adapts to the 

connectivity and availability of nodes as the objective function 

to derive the fully disjointed paths. EGA prioritizes low-

connectivity loss and high availability of neighboring nodes to 

construct the Fully Disjointed Paths, while minimizing the 

number of hops and shared components. In the event of 

adversarial conditions like the presence of malicious nodes or 

node failure along a path, the model seamlessly switches to an 

alternate path, ensuring timely data transmission without 

requiring the retransmission of the entire dataset.  

This work encompases the introduction of an advanced 

routing protocol, the incorporation of clustering and EGA 

techniques, the achievement of superior performance metrics, 

and the broad applicability of the protocol across diverse 

wireless sensor network domains. These contributions 

collectively advance the state-of-the-art in optimizing routing 

protocols. 

 

1.1 Research contributions 

 

The primary contributions of this study are outlined as 

follows: 

 

 Introduction of an Optimal Path-Routing protocol 

aimed at enhancing the efficacy of wireless sensor 

networks. 

 Integration of a clustering protocol and an elaborate 

genetic algorithm to facilitate efficient routing design, 

ensuring the utilization of fully disjoint paths. 

 Provision of enhancements in packet-delivery ratio, 

throughput, reduction in end-to-end delay, and 

minimization of energy consumption when compared 

to current protocols. 

 Furthermore, the versatility of this protocol allows its 

application across various wireless sensor network 

domains, including healthcare applications and 

environmental monitoring, ensuring optimal and 

energy-efficient routing solutions. 

 

1.2 Structure of the paper 

 

The subsequent sections of the paper are outlined as follows: 

Section 2 delves into the existing body of work, followed by 

an exploration of research questions. Section 3 provides a 

detailed discussion of the identified issues, along with an 

overarching framework proposal and its implementation. The 

simulation outcomes and comparative results are presented in 

Section 4, while Section 5 wraps up the entire proposed work 

by offering concluding remarks on its outcomes. The 

references are listed in the final section of the paper. 

 

 

2. MATERIALS AND METHODS 

 

Recent strides in wireless sensor networks have been 

significantly influenced by the integration of machine learning 

[10] techniques, especially in combating the energy depletion 

issue prevalent in these networks. A plethora of routing 

protocols and methodologies have emerged, highlighting the 

critical importance of bandwidth and power efficiency. 

Researchers have proposed and evaluated numerous ML-

based mechanisms aimed at optimizing routing protocols to 

conserve power in these networks. The latest generation of 

sensor devices showcases heightened intelligence, efficiency, 

and longevity, boasting extended lifespans and diminished 

power consumption [11]. However, sensor nodes still grapple 

with power depletion stemming from suboptimal routing, 

presence of outliers in routing paths, or multiple shared nodes 

in forwarding paths. Several researches have designed various 

optimal routing schemes utilizing machine learning, data 

mining, and soft computing techniques. 

For instance, in the study [12], cluster head selection hinges 

on traffic priority data and energy levels to establish the routes 

for data transmission. The study [13] introduces the energy 

efficient cluster-based routing algorithm, employing K-means 

clustering [3], optimal route selection, energy-based 

communication, and a mechanism for alternating between 
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cluster heads [4] to enhance energy efficiency and network 

lifespan. Furthermore, the efficacy of EEDLABA is evaluated 

through a model for energy consumption and path loss, 

utilizing nine sensor nodes deployed on a human body [14]. 

The study [15] proposes a multicast routing protocol 

integrating reinforcement learning and modified transmission 

back-offs and acknowledgments, showcasing successful 

implementation of ML algorithms to resource-constrained 

devices. 

Hu and Fei [10] resolve the issues related to propagation 

delay and power consumption in underwater wireless sensor 

nodes through a machine-learning approach. Hendriks, et al., 

[16] introduce the Q-learning-based energy-efficient and 

lifetime-aware routing protocol. This balanced routing 

protocol distributes routing responsibilities across all sensor 

nodes, leveraging hierarchical routing to optimize energy 

usage. Additionally, an energy-efficient shortest-path Q-

routing algorithm based on reinforcement learning to prolong 

network lifetime. 

The inherent dynamic topology of wireless sensor networks 

[17] adds complexity to the routing mechanism, posing a 

significant challenge. Another vital aspect is the need to 

minimize resource consumption during routing. To address 

these challenges, a support vector machine-based clustering 

method was introduced [18]. This method strategically 

allocates nodes to the closest cluster head to reduce energy 

consumption. A novel approach [19] proposes a Naive 

Bayesian-based classification method to predict traffic load 

and energy levels along selected paths. Estimating link costs 

among nodes is crucial for routing, and the study [20] suggest 

a machine learning-based approach to calculate these costs. To 

prolong network lifetime, Masoud et al. [21] introduce the 

hybrid clustering routing protocol-hole detection (HCRP-HD), 

focusing on hole and edge detection to reduce sensor node 

energy consumption. The sink node spearheads this detection, 

leading to the network's transformation into multiple rings 

designed to minimize energy consumption from direct 

transmission. 

In recent research, a diverse array of ML techniques has 

been harnessed to solve the energy depletion challenge 

pervasive in wireless sensor networks. Notably, the latest 

generation of sensor devices boasts enhanced intelligence, 

efficiency, and longevity, yet they still grapple with energy 

depletion stemming from suboptimal routing and the presence 

of outliers in routing paths. Several studies have explored ML-

driven routing schemes, aiming to optimize energy 

consumption and prolong network lifespan. For example, in 

the study [22], the user-specific optimal capacity shortest-path 

(US-OCSP) routing protocol utilizes machine learning to 

determine the shortest path considering node capacity and 

distance, effectively avoiding congested nodes using the Q-

learning algorithm. Unlike traditional routing algorithms 

requiring high bandwidth, this method conducts on-demand 

route discovery and proactively updates routes to enhance 

throughput and bitrate. Additionally, Hendriks et al. [23] 

introduce a novel Q-learning-based algorithm that prioritizes 

packets in different traffic classes to address QoS concerns in 

reinforcement-learning-based algorithms. This algorithm 

routes packets via distinct routes, enhancing QoS parameters. 

Another noteworthy approach is the Energy-Centric Route-

Planning (ECRP) method proposed [24], which balances 

sensor node lifetime and routing security by considering 

individual and cooperative nodes' energy requirements. 

Furthermore, Yang et al. [25] combines reinforcement 

learning with Blockchain technology to propose an efficient 

and secure routing scheme. Here, Blockchain ensures the 

immutability of routing information, while reinforcement 

learning dynamically selects more trusted and efficient links. 

The integration of machine learning with routing protocols is 

a prevalent trend in recent research. For instance, Yao et al. 

[26] introduces a load-balanced routing protocol based on 

machine learning, utilizing Principal Component Analysis and 

neural networks to predict network queue status and make 

intelligent routing decisions. Similarly, Ghaffari [27] proposes 

a Q-learning-based method to mitigate end-to-end delay by 

predicting network node behavior patterns. Additionally, 

Strykhaliuk et al. [28] presents a genetic algorithm-based 

routing protocol that efficiently identifies unhealthy nodes, 

thus minimizes energy dissipation and computational time. 

Other approaches, such as the clustering-based routing 

protocol proposed [29], aim to extend network lifetime by 

segmenting the network as clusters with designated cluster 

heads for efficient data transport. 

Furthermore, protocols like the Multi-Objective Multi-Hop 

Routing (MOMHR) protocol introduced [30] and the Chicken-

Dragonfly (CHicDra) optimization algorithm proposed [31] 

focus on optimal routing and secure routing, respectively, 

utilizing machine learning techniques to enhance network 

performance and security. The literature also explores various 

challenges and concerns in energy-efficient routing, including 

data processing, node re-energization, QoS maintenance, 

scalability, protection, and intrusion detection. Outliers remain 

a significant challenge in WSNs, leading to abnormal behavior 

and security threats. However, recent advancements in ML-

driven routing protocols offer promising solutions to these 

challenges, paving the way for more efficient and secure 

wireless sensor networks. 

 

 

3. PROPOSED METHOD 

 

The proposed work is designed to mitigate significant 

constraints such as energy exhaustion and network lifetime 

issues. WSNs often face node death, leading to 

communication loss, data drop, and retransmissions, resulting 

in delays and energy depletion. To address these challenges 

and improve QoS and energy efficiency, research aims to 

establish a stable and effective EC-assisted WSN routing 

protocol. This proposed protocol incorporates Bayesian 

network with the FDDP model, supported by EC specifically, 

the Elitist Genetic Algorithm, which identifies dual-disjoint 

paths without shared segments to ensure QoS-centric and 

energy-efficient routing. The research objectives 

accomplished through this research include developing 

techniques for energy-efficient WSNs, ensuring low 

processing overhead for data transmission, and designing an 

optimal routing protocol using EC algorithms. 

The overall proposed structures and their systematic 

implementation are primarily discussed in this section. As 

previously discussed, the primary goal of this study is to use 

dynamic node/network mining to make the best routing 

decisions possible. The EGA based FDDP aims to use 

different node parameters to allow a dual-disjoint path with 

less shared nodes/links for efficient and QoS communication. 

The proposed method employs a network mining concept to 

make dynamic routing decisions, it is vital to understand key 

network/node parameters. 
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3.1 EGA based FDDP 

 

The proposed routing protocol detects malicious nodes and 

aims to prevent their impact by employing a novel FDDP 

mechanism to ensure reliable data delivery. The EGA based 

FDDP model integrates dual objectives. Node parameters like 

minimal hops, minimal energy consumption, high 

connectivity, and availability are utilized in the model to 

determine the optimal dual-disjoint forwarding routes while 

avoiding malicious nodes. In this system, the FDDP operates 

using a logical AND gate configuration, with the second path 

remaining in a standby condition and activated as an alternate 

forwarding path in case of node failure or malicious node 

detection. This approach enhances overall transmission 

reliability and efficiency to meet the demands of wireless 

sensor networks.  

 

3.1.1 Maintaining low-hop counts  

The proposed model aims to achieve QoS-centric and 

energy-efficient WSN routing by maintaining low hop counts 

to ensure high connectivity and availability for reliable 

transmission. Unlike traditional distance-based shortest path 

models that prioritize minimum hop counts, the model utilizes 

EC (specifically, the EGA) to explore node and network 

parameters and generate a set of paths with optimal 

connectivity, availability, and minimal shared components. 

This approach involves pruning the complete set of paths to 

form paths from the source to the destination in a graph. While 

the Dijkstra algorithm typically increases path lengths by 

adding new hops to neighboring nodes, the proposed approach 

considers all connecting nodes for forwarding path selection, 

especially when forming multiple paths. During pruning, if 

multiple paths converge at the same intermediate sensor node, 

only the two best forwarding paths are selected, while the 

others are removed. By selecting the best forwarding path with 

improved connectivity and hop counts, the proposed approach 

enhances reliability and energy efficiency compared to the 

classical Dijkstra algorithm. Additionally, it effectively 

reduces the search space, thereby decreasing overall 

computation and associated energy consumption.  

 

3.1.2 Ensuring minimum shared components  

To ensure reliable data delivery in the face of random node 

death or link loss, the proposed EC-assisted FDDP model 

focuses on obtaining two-disjoint routes with maximum 

availability and minimal connectivity loss. The key emphasis 

is on leveraging node and network-link availability to achieve 

this objective. After performing shortest path planning or 

topological optimization, the Evolutionary Genetic Algorithm 

aims to identify paths with minimal shared components and 

cost, as lower shared components indicate lower cost. Due to 

the probabilistic nature of link availability in WSNs, the total 

path availability cannot be accurately predicted based solely 

on the availability of connected sensor nodes. To address this, 

a first-order approximation concept is applied to estimate path 

and node unavailability. In the proposed method, a Genetic 

Algorithm is utilized as a heuristic algorithm to identify the 

best two disjoint paths with minimal connectivity loss, high 

availability, and minimal or no shared components. 

Simulations are conducted using the Monte Carlo method to 

estimate dynamic topology and network conditions, including 

uncertainties. This approach enables robust routing decisions 

in WSNs by considering probabilistic network characteristics 

and uncertainties. 

3.2 Model deployment using Bayesian network 

 

The proposed model leverages dynamic node parameters, 

including node and network availability and connectivity, to 

optimize forwarding path selection while safeguarding against 

malicious nodes. Availability denotes the duration a node and 

its corresponding link remain active, while connectivity 

signifies the duration a node stays connected to peers or other 

nodes. Connectivity loss reflects the likelihood of a node 

disconnecting from its supplementary or alternate forwarding 

path. Prioritizing higher connectivity and availability 

facilitates energy-efficient and QoS-centric communication. 

The model continuously utilizes these parameters to identify 

optimal forwarding paths, positing that paths with fewer hops 

exhibit greater link availability and connectivity, thus 

supporting reliable transmission. Additionally, the model 

emphasizes minimizing shared components in FDDP to 

enhance reliability across WSNs. To achieve these objectives, 

the model employs an EC approach, specifically a Genetic 

Algorithm, to optimize forwarding path selection and routing 

decisions for reliable communication in WSNs. 

In deploying the WSN network, the model accounts for the 

probabilistic nature of node behavior by adopting Bayesian 

principles. It constructs a directed acyclic graph where each 

connected node represents a random variable. Direct links are 

established to facilitate the calculation of combined 

probability distributions, obtained as the product of each 

node's conditional probability in the graph, thereby forming a 

Bayesian network. The deployed WSN network can be a 

hierarchical network with multiple layers containing sensor 

nodes, links, branches, paths, and connectivity. Noticeably, in 

the deployed network, the term called "Node and/or allied 

Link" signifies that the variable about a node can only be one 

when available or able to communicate. Suppose a node is not 

available to make communication. In that case, it is labeled as 

"0" in the Bayesian network model. "Branch" states that a node 

in Bayesian network deployment can be "1" only when the 

connected nodes and allied links are available, else it is labeled 

as "0". Similarly, "Path" signifies that each corresponding 

sensor node is liable to provide a reliable path connecting the 

source to the best forwarding paths generated. The other layer 

of the Bayesian network, "Connectivity," states the 

connectivity between the selected nodes to constitute the best 

forwarding path. In such network deployment, one assumption 

always prevails that the availability of a sensor node is always 

independent of the other. 

Similarly, the availability of a link is always independent of 

others. In the proposed model, the likelihood of the first layer 

is characterized by the availability of each node or link. Path 

availability or link availability can be calculated by considered 

the formula L = 𝑎𝑟𝑔 min 𝑐(L), where L is the link availability 

and C(L) is the cost function used for each path. On the 

contrary, the 2nd and 3rd layers hypothesize a deterministic 

model signifying any connection or path can work only when 

its connected sensor nodes function. In other words, a path can 

work only when its conditional probability is 1. In this manner, 

the proposed routing model obtains the path variables. The 4th 

layer of the Bayesian model variable signifies the service state 

of the node, signifying 1 when the node is connected to the 

forwarding path or not (i.e., 0). Thus, with respective 

conditional probability values, obtained the node connectivity 

and availability information, which has been later employed to 

obtain the link-outage probability to obtain FDDP as an 

optimal routing solution. Though the deployed network being 
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probabilistic avoids deriving any sophisticated algorithm 

development for link connectivity and availability estimation, 

however considering an optimal knowledge transfer, a snippet 

of the mathematical approach involved is given in the 

subsequent sections. 

To perform data transfer, the proposed model aims to obtain 

an optimal set of the best forwarding path R connecting the 

source sensor node n0 to the destination nf. This path consists 

of a sequence of nodes 𝒩 = {n0  … … . nf}   and their 

corresponding link availability and quality, 𝛿 =

{e0,1, … … . ef−1,f}. Here, ei,i+1 shows the communicating path 

between a node ni  and adjucent node ni+1 . As mentioned 

previously, an optimal path can only be established when all 

connected sensor nodes are available, and their respective 

links are present (i.e., equal to "1"). Therefore, the available 

path can be obtained as following Eq. (1): 

 

𝔸r(𝒫) = ∏ 𝔸n  

f

j=0
(nj) ∏ 𝔸e 

f−1

k=0
(ek,k+1 ) (1) 

 

With (8), the paths that are unavailable can be calculated 

using (2).  

 

Ur (𝒫) = 1 −  𝔸r (𝒫)

=  1 −  ∏ 𝔸n  

f

j=0
(nj) ∏ 𝔸e (ek,k+1 )

f−1

k=0
 

(2) 

 

Given the current conditions of WSNs where more powerful 

battery solutions or permanently connected power sources 

result in reduced link or node unavailability, we can consider 

using a "First-Order Approximation (FOP)" to estimate node 

or link unavailability. When used far from the point of 

linearization, in systems with significant nonlinearities, or in 

the presence of significant disturbances, FOP may result in 

errors even if it provides a straightforward and 

computationally efficient method. By avoiding unavailability 

in Eq. (2), we can obtain node or link unavailability as follows: 

 

Ur (𝒫) = 1- ∏ (1 −f
j=0  Un  ( nj))  ∏ (1 −f−1

k=0

 Ue (ek,k+1 )) ≈ ∑ Un
f
j=0 (nj)  +  ∑ Ue 

f−1
k=0 (ek,k+1 ) 

(3) 

 

Eq. (3) presents an additive unavailability model, where the 

cumulative impact of introducing a supplementary node 

increases unavailability of the added node or corresponding 

link. This model is considered more reliable than classical 

non-additive models. In the additive model, the unavailability 

of the entire path or network is calculated by summing up the 

individual unavailabilities of each node or link along the path. 

This provides a more comprehensive understanding of the 

overall unavailability, taking into account the combined 

impact of multiple nodes or links being unavailable. This 

additive approach is advantageous because it captures the 

cumulative effect of node or link unavailability, providing a 

more accurate representation of the network's reliability. 

Additionally, it allows for easier analysis and prediction of 

network performance under varying conditions. 

Node connectivity represents the probability of one 

forwarding path from the source to the sink is available. 

Specifically, a node n0 is considered connected to the 

forwarding path only when it is linked to the initial node 

n0, and at least one path connecting source to destination is 

active or available. To assist QoS-centric reliable transmission, 

each transmitter node constitutes two disjoint forwarding 

paths. Noticeably, it intends to form dual disjoint paths with 

minimum or no shared component(s). and at least one path 

connecting the source to the destination is active or available. 

To facilitate QoS-centric reliable transmission, each 

transmitter node establishes two disjoint forwarding paths. 

Notably, the objective is to create dual disjoint paths with 

minimal or no shared components. This approach enhances 

network robustness by ensuring redundancy and resilience in 

data transmission, thereby improving overall reliability and 

quality of service. 

Let the forwarding paths for a transmitting sensor node n0 

be 𝒫0 , …….𝒫K−1  and 𝒫k
̅̅ ̅  be the links from 𝒫k . Thus, the 

connection path can be defined as (4). 

 

C (n0) =  𝔸 (𝑛0)𝔸 (⋃ 𝒫𝑘
̅̅̅̅𝐾−1

𝑘=0 )𝔸(𝐶)  (4) 

 

In Eq. (4), the second term represents the availability of the 

set of sub-forwarding paths. Even if the terminal node is active, 

the transmitting node n0   would still be unreachable if the 

routes 𝒫k
̅̅ ̅ fail. Considering this condition, and assuming that 

node and corresponding link failures are independent in nature, 

the availability is estimated as shown in Eq. (5). Eq. (5) takes 

into account the possibility of both node and link failures 

affecting the availability of the forwarding paths, providing a 

more comprehensive assessment of the overall network 

reliability. 

 

C (n0) =  𝔸 (𝑛0)𝔸 (⋃ 𝒫𝑘
̅̅̅̅𝐾−1

𝑘=0 )𝔸(𝐶)  (5) 

 

Let {nk,0, … … … . nk, fk} be the sensor nodes and their allied 

links in path 𝑘 be { ek,1,2 … . . , nk, fk−1, fk} with condition (nk,0 

= n0 y nk, fk = C), the node and allied link unavailability are 

obtained using (6).  

 

𝑈𝑟  (𝒫𝑘)̅̅ ̅̅ ̅ = 1 −

 𝔸𝑟  (𝒫𝑘) = 1 − ∏ 𝔸𝑛
𝑓𝑘−1
𝑖=1  (𝑛𝑘,𝑖) ∏ 𝔸𝑒

𝑓𝑘−1
𝑗=0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 (𝑒𝑘,𝑗 ,𝑗+1)  

(6) 

 

Applying (4)-(6), the eventual connectivity for a transmitter 

node n0 is estimated (7). 

 

𝐶(𝑛0) = 𝔸 (𝑛0)𝔸(𝐶)  ×  (1 − ∏ (1 −𝐾−1
𝑘=0

 ∏ 𝔸𝑛
𝑓𝑘−1
𝑖=1  (𝑛𝑘,𝑖) ∏ 𝔸𝑒

𝑓𝑘−1
𝑗=0  (𝑒𝑘,𝑗 ,𝑗+1)))  

(7) 

 

Noticeably, the proposed EC model utilizes this information 

or analyzes these node statistics to derive optimal dual disjoint 

forwarding paths with minimal or no shared components for 

routing decisions. Initially, the proposed model assesses 

shared components (or nodes shared across multiple paths 

from source to destination) to accomplish this. A snippet of the 

shared component estimation is provided below. 

 

3.2.1 Shared component estimation  

Node-connectivity with disjoint nature can be achieved by 

decoupling the significance of the shared components and 

corresponding links. Let ℛ0  and ℛ1  be the two forwarding 

paths. Then the connectivity is estimated. 

 

𝐿 (𝑛0)  ≈  ∑ 𝑈𝑛
𝑓
𝑗𝜖𝛷𝑛

 (𝑛𝑗) +  ∑ 𝑈𝑒 
𝑓−1
𝑘𝜖𝛷𝑒

(𝑒𝑘,𝑘+1) +

 (∑ 𝑈𝑛 (𝑖𝜖𝛷𝑛,0
𝑛0,𝑖)   + ∑ 𝑈𝑒  (𝑗𝜖𝛷𝑒,0

𝑒0,𝑗,𝑗+1 ))  ×

 (∑ 𝑈𝑛 (𝑖𝜖𝛷𝑛,1
𝑛1,𝑖)   +  ∑ 𝑈𝑒  (𝑗𝜖𝛷𝑒,1

𝑒1,𝑗,𝑗+1 ))  

(8) 
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In (8), Φn  and Φe present the sets of shared components, 

while the non-shared features are Φn, and Φe,i (in path i). Now, 

employing 1st -order approximations in terms of unavailability, 

obtain the connectivity loss (9).  

Now, realizing the fact that the non-shared links typically 

do not impact the loss probability causing packet drop or 

retransmission probability, it is estimated as (11). 

 

𝐿𝐿 (𝑛0)  ≈  ∑ 𝑈𝑛
𝑓
𝑗𝜖𝛷𝑛

 (𝑛𝑗) +  ∑ 𝑈𝑒 
𝑓−1
𝑘𝜖𝛷𝑒

(𝑒𝑘,𝑘+1)  (9) 

 

Upon reviewing Eqs. (10) and (11), it becomes evident that 

in the proposed EC model, a dependable source-destination 

pair naturally possesses dual-disjoint forwarding paths, 

without necessitating the utilization of any shared components. 

The approach employed by the EC model, based on GA, 

focuses on making routing decisions exclusively within 

clusters of sensor nodes exhibiting minimal connectivity loss 

probability. This algorithm, termed EC-GA, optimizes 

network performance by treating connectivity loss probability 

(CLP) as the primary objective or fitness function. 

Consequently, paths characterized by the lowest connectivity 

loss probability are prioritized as feasible candidates for FDDP. 

A comprehensive exposition on the EC-FDDP model and its 

network optimization strategies is elaborated in subsequent 

sections. 

 

3.2.2 EGA based FDDP and network optimization 

As detailed in preceding sections, the proposed EGA-FDDP 

model leverages the link-connectivity and availability 

parameters discussed earlier to determine an optimal set of 

FDDP for reliable data transmission. The EC model employs 

the link-connectivity loss parameter as a cost function, serving 

as its objective function in identifying suitable forwarding 

paths. By exploring the search space encompassing all feasible 

paths, the EC model aims to derive FDDP configurations with 

minimal or no shared components. This iterative process 

entails continually refining FDDP by introducing additional 

hop sensor nodes and evaluating their connectivity probability 

values. Iterations persist until the likelihood of discovering 

superior routes diminishes significantly. 

The targeted optimization of the network unfolds in two 

phases: FDDP route selection and pruning. With each iteration 

indexed by k, identifying a dependable path entails the 

elimination of alternative paths from S_k, prioritizing those 

exhibiting low-cost features in terms of connectivity and 

availability. Consequently, this approach not only facilitates 

QoS-centric routing but also mitigates computational 

overhead and conserves energy resources. The proposed EC-

based model achieves this optimization by estimating a 

function termed "Cost-Function c(P)" for every potential path 

P. Subsequently, the optimal set of paths is determined 

leveraging Eq. (10). 

 

𝐿𝒫∗ = 𝑎𝑟𝑔 min
𝑅

𝑐(𝒫)  (10) 

 

To estimate the cost function 𝑐(𝒫) , we begin by 

considering �̅� as one of the connecting links or forwarding 

paths formed by extending R, an incomplete route, with a 

suitable zero-unavailability connection. It's noteworthy that 

path R terminates at node 𝑛𝑓  in this configuration. For any 

complete forwarding path 𝑀𝑖 ∈ 𝑆𝑘 , let 𝐿(�̅�,  𝑀𝑖) denote the 

connectivity loss for the source node 𝑛0. Then, the average 

connectivity loss can be calculated using Eq. (11): 

�̃�(𝒫) =
1

𝑁𝑐
∑ 𝐿(�̅�, 𝑀𝑖)

𝑁𝑐
𝑖=1   (11) 

 

In a dynamic network scenario, where the link-loss 

increment may be inevitable for a path 𝒫, we reformulate the 

cost function as follows 

 

𝑐(𝒫) = �̃�(𝒫) + 𝐸(𝒫)  (12) 

 

Interestingly, the second component 𝐸(𝒫)  in Eq. (13) is 

calculated using the average loss per connection over all path 

pairs: 

 

𝐸(𝒫) =
1

𝑁𝑐

∑ 𝐸(𝒫, 𝑀𝑖)
𝑁𝑐

𝑖=1
 (13) 

 

where, 

 

𝐸(�̅�, 𝑀𝑖) =
�̃�(𝑀𝑖)

𝜆
𝑑(𝑛𝒫, 𝑛𝑓) (14) 

 

To obtain distance values, we utilize a graph matrix A with 

components 𝑎𝑖𝑗 , where 𝑎𝑖𝑗 = 1  when the relation between 

node i and node j is active, otherwise 𝑎𝑖𝑗 = 0 and 𝑎𝑖𝑖 = 1. 

Using these conditions, we construct a matrix 𝐵(𝑘) as shown 

in Eq. (15): 

 

𝐵(𝑘) = 𝔸𝑘 (15) 

 

where, 𝐵(𝑘) has components 𝑏𝑖𝑗(𝑘), which represent the total 

number of paths to get from node i to node j with less than k 

hops. If 𝑏𝑖𝑗(𝑘) = 0, it indicates that there is no feasible path 

from i to j in k hops. Therefore, we obtain the shortest path 

from node i to node j using Eq. (16): 

 

𝑑(𝑖, 𝑗) = min
𝑏𝑖𝑗(𝑘)>0

{𝑘} (16) 

 

Eq. (16) implies that the cost of d(i,j) is the smallest value 

of hops k with 𝑏𝑖𝑗(𝑘)>0. 

 

Step 1: Chromosome and Population Initialization 

In the Genetic Algorithm representation of the sensor 

network chromosome, each chromosome is encoded as a string 

of numbers corresponding to the sensor nodes. The length of 

each chromosome is determined by the maximum number of 

sensor nodes in the path direction. In our proposed model, the 

sensor nodes are enumerated as n1, n2, ..., nf, denoted by the set 

N. Initially, the population is initialized with each 

chromosome representing a valid path. The positions of nodes 

play a crucial role in constructing the initial routing, achieved 

through population initialization. A list, Np, is created initially, 

containing all one-hop neighbors q→p, linking every q∈Np to 

transmit data from the source node p to the destination (base 

station) through q. This information is then utilized to generate 

the initial populations by randomly selecting the next-hop 

node q∈Np for each node p to design potential routes, i.e., 

chromosomes. 

 

Step 2: Fitness Function 

After the formation of new individuals, the fitness value for 

each chromosome must be calculated, as it plays a vital role in 

the selection process to form a mating pool. The fitness value 

is determined based on the lifetime of the sensor network, 

1552



 

treated as a cost function C(P). For individual excellence, the 

fitness function is defined as follows (Eq. (17)): 

 

𝒫∗ = 𝑎𝑟𝑔 min
𝑅

𝑐(𝒫) (17) 

 

To achieve this, our proposed EC-based model estimates a 

function called the "Cost-Function C(P)" for each possible 

path P. Consequently, the optimal set of paths is obtained by 

utilizing this function. The following mechanism is introduced 

to estimate the cost function C(P). Consider 𝒫∗ to be one of 

the connecting links or forwarding routes, an incomplete route 

via an efficient zero-unavailability relation, formed by 

extending R. Notably, in this configuration, the path R is 

connected to the node 𝑛𝑓. 

 

Step 3: Selection and Crossover 

The selection of individuals is performed using roulette 

wheel selection to construct the mating pool. Individuals with 

more advantageous characteristics within the context of the 

roulette wheel have a higher probability of being selected. In 

this process, the uniform crossover operator is employed to 

generate new offspring. Through the mutation of two parents, 

a pair of offspring is produced via standardized crossover, with 

the expectation that they will exhibit improved fitness 

compared to their parents. 

 

Step 4: Mutation 

To address the issue of premature convergence, the genetic 

diversity of the population is maintained through mutations. 

During mutation, the pth gene is altered by a neighboring node 

of node Ni, ensuring that the individuals remain valid. 

 

Step 5: Elicit Genetic Algorithm for Routing 

The model implements an Elicit genetic algorithm for 

routing in WSNs. The Elicit GA incorporates Elicit by 

dividing the mating pool into two groups: Group-1 and Group-

2. Group-1 comprises 20% of individuals with the highest 

fitness advantages, including copies for subsequent 

generations. Group-2 consists of the remaining 80% of 

individuals. Additionally, 10% of individuals are randomly 

generated as mutants for the next generation. 

In the Elicit Genetic Algorithm, the parameterized uniform 

crossover operator is employed, to generate offspring. This 

crossover operator randomly selects the first parent from 

Group-1 (Smallest Group) and the second parent from Group-

2 (Largest Group). Elicit is integrated into the Elicits GA to 

preserve the best individuals from one generation to the next, 

ensuring that the fittest individuals are consistently enhanced 

across successive generations. 

 

 

4. RESULTS AND DISCUSSION 

 

The EGA-FDDP model introduced in this study leverages 

node and link availability and connectivity to establish 

innovative dual-disjoint forwarding paths (FDDP). Its primary 

aim is to achieve dual-disjoint path selection while ensuring 

enhanced connectivity, minimal hop counts, and minimal or 

no-shared components. There is a strong emphasis on 

maintaining low hop counts to decrease the probability of drop 

or link-outage, ensuring successful data delivery to the 

destination node even in scenarios of potential connection 

failure or node loss, without necessitating retransmission or 

iterative node discovery. 

In contrast to prior studies relying on conventional distance 

parameters such as Dijkstra or Euclidean distance, the 

proposed model employs the Elitist Genetic Algorithm (EGA), 

a form of EC algorithm, to establish optimal FDDP based on 

information regarding link availability and connectivity. This 

methodology aims to provide both QoS assurance and energy 

efficiency. The NS2 architecture platform is employed for 

implementing the proposed WSN routing model. To assess the 

of the proposed EGA-FDDP compared to a recently proposed 

EC approach known as Cuckoo Search and Harmony Search 

(HS) based routing protocol for WSNs, we conducted 

evaluations of both methods. While the EGA-FDDP focuses 

on achieving optimal forwarding paths with minimal hop 

counts and ensuring data delivery without retransmission, the 

Enhanced Cuckoo Search and HS-based routing protocol 

primarily target energy efficiency by identifying optimal 

forwarding nodes and paths in multi-hop transmission 

scenarios.  

The performance of the proposed model is based on the EC 

concept evaluated in terms of throughput, data loss, energy 

consumption, and delay. The results obtained from NS2-based 

simulated outputs were further analyzed using MATLAB, as 

illustrated in Figures 1 to 4. The proposed model was 

implemented using the NS2 development platform with 

specific simulation variables and experimental setup values, 

including a network size of 49 nodes deployed over a WSN 

dimension of 100x100, IEEE 802.15.4 Mac and PHY 

protocols, radio signal range, carrier frequency, antenna 

specifications, and various other parameters. Figure 1 

demonstrates the throughput variation between the proposed 

routing protocol and different existing mechanisms. The 

proposed model consistently achieved higher throughput (96-

98%) even with increasing network size compared to GA, 

EGA, and iCSHS. 

 

 
 

Figure 1. Node density vs throughput 

 

 
 

Figure 2. Node density vs packet loss rate 
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Figure 2 shows the packet loss rate comparison the 

proposed routing protocol and different existing mechanisms 

like GA, EGA, iCSHS. Packet loss was significantly reduced 

in the proposed model, attributed to the avoidance of malicious 

nodes in the forwarding path and the selection of paths based 

on parameters such as high node availability and link 

availability. 

Figure 3 displays the energy consumption comparison the 

proposed routing protocol and different existing mechanisms 

like GA, EGA, iCSHS. The proposed model exhibits lower 

energy consumption due to its low computational complexity 

compared to iCSHS. 

The proposed model exhibits lower energy consumption 

due to its low computational complexity compared to few 

existing mechanisms Figure 4 shows the comparison of end to 

end dalay of the proposed model and the existing three 

mechanisms like GA, EGA, and ICSHS. 

 

 
 

Figure 3. Node density vs energy dissipation 

 

 
 

Figure 4. Node density vs delay 

 

Overall, the proposed EGA-FDDP paradigm demonstrated 

better reliability, higher transmission success rate, lower 

energy consumption, and reduced end-to-end delay compared 

to GA, EGA, iCSHS. These attributes make the proposed 

system well-suited for contemporary WSN-based 

communication systems. 

 

 

5. CONCLUSION 

 

This research paper presents the development of a novel EC 

algorithm termed EGA. The algorithm aims to enhance fault 

resilience and energy efficiency in WSNs. The main goal of 

this study is to utilize network and node connectivity, as well 

as link availability, for dual disjoint path estimation. The 

method, named EGA-based FDDP selection, is devised to 

enable dependable and QoS-focused communication across 

WSNs. This strategy underscores the probabilistic nature of 

WSNs and seeks to identify two optimal forwarding paths with 

minimal shared components, thereby reducing computational 

overhead while ensuring robust reliability and QoS 

provisioning. The proposed model strives to mitigate packet 

drop probability and retransmissions, ultimately enhancing 

QoS and energy efficiency. Through the utilization of dynamic 

network parameters and adaptive routing decisions, the 

proposed routing approach demonstrates its adaptability. 

Simulations conducted using Network Simulator indicate that 

the proposed routing protocol outperforms the native IEEE 

802.15.4 protocol standard in terms of throughput and packet 

loss, while maintaining backward compatibility and suitability 

for real-time routing solutions. Future research could explore 

spatio-temporal features based on network dynamics and 

utilize various classifiers or machine learning techniques to 

leverage the spatial and temporal behavior of nodes for outlier 

detection. The derived outlier patterns could then be translated 

into actionable insights to facilitate expedited routing 

decisions without the need for repeated detection processes. 
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