
 

 

1. INTRODUCTION 
 

Magneto-fluid-dynamics or hydro-magnetics is a field of 
research which analyzes the dynamics of electricity 
conducting fluids such as plasmas, liquid metals and salt 
water. The term magnetohydrodynamics (MHD) is a 
combination of magneto (magnetic field), hydro (liquid) and 
dynamics (movement of particles). The magnetic field 
induced current flows in a dynamic fluid and creates forces on 
the fluid. Some important applications of radiative heat 
transfer include MHD accelerators, high temperature plasmas, 
power generation systems and cooling of nuclear reactors. 
Many processes in engineering areas occur at high 
temperatures and knowledge of radiation heat transfer 
becomes very important for the design of pertinent 
equipment. The heat transfer analysis of boundary layer flow 
with radiation is also important in electrical power generation, 
astrophysical flows, solar power technology, space vehicle re-
entry and other industrial areas. Some significant applications 
of MHD flow and/or heat transfer over a stretching sheet can 
be found in [1-6]. 

A nanofluid is the combination of simple fluid and nano-
sized particles uniformly suspended in the fluid. The 
nanoparticles used in nanofluids are typically made of metals 
(Al, Cu), oxides (Al2O3), carbides (SiC), nitrides (AlN, SiN) 

or nonmetals (graphite, carbon nanotubes) and the base fluid 
is usually a conductive fluid, such as water (as in this study) 
or ethylene glycol. Nanoparticles range in diameter between 
1-100 nm. Experimental studies have shown that nanofluids 
commonly need only contain up to a 5% volume fraction of 
nanoparticles to ensure effective heat transfer enhancements 
[7]. Nanofluids offer many diverse advantages in application 
such as microelectronics, fuel cell, nuclear reactors, 
biomedicine and transportation. Important work on the 
boundary layer flow of a nanofluid over a stretching sheet has 
been reported by Khan and Pop [8], Rana and Bhargava [9] 
conducted similar research for a nonlinear stretching sheet, 
Mabood et al. [10] reported MHD boundary layer flow and 
heat transfer of nanofluids over a nonlinear stretching sheet. 
Numerous researchers [11-16] reported related studies for 
linear/nonlinear stretching sheet. 

Boundary layer flow of non-Newtonian fluids [17-23] has 
gained much attention of the recent researchers. It is because 
of its wide applications in the industrial and engineering 
processes. In non-Newtonian fluids, the most commonly 
encountered fluids are pseudoplastic fluids. The study of the 
boundary layer flow of pesudoplastic fluids is of great interest 
due to its wide range of application in industry such as 
extrusion of polymer sheets, emulsion coated sheets like 
photographic films, solutions and melts of high molecular 
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ABSTRACT 

 
An analysis is performed for magnetohydrodynamics (MHD) Williamson nanofluid flow over a continuously 
moving heated surface with thermal radiation and heat source. The governing partial differential equations 
are transformed into self-similar ordinary differential equations using similarity transformations. The 
obtained self-similar equations are solved by finite difference method using quasilinearization technique. 
Mathematical analysis of various physical parameters is presented in graphs. The impact of physical 
parameters on skin-friction coefficient, reduced Nusselt and Sherwood numbers are shown in tabular and 
graphical form. Furthermore, comparison of the present analysis is made with the previously existing 
literature and an appreciable agreement in the values is observed for the limiting case. 
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weight polymers, etc. To explain the behaviour of 
pseudoplastic fluids many models have been proposed like 
the power law model, Carreaus model, Cross model and Ellis 
model, but little attention has been paid to the Williamson 
fluid model. Williamson [24] discussed the flow of 
pseudoplastic materials and proposed a model equation to 
describe the flow of pseudoplastic fluids and experimentally 
verified the results. Irene and Giambattista [25] obtained 
perturbation solutions for pulsatile flow of a non-Newtonian 
Williamson fluid in a rock fracture. Influence of inclined 
magnetic field on peristaltic flow of Williamson fluid model 
in an inclined symmetric or asymmetric channel reported by 
Nadeem et al. [26]. Vajravelu et al. [27] investigated the 
peristaltic transport of a Williamson fluid in asymmetric 
channels with permeable walls. Later, Nadeem et al. [28] 
discussed the peristaltic flow of a Williamson fluid in an 
asymmetric channel. 

It is evident from the previous literature works that no 
attempt has been done by the researchers to analyze the flow 
behavior of Williamson nanofluid in the presence of radiation 
and heat source. The relevant boundary layer equations are 
modeled for Williamson nanofluid.  In order to examine the 
validity of results they are compared with the published data 
for some special cases. Effects of important physical 
parameters have been discussed through graphs and tables. 
 
 

2. MATHEMATICAL FORMULATION 
 

We consider a steady two dimensional flow of an 
incompressible MHD Williamson nanofluid over a horizontal 
heated surface. Where x and y- axis are taken along horizontal 
and vertical direction respectively, so that nanofluids confined 
to y>0. The plate is stretched along x-axis with the velocity 

nax , where a>0 is stretching parameter and n is the stretching 

index. It is assumed that the surface is heated due to 
convection of hot fluid below the surface. A space varying 

magnetic field (0, ( ),0)B B x  is applied along the transverse 

direction of the flow. The fluid is assumed to be slightly 
conducting, so that the magnetic Reynolds number is much 
less that unity and hence the induced magnetic field is 
negligible in comparison to the applied magnetic field. The 
general transport equations for nanofluid are given by 
Buongiorno [29] 
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where in steady state the velocity vector is given by V(u(x,y), 

v(x,y),0),  is nanofluid density, p  is nanoparticle density, S 

is Cauchy stress tensor, b is body force vector, c is the heat 
capacity of nanofluid, cp is heat capacity of nanoparticles, T is 
temperature, k is nanofluid thermal conductivity, DB is 
Brownian diffusion coefficient, C is nanoparticle volumetric 

fraction, DT is thermophoretic diffusion coefficient and T  is 

ambient fluid temperature. For Williamson fluid model 
Cauchy stress tensor S is defined in (Dapra [30]) as 
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In above equations,  is extra stress tensor, 0  is limiting 

viscosity at zero shear rate and  is limiting viscosity at 

infinite shear rate, 0   is a time constant, A1 is the first 

Rivlin-Erickson tensor and  is defined as  
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Here, we considered the case for which 0   and 

1.   Thus equation (6) can be written as    
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or by using binomial expansion we get 
 

 0 11 ,A                     (9) 

 
The interaction of magnetic field and velocity will give rise 

to the Lorentz force JxB defined in equation (10), in which J 
is the current density and  is the electrical conductivity. In 

the absence of electric field E = 0.  
 

 J E V B                  (10) 

 
Since we have considered the steady state velocity so all 

the derivatives w.r.t are zero. Making use of equations (5), (9) 
and (10) in equations (1)–(4) two dimensional boundary layer 
equations governing the flow are given by 
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where u(x,y) and v(x,y) are horizontal and vertical 
components of velocity,  is kinematic viscosity and   is 

nanofluid thermal diffusivity. The magnetic field is chosen as 

1

0( ) nB x B x  . The corresponding boundary conditions to 

the flow problem are  
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Using Rosseland approximation for radiation, the radiative 

heat flux is simplified as, 
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where σ* is Stefan–Boltzmann constant and k* the mean 
absorption coefficient. The temperature differences within the 
flow are assumed to be small enough so that T4 may be 
expressed as a linear function of temperature T using a 

truncated Taylor series about the free stream temperature T , 

and neglecting the higher order terms we get,  
 

4 3 34 3T TT T                 (17) 

 
Substituting (16) and (17) in (13), we have 
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In boundary conditions k is thermal conductivity, Tf is the 

temperature of the hot fluid and h is the convective heat 
transfer coefficient. Introducing the following transformations 
in above equations 
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With the help of above transformations, equation (11) is 

identically satisfied and equations (12) (14) and (18) along 
with boundary conditions (15) take the following form 
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Mathematically, Schmidt number Sc can be written as 
 

.Pr
B B

Sc Le
D D

  


                                                   (23) 

 
With the help of equation (23), equation (22) can be written 

as 
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The corresponding boundary conditions are 
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Since we are interested in the study of heat transfer 

enhancement, so it is better to introduce the effects of thermal 
diffusivity in nanoparticle equation with the help of Le and 
Pr. Also it will enhance the coupling effects of heat and 
nanoparticle equation. Finally, equations (17), (18) and (21) 
form the non-dimensional system of equation with 

corresponding boundary equations given in (22). For 0  , 

problem reduces to the one for Newtonian nanofluid and for 
DB = DT = 0 in equation (13), heat equation reduces to the 
classical boundary layer heat equation in the absence of 
viscous dissipation. Physical quantities of interest for the 
present study are skin-friction coefficient, reduced Nusselt 
number Nu and local Sherwood number Sh. 
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or by introducing the transformations (16), we get 
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3. NUMERICAL METHOD 
 

Equations (20), (21) and (24) subject to the boundary 
conditions (25) were solved numerically using an implicit 
finite difference method with quasi-linearization technique. 
The details of the method can be found in Inoyue and Tate 
[31], and Bellman and Kalaba [32]. The effects of the 
emerging parameters on the dimensionless velocity, 
temperature, concentration, and, heat and mass transfer rates 
are investigated. The step size and convergence criteria were 
taken as 0.001   and 10-6 respectively. The asymptotic 

boundary conditions in equation (25) were approximated by 

using a value of 10 for the similarity variable max as follows 

 

max 10  ,      10 10 10 0f      .                            (28)  

 

The choice of max 10   ensures that all numerical 

solutions approached the asymptotic values correctly.  
 
 

4. RESULTS AND DISCUSSION 
 

In order to investigate the physical representation of the 

problem, the numerical values of velocity  ( )f  , 

temperature  ( )   and concentration  ( )   have been 

computed for resultant principal parameters as the magnetic 

field parameter M, non-Newtonian Williamson parameter  , 

stretching index parameter n, Biot parameter Bi, heat source 
parameter Q, radiation parameter R, Lewis number Le, heat 
capacities ratio Nc and diffusivity ratio Nbt respectively. In 
order to test the accuracy of the present method, our results 
are compared with those of Rana and Bhargava [9], Cortell 
[13], Zaimi et al. [14], Khan and Pop [8], Wang [15] and 
Gorla and Sidawi [16] (for reduced cases) and noticed that 
there is an excellent agreement, as shown in tables 1 and 2. 
Throughout the calculations, the parametric values are fixed 
to be M = 1.0, n = 0.5, 0.2Nc R Q     , Nbt = Le = 

2.0, Pr = 6.2, Bi = 1.0, unless otherwise indicated. 
Figure 1 is drawn to examine the impact of magnetic field 

parameter M on the nanofluid velocity. It is observed that, the 
velocity profile decrease with increase in magnetic field 
parameter. Equation (10) involves the cross product of 
velocity vector and magnetic field vector, it will give rise to 
Lorentz force which is perpendicular to the velocity vector 
and magnetic field vector. This force will act as a resistive 
force to the fluid flow which will ultimately slow down the 
fluid velocity. It is also clear that the momentum boundary 
layer thickness decreases with increase in magnetic field 

parameter M. Figs. 2 and 3 demonstrate the effect of magnetic 
field parameter on nanofluid temperature and nanofluid 
concentration profile when other parameters are kept 
constant. Temperature profile increases with the increase in 
magnetic field parameter M (Fig. 2). Nanofluid contains the 
nano-sized particles whose motion is affected by the applied 
magnetic field. These particles act as the energy carrier to the 
fluid causing the increase in nanofluid temperature. Magnetic 
field is zero, when no external magnetic field is applied. We 
can also see that thermal boundary layer is increasing with the 
increase in magnetic field parameter. Concentration boundary 
layer increases with the increase in M as seen in Fig. 3. When 
the value of M increases it excites fluid particles motion 
which will diffuses quickly into the neighboring fluid layers 
due to the enhanced Brownian motion.  

Figures 4 and 5 illustrate the nanofluid velocity and 
nanofluid temperature for different values of the Non 

Newtonian Williamson parameter  . It is found that the 

velocity decreases as the Non Newtonian Williamson 
parameter increases (Fig. 4). From Fig. 5, it is observed that 
temperature profile increases with an increase in the Non 
Newtonian Williamson parameter. 

The influence of stretching index n on the velocity and 
temperature profiles is shown in Figs. 6 and 7 respectively. 
From Fig. 6, it is observed that the velocity decreases with the 
increasing stretching index parameter. Fig. 7 shows that 
temperature profiles increases with the increasing values of 
stretching index parameter n. 

Figures 8 and 9 demonstrate the nanofluid temperature and 
nanofluid concentration (volumetric fraction) for different 
values of Biot number Bi. We can see that the temperature at 
wall is varying with Bi because of convective boundary 
conditions. When Bi approaches to infinity the temperature 
boundary condition at wall reduces to the case of constant 
wall temperature. Thus convective boundary conditions are 
more generalized as compare to the constant wall temperature 
condition. The graph also depicts that as the Bi approaches to 
100, temperature attain the Biot number is the ratio of the 
convection at the surface to the conduction within the surface. 
Thus large Biot number implies stronger convection at the 
surface and small Biot number implies stronger conduction 
within the surface. Temperature graph against Bi also predicts 
this behaviour, the fluid temperature increases with the 
increase in Bi. Also thermal boundary layer increases with the 
increase in Bi (Fig. 8). From Fig. 9 we can also see that 
nanofluid concentration is increasing with the increase in Bi. 

The effects of diffusivity ratio Nbt on temperature and 
concentration fields are presented in Figs. 10 and 11 
respectively. Nbt cannot be chosen equal to zero because Nbt 
appears in the denominator of both Eq. (18) and (22). 
Buongiorno [29] defined the parameter Nbt to discuss the 
relative effect of Brownian diffusion to thermophoretic 
diffusion, we followed the same parameter. It is observed that 
temperature profile and thermal boundary layer decrease with 
increase in Nbt. when Brownian diffusivity is very large as 
compared to thermophoretic diffusivity, temperature profile 
only shows very small variation (Fig.10). Fig. 11 it is seen 
that concentration also decreases with increasing Nbt. 

For different values of the Lewis number Le on the 
nanofluid temperature and nanofluid concentration are 
illustrated in Figs. 12 and 13 respectively. Temperature as 
well as concentration profile decrease with the increase in Le. 
Le cannot be chosen equal to zero because Le appears in the 
denominator of the Eq. (18). Physically Le cannot equal to 
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zero since it is ratio of thermal diffusivity to Brownian 
diffusion. 

The effect of heat capacities ratio Nc on the temperature 
profile is studied in Fig.14. It is observed that temperature 
and thermal boundary layer thickness increases with the 
increase in Nc. If we look at the definition of Nc, it is ratio of 
heat capacity of nanoparticles and nanofluid. Usually the 
specific heat cp of nanoparticles is less than that of base fluid 
because typically specific heat of solid is less than that of 
liquids. So addition of solid particles will decrease the 
specific heat of base fluid, hence temperature profile 
decrease. 

Figure 15 displays the nanofluid temperature distribution 
for different values of radiation parameter R. The 
consequence is stable for all distances into the boundary layer 
and validates the advantage of employing thermal radiation in 
nano-scale-materials dispensation processes. Through 
growing radiation temperature in the nanofluid is significantly 
intensified. R represents the comparative contribution of 
thermal radiation heat transfer to thermal conduction heat 
transfer. Subsequently thermal radiation augments the thermal 
diffusivity of the nanofluid, for increasing values of R heat 
will be added to the regime and temperatures will be 
increased. 

For different values of the heat source parameter Q on the 
nanofluid temperature distribution is displayed in Fig. 16. It is 
noticed that, heat generation parameter enhances the 
temperature leading to an increase in the thickness of the 
thermal boundary layer. 

The variations of skin friction coefficient versus magnetic 
field parameter M is plotted in Fig.17 for different values of 

non-Newtonian Williamson parameter   in presence of 

stretching index number n while other parameters are kept 
fixed. It is evident from the Fig. 17 that the skin friction factor 
increases with increasing the values of non-Newtonian 
Williamson parameter, stretching index parameter and 
magnetic field parameter. Generally speaking, the effects of 
the magnetic field are to increase the skin friction factor and 
reduce the thickness of the hydrodynamic boundary layer. 

Figures 18 (a) and (b) are demonstrated to show the 
influence of various parameters on the Nusselt number. In 
particularly, the simultaneous effects of magnetic field 
parameter, Biot number Bi and diffusivity ratio Nbt are shown 
in Fig. 18(a). It is observed that an increase in magnetic field 
parameter and diffusivity ratio causes the rate of heat transfer 
to decrease, on the contrary Nusselt number increases with 
increasing Biot number. The effects of heat generation, heat 
capacities ratio and radiation parameter on Nusselt number is 
studied in Fig. 18(b).  From this figure it is noticed that the 
rate of heat transfer decreases with increasing heat generation, 
radiation and heat capacities parameter. 

Figure 19 depicts the variation of Sherwood number with 
respect to the Lewis number Le for different values of 
radiation parameter R and diffusivity ratio Nbt. From this 
figure, one may observe that the rate of mass transfer 
increases with increasing the values of radiation parameter 
and diffusivity ratio. 

Table 4 presents the numerical values of the skin friction 
coefficient, the reduced Nusselt number and reduced 
Sherwood number for nanofluids for various values of the 

non-Newtonian Williamson parameter  , magnetic field 

parameter M, radiation parameter R, heat generation 
parameter Q, heat capacities ratio Nc, diffusivity ratio Nbt, 
and Biot number Bi. 

 

It is seen from the table that the values of skin friction 
coefficient increases with increasing the values of non-
Newtonian Williamson parameter and magnetic field 
parameter. It is also observed that the magnitude of heat 
transfer rate at the wall decreases with increasing the values 
of the non-Newtonian Williamson parameter, magnetic field 
parameter, radiation parameter, heat generation and heat 
capacities ratio. On the contrary it increases with increasing 
the values of diffusivity ratio and Biot number. It is also seen 
from the table 4 that the rate of mass transfer increases with 
an increase in the magnetic field parameter, radiation 
parameter, heat generation, heat capacities ratio and 
diffusivity ratio. On the other hand, increasing the values of 
non-Newtonian Williamson parameter and Biot number 
results in reducing rate of mass transfer. 
 

Table 1. Comparison of   0  for  Pr  and n  values 

when 0,Nc Q M R Bi       

 

Pr  n   Rana and 
Bhargava [9] 

Cortell [13] Zaimi et al. 
[14] 

Present 
results 

1 
 
 
 
 
 
 
5 
 
 
 
 
 
 

0.2 
0.5 
1.5 
2.0 
3.0 
4.0 
10.0 
0.2 
0.5 
1.0 
1.5 
2.0 
3.0 
10.0 

0.6113 
0.5967 
0.5768 
- 
0.5672 
- 
0.5578 
1.5910 
1.5839 
- 
1.5496 
- 
1.5372 
1.5260 

0.610262 
0.395277 
0.574537 
- 
0.564472 
- 
0.554960 
1.607175 
1.586744 
- 
1.557463 
- 
1.542337 
1.528573 

0.61131 
0.59668 
0.57686 
0.57245 
0.56719 
0.56415 
0.55783 
1.60757 
1.58658 
1.56787 
1.55751 
1.55093 
1.54271 
1.52877 

0.61021 
0.59520 
0.57474 
0.57015 
0.56467 
0.56150 
0.55489 
1.60778 
1.58678 
1.56801 
1.55769 
1.55109 
1.54318 
1.52893 

 

Table 2. Comparison of Nusselt number   0  when 

0,Nc M Q R Bi        and 1n   

 

Pr   Khan and 
Pop [8] 

Wang 
[15] 

Gorla and 
Sidawi [16] 

Present 
result 

0.7 
2 
7 
20 
70 

0.4539 
0.9113 
1.8954 
3.3539 
6.4621 

0.4539 
0.9114 
1.8954 
3.3539 
6.4622 

0.4539 
0.9114 
1.8905 
3.3539 
6.4622 

0.4539 
0.9113 
1.8954 
3.3539 
6.4622 
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Figure 1. Effects of M on dimensionless velocity 
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Figure 2. Effects of M on dimensionless temperature 




(

)

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0.0

0.4

0.8

1.2

Nbt = Nc = Q =  = R = 0.2, n = 0.5

Le = 2, Pr = 6.2, Bi = 1

M

 
 

Figure 3. Effects of M on dimensionless concentration 
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Figure 4. Effects of λ on dimensionless velocity 
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Figure 5. Effects of λ on dimensionless temperature 
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Figure 6. Effects of n on dimensionless velocity 
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Figure 7. Effects of n on dimensionless temperature 
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Figure 8. Effects of Bi on dimensionless temperature 
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Figure 9. Effects of Bi on dimensionless concentration 
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Figure 10. Effects of Nbt on dimensionless temperature 
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Figure 11. Effects of Nbt on dimensionless concentration 
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Figure 12. Effects of Le on dimensionless temperature 
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Figure 13. Effects of Le on dimensionless concentration 




(

)

0 0.5 1 1.5 2 2.5 3

0

0.21

0.42

0.63

0.84

0.0

0.1

0.2

0.3

Bi = M = 1, Q = 0.4, n = 0.5

Nbt = Le = 2, Pr = 6.2,  = R = 0.1

Nc

 
 

Figure 14. Effects of Nc on dimensionless temperature 
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Figure 15. Effects of R on dimensionless temperature 
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Figure 16. Effects of Q on dimensionless temperature 
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Figure 17. Effects of M, λ and n on skin friction coefficient 
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Figure 18. Effects of M, Nb, Bi, Q, R and Nc on Nusselt 
number 
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Figure 19. Effects of M, λ and n on Sherwood number 
 
 

6. CONCLUSION 

 
The effects of thermal radiation and heat source on the 

MHD Williamson nanofluid flow over a non-linearly 
stretching surface with convective boundary conditions are 
investigated. The self-similar equations are obtained using 
similarity transformations. The self-similar equations are 
linearized by the quasilinearization technique and are then 
solved by finite difference method.  Mathematically it is 
appropriate to introduce product of Lewis number and Prandtl 
number instead of Schmidt number in the nanoparticles 
volumetric fraction equation. The study reveals that duo to 
increase of the magnetic field parameter and non-Newtonian 
Williamson parameter the momentum boundary layer 
thickness reduces and the thermal boundary layer thickness 
increases. The temperature as well as the thermal boundary 
layer thickness decrease with increasing values of diffusivity 
ratio. The effects of Lewis number and diffusivity ratio were 
found to decrease the temperature and concentration profiles. 
The skin friction factor increases with as the non-Newtonian 
Williamson parameter and magnetic field parameter increase. 
Nusselt number is increase with Biot number and decrease 
with the radiation and heat source parameters. Both heat 
source and heat capacities ratio tend to enhance Sherwood 
number. 
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NOMENCLATURE 
 
a        Stretching parameter 
B Magnetic field ( N/(mA)) 
b        Body force (N) 
Bi Biot number 
C Nanoparticles volumetric fraction 
c        Specific heat (J/kg K) 
DB Brownian diffusion coefficient (m²/s) 
DT Thermophoretic diffusion coefficient (m²/s) 
E     Electric field (N/C) 
h        Convective heat transfer coefficient (W/m² K) 
I      Identity tensor 
J     Current density (A/m²) 
i,j      Indexing variable 
k       Nanofluid thermal conductivity (W/m K) 

*k          mean absorption coefficient 

M    Magnetic parameter 
n       Stretching index 
Nu   Local Nusselt number 
p      Pressure (N/m²) 
Pr   Prandtl number 
qr           radiation heat flux 

*Q         heat generation constant 

Q           heat generation parameter 
Re   Local Reynolds number 
S            Cauchy stress tensor (N/m²) 
Sc   Schmidt number 
Sh     Local Sherwood number 
T       Temperature of fluid (K) 
t        Time (s) 
u      Horizontal component of velocity (m/s) 
V       Velocity vector (m/s) 
v       Vertical component of velocity (m/s) 
x  Distance along the plate 

 

Greek symbols 

 
σ    Electrical conductivity (S/m) 

*          Stefan–Boltzmann constant 

ν      Kinematic viscosity (m²/s) 
α            Thermal diffusivity (m²/s) 
ρ     Density (kg/m³) 
η     Similarity variable 
λ     Non Newtonian Williamson parameter 

 

Subscripts 

 
B    Brownian motion,  
T   Thermophoresis 
∞    Infinity,     
p    nanoparticles,     
w           Wall    
m           Iteration number 
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