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The high rate of growth in the number of IoT devices has resulted in more than a billion 

interconnected things exchanging data, creating new security threats. Traditional security, 

when facing advanced cyber-attacks, especially in the era of quantum computing, is 

getting weaker. This paper explains novel way methods, a combination of post-quantum 

blockchain technology and deep learning to improve security on IoT networks. With the 

correct preparations in place, such as implementing post-quantum cryptography, which is 

secure against quantum attacks, your data remains confidential, and integrity-related 

issues are protected. It is a distributed framework that blockchain technology has been 

using to secure IoT communications since tamper resistance and transparency in the 

environment are key. At the same time, deep learning algorithms capable of processing 

large amounts of data allow for more sophisticated ways to detect and respond to threats 

quicker than before. In this article, we will explain how a mixture of these technologies 

can be applied in the framework that allows building such robust cyber defense systems 

for IoT networks. Post-quantum blockchain is integrated for secure communication 

channels and immutable transaction records, ongoing traffic monitoring using deep 

learning models that are able to dynamically update threat detection signatures instantly. 

We perform an in-depth system architecture analysis, illustrating blockchain's 

decentralized security and deep learning predictive analytics. The possibility of a practical 

integration received 95 percent success. The paper evaluates PQCrypto, Blockchain, and 

Deep Learning technically to get quantized accuracy, efficiency, and the possibility of a 

practical integration. It received 95% percent success.  
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1. INTRODUCTION

The term AIoT (Artificial Intelligence of Things) 

encompasses the Internet era that has dramatically changed 

people’s lives. This ecosystem ranges from consumer 

electronics IoT to industrial IoT, smart home appliances, 

healthcare, smart cities, and transportation devices, all of 

which are well-connected and capable of intelligently 

communicating. As this enforces creativity and convenience, 

it also invites the problem of security. With billions of IoT 

devices expected by 2020, the risk vector has significantly 

increased, imposing safety risks and thus requiring effective 

risk mitigation strategies. Therefore, conventional security 

solutions have been seen to be inadequate when facing today’s 

and tomorrow’s complex forms of cyber threats. This is made 

more complex by the fact that IoT devices have to run on lower 

privileged hardware resources, including computation and 

memory; hence, traditional security protocols will not work. 

Providing such massive and heterogeneous network demands 

solution approaches different from conventional networking 

solutions due to the inherent limitations of IoT networks. As 

much as machine learning and artificial intelligence put 

tremendous pressure on IoT, quantum computing remains one 

of the most formidable threats to the security of IoT. These 

make classical cryptographic algorithms such as the RSA and 

ECC susceptible to attack by quantum cryptography. This 

highlights why there is a need to come up with better post-

quantum cryptographic solutions that will enable IoT device 

security against such threats. One of the most exciting 

solutions for the IoT security challenge is blockchain 

technology which provides safe and reliable communication 

and data protection. Thus, blockchain reduces the number of 

single points of failure while keeping the messages secret. But 

there are definite drawbacks of this method, including, but not 

limited to, scalability and how resource hungry the technology 

is. Proof-of-concept implementations found in IoT devices are 

still distant from implementing hardened blockchain solutions 

that would be capable of resisting quantum attacks, which is 

thus of paramount importance to develop lighter, efficient 

protocols. Artificial intelligence, with specific reference to 

deep learning, is one of the brilliant approaches to solving the 

troubles with cyber threats and recognizing the underlying 

patterns. IoT security systems can then use a deep learning 

model to study the behavior of the system, analyze the traffic, 

and gain insights on prompting early detection of threats. 

Iteratively integrating blockchain and deep learning for IoT 

security results in a powerful real-time system that can handle 

sophisticated security threats. The developed project 
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incorporates a post-quantum blockchain and deep learning to 

build an IoT security model. The second part of the blockchain 

component addresses the post-quantum demand and 

establishes the cryptographic strongness of IoT networks 

against quantum attacks and interferences. At the same time, 

the deep learning component is mostly prevention-oriented as 

it seeks to train models for normal network traffic, allowing it 

to immediately identify traffic patterns that may be signs of 

threats. This combination solves the cryptographic threats 

caused by quantum computing and improves the security of 

IoT systems against new-generation security threats. When 

implemented, the proposed framework will enable post-

quantum cryptography to protect data and integrate threat 

intelligence into deep learning, thereby creating an optimized 

IoT ecosystem. Although issues like scale and resource 

constraints remain present, there are also opportunities, as 

embedding these sophisticated technologies offers a way of 

addressing these challenges and enhancing the reliability of 

IoT networks. To this end, this study points to the necessity for 

continued growth and the advancement of new approaches to 

security systems that are suitable to the current and future 

reality of ever-changing threats in cybersecurity and for IoT-

specific requirements. Our research objective is the following: 

 

• To build a viable IoT security model incorporating post-

quantum blockchain to mitigate quantum-influenced 

cyber hazards in IoT but rare with IoT devices’ limits on 

space and computing power. 

• To improve the effectiveness of the proposed deep 

learning-based methods for threat recognition in IoT 

networks by dynamically detecting suspicious actions in 

a network in real-time to prevent probable cyber threats. 

 

Organize the paper as follows: Section 2 to describe the 

related work; Section 3 to proposed methodology; Section 4 to 

results analysis; Section 5 to conclusion, and future work. 

 

 

2. RELATED WORKS 

 

This study presents a post-quantum blockchain-based 

framework to protect IoT networks using deep learning. It 

studies the most recent algorithms in quantum-resistant 

cryptography and discusses how blockchain can help ensure 

data integrity. In addition, this paper explores deep learning 

models for anomaly detection and suggests their superiority 

level in terms of fortifying the cyber defense components 

toward next-gen quantum treatments on the IoT ecosystem. 

Wang et al. [1] offered data registration, provenance, and 

traceability in the art market with transparency and privacy. 

We remain impartial and objective throughout our review, 

which highlights that the ArtChain platform is compliant and 

viable. Full implementation sources of our system are 

available publicly on Github for the community and potential 

future researchers. 

Yang et al. [2] proposed a method to alleviate the 51% 

attack problem using history-weighted information about 

miners and their total calculation difficulty. According to an 

analysis of the method's heart, this new approach makes a 

traditional attack two orders more expensive. 

Frauenthaler et al. [3] worked around the issues mentioned 

above; we propose a new relay solution with a validation-on-

demand pattern plus economic incentives for operating cross-

chain relayers between blockchains based on Ethereum, which 

can reduce the cost of each operation by up to 92%. This relay 

scheme enabled decentralized interoperability between 

blockchains (e.g., Ethereum to Ethereum Classic). 

Fitwi et al. [4] found that the Lib-Pri system turns the 

deployed VSS into a federated blockchain network that 

performs integrity checks, blurred key management, attribute 

sharing, and video access permission enforcement. The edge 

devices enforce policy-based measures to protect privacy, 

such as those needed for real-time video analytics, without 

impacting network traffic. 

Kuzlu et al. [5] found that the version of the Hyperledger 

Fabric platform is deployed to be able to afford 100,000 

participants concurrently on an AWS EC2 instance. So long as 

the transaction rate is < 200 transactions per second, network 

latency will be in terms of a few tens of milliseconds. 

Davenport and Shetty [6] began laying the foundation of our 

proposed model and then explained why and how our methods 

are valid. We then continue with the next steps in our work 

and what we intend to realize alongside larger goals and 

motivation for ways. 

Yu et al. [7] given its low cost of transferring value, 

blockchain can enable the data from smart devices to be 

commoditized. The work of this paper is designing an efficient 

blockchain platform that makes use of the distributed network 

architecture and intelligent devices node mapping technology 

to achieve decentralized autonomy for an IoT [1F83] [2210] 

device by implementing the PBFT-DPOC consensus 

algorithm. 

Guo et al. [8] found that data deposit & garment trade credit 

service systems and personal credit management (mask) were 

designed for blockchain technology, then a study of contract 

dredging& project task coordination mechanism (for example, 

the single window customs)-contract divergence as well as 

fund administration from above their security. And last, the 

project of blockchain-based electric power engineering). 

Table 1 summarizes the key aspects of each study, 

highlighting the methods used, their benefits, drawbacks, and 

the research gaps that could guide future investigations. 

 

Table 1. Comparative analysis 

 
Ref. Methods Advantages Disadvantages Research Gap 

[8] 

Integration of blockchain 

technology into electric power 

project management systems 

Enhanced transparency, 

traceability, and security in project 

management 

Limited scalability and high 

energy consumption 

associated with blockchain 

systems 

Exploration of more energy-

efficient blockchain protocols 

tailored for large-scale electric 

power projects 

[9] 

Development of a taxonomy for 

blockchain-based software 

systems 

Provides a comprehensive 

classification framework, aiding in 

better understanding of blockchain 

applications 

Lacks practical case studies to 

validate the proposed 

taxonomy 

Need for empirical studies to test 

and refine the taxonomy in diverse 

real-world scenarios 
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[10] 

Application of a decision tree 

algorithm to assess the security of 

blockchain-integrated devices 

Provides a structured approach for 

evaluating security vulnerabilities 

in blockchain devices 

The decision tree model might 

oversimplify complex security 

issues 

Inclusion of more advanced 

machine learning models to 

improve the accuracy of security 

assessments 

[11] 

Use of high-frequency ultrasound 

and FRET live-cell imaging for 

visualizing intracellular calcium 

transport 

Allows real-time and non-invasive 

visualization of intracellular 

processes 

High cost and technical 

complexity of the equipment 

required 

Further optimization of the 

imaging technique for broader 

biological applications 

[12] 

Development of a 3D frequency 

thermal network model for 

reactors under high power/high-

frequency conditions 

Provides accurate thermal analysis, 

enhancing reactor performance and 

safety 

Complexity in modeling and 

simulation may limit practical 

implementation 

Simplification of the model for 

easier integration into existing 

reactor systems 

[13] 

Ultrasonic and ultra-high 

frequency signals for detecting 

self-healing discharge in 

capacitors 

Improves the reliability and 

longevity of capacitors by early 

detection of faults 

Requires specialized 

equipment and may not be 

applicable to all capacitor 

types 

Exploration of alternative 

detection methods that are more 

universally applicable to various 

capacitor designs 

 

 

3. METHODOLOGY  

 

In a bid to protect IoT networks, post-quantum 

cryptography with blockchain tech and deep learning have 

been proposed. This approach presents an abstract structure 

that aims to enhance cybersecurity on IoT ecosystems, using 

powerful cryptographic technologies for reliable [14], 

identification and insulation of authorized entities from 

erroneous ones, combined with record-immutable techniques 

(e.g., blockchain) and intelligent anomaly detection. The first 

step of this approach deals with the incorporation of post-

quantum cryptographic algorithms. Since quantum computing 

is evolving, traditional encryption methods become vulnerable 

risking the security of IoT networks [15].  

 

 
 

Figure 1. Basic steps for cybersecurity in IoT ecosystems 

 
 

Figure 2. Working on the proposed system 

 

Therefore, to mitigate this problem the method advocates 

for first creating post-quantum cryptographic schemes of 

quantum inaccessibility. These will be top-level algorithms-

lattice-based, hash-based cryptographic methods for securing 

the IoT data transmissions → storage within an IoT network. 

This period consists of choosing proper post-quantum 

cryptographic algorithms and integrating them with already 

existing IoT infrastructure so that integrity and confidentiality 

remain protected even during quantum computing progression. 

As a solution to the complexity, we proposed our methodology 

for post-quantum cryptography and further integrating 

blockchain technology into IoT network transactions to aid in 

providing immutability and transparency. Figure 1 shows the 

Basic steps of cybersecurity in IoT ecosystems. 

Figure 2 shows the working of the proposed system. The 

distributed ledger that is inherent in blockchain ensures a 

transparent and impossible-to-hack record of all transactions 

or interactions across the network. This is important for secure 

and verifiable data exchange between IoT devices. The 

approach being considered or the one that is almost finalized 
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involves setting up a private/consortium blockchain 

customized just for the IoT network only [16]. Security 

policies like access controls and data validation checks will be 

automated using Smart contracts. By recording blockchain 

transactions, this methodology tries to accomplish trust and 

accountability among network participants by producing an 

immutable audit trail. The third phase of the methodology uses 

Deep learning methods for more complex types of anomaly 

detection with threat mitigation. The network traffic will be 

monitored using deep learning algorithms, especially neural 

networks, to detect security threats as closely as in real-time 

scenarios. It is a way to train deep learning models with 

historical network data and help the model automatically 

through such identifiable patterns of malicious activity or 

anomalies. These models will be pushed down to specific parts 

of the IoT network (such as gateways and edge devices) to 

continuously monitor and detect threats. By capitalizing on 

deep learning's pattern recognition and adaptable nature, the 

method aims to increase how well a network is able to both 

detect and adapt when faced with new threats. In order to 

evaluate the validity of the proposed approach, a multi-tiered 

evaluation framework will be utilized. The images show a 

pipeline that features simulation, testing, and validation stages. 

During the simulation phase, synthetic data and attack 

scenarios will be used to benchmark post-quantum 

cryptographic algorithms, blockchain incorporating 

cryptosystems that make use of deep learning [17]. The next 

step for testing would be to deploy it in a controlled 

environment and track its results on performance/network 

security. Finally, real-world case studies and pilot projects will 

validate from all angles possible to ensure that the proposed 

method addresses practically existing security needs where 

proven operational requirements are met. You will need 

continuous monitoring and iterative refinement while 

implementing this methodology. Since IoT networks are 

constantly changing and there will be new threats attacking on 

a daily basis, this model should learn to adapt to the day-in-

day-out changes happening in an organization. These will seed 

feedback loops that learn from network operations and 

security incidents to continuously enhance cryptographic 

algorithms, blockchain protocols, and deep learning models. 

Proposed System Architecture 

In Figure 3, a new mechanism for blockchain blockchains 

(quantum-resistant) is secured in post-quantum using deep 

learning. 

This type of system architecture is aimed at strong 

cybersecurity protection and the effective management of 

large amounts of data while implementing a new mechanism 

for blockchain blockchains (quantum-resistant) secured in 

post-quantum using deep learning. Architecture starts with IoT 

devices, which are assets equipped with sensors and actuators 

that collect sensor data/information from their environment 

[18]. The data is sent to a gateway for basic data filtering and 

analytics. The device gateway is an intermediate hop that 

forwards collected data to a cloud server. A so-called cloud 

server for data storage, processing and advanced analytics. In 

architecture, this is very important hence the security module. 

This includes post-quantum cryptography to address future 

quantum computing issues, making all communication and 

data exchange completely secure. The security module also 

uses blockchain technology to ensure the immutability and 

decentralization of a ledger for safe transactions, increasing 

data integrity and transparency. This data is analyzed through 

deep learning models that make it possible to even detect some 

potential threats in real-time. A user interface connects the 

cloud server and security module together, offering a holistic 

visibility dashboard. The interface permits users to receive 

signals and alarms, control their safety standards, to set up the 

overall security strategy [19]. The user interface allows 

administrators to monitor IoT network health, drill in on 

analytics, and respond quickly as new incidents arise. 

 

 

 
 

Figure 3. New mechanism for blockchain blockchains (quantum-resistant) secured in post-quantum using deep learning 

 

Equations 

Step 1.1: Post-Quantum Cryptographic Security for 

Blockchain Transactions 

 

𝐸𝑃𝑄  (𝑇𝑖) = 𝑃𝑄𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑇𝑖  , 𝐾𝑃𝑄) 

• 𝑇𝑖  represents the transaction data. 

• 𝐾𝑃𝑄is the post-quantum cryptographic key. 
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• 𝐸𝑃𝑄  (𝑇𝑖) is the encrypted transaction using a 

post-quantum cryptographic algorithm. 

Decryption Function: 

 

𝐷𝑃𝑄 (𝐸𝑃𝑄(𝑇𝑖)) = 𝑃𝑄𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑃𝑄(𝑇𝑖  ), 𝐾𝑃𝑄) 

 

Step 1.2: Blockchain Integrity with Post-Quantum 

Cryptography 

Blockchain Hashing: 

 

𝐻𝑃𝑄(𝐵𝐼) = 𝑃𝑄𝐻𝑎𝑠ℎ(𝐵𝑖) 

 

• 𝐵𝑖  represents a block in the blockchain. 

• 𝐻𝑃𝑄(𝐵𝐼) is the post-quantum secure hash of the 

block. 

Step 1.3: Deep Learning-Based Anomaly Detection in 

Blockchain Networks 

Training Phase: 

 

𝐷𝐿𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑟𝑎𝑖𝑛(𝐷𝐿𝑚𝑜𝑑𝑒𝑙 , 𝐷𝑡𝑟𝑎𝑖𝑛) 

 

• 𝐷𝐿𝑚𝑜𝑑𝑒𝑙  is the deep learning model 

• 𝐷𝑡𝑟𝑎𝑖𝑛  is the training dataset. 

Anomaly Detection: 

 

𝐴(𝑡𝑖) = 𝐷𝐿𝑚𝑜𝑑𝑒𝑙(𝑡𝑖) 

 

• 𝑡𝑖 represents real-time transaction data. 

• 𝐴(𝑡𝑖) is the anomaly score or classification output 

from the deep learning model. 

Alert Generation: 

 

𝐴𝑙𝑒𝑟𝑡(𝑡𝑖) =  {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝐴(𝑡𝑖) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

• An alert is generated if the anomaly score  𝐴(𝑡𝑖) 

exceeds a predefined threshold. 

Step 1.4: Integration of Post-Quantum Security and 

Deep Learning 

Secure and Intelligent Transaction: 

 

𝑇𝑖
𝑠𝑒𝑐𝑢𝑟𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑇𝑖 , 𝐾𝑃𝑄  ), 𝐴(𝑇𝑖) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

• 𝑇𝑖
𝑠𝑒𝑐𝑢𝑟𝑒  is a transaction that is both encrypted using 

post-quantum cryptography and verified as non-

anomalous by the deep learning model. 

Overall System Security Evaluation: 

 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑓 (𝐸𝑃𝑄  , 𝐻𝑃𝑄  , 𝐷𝐿𝑚𝑜𝑑𝑒𝑙 , 𝐴(𝑡𝑖)) 

 

• 𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙  represents the overall security score or 

evaluation function that combines post-quantum 

cryptographic encryption, blockchain integrity, and 

deep learning-based anomaly detection. 

Step 1.5: PQDL Chain 

 

𝑃𝑄𝐵−𝐷𝐿 =  ∑ .𝑁
𝑛=1 [𝑆𝑛 = (𝑃𝑄𝐶(𝑥𝑛) + ∑ 𝐵(𝑡). 𝑅(𝑛, 𝑡)𝑇

𝑡=1 ) +

∑ 𝐷𝐿(𝑦𝑛). 𝐴(𝐷𝐿(𝑦𝑛))
𝑌

𝑦=1
]  

 

• PQC(x): Post-Quantum Cryptographic function 

applied to data xxx. 

• B(t): Blockchain function for transaction ttt, 

incorporating PQC for secure transactions. 

• DL(y): Deep Learning model applied to input data 

yyy for anomaly detection and prediction. 

• Sn: Security level at network node nnn, considering 

both PQC and DL. 

• R(n, t): Record function for transaction ttt at node 

nnn on the blockchain. 

• A(DL(y)): Anomaly detected by the DL model. 

• U(t): Update function for the blockchain-based on 

anomaly detection. 

Step 1.6: Post-Quantum Cryptography-Encryption 

Strength: 

 

𝐸 = 𝑃 × 𝐾 

 

1) Blockchain - Hash Function Output: 

 

𝐻 = 𝐻𝑎𝑠ℎ(𝑇) 

 

2) Blockchain - Transaction Verification: 

 

𝑉 = 𝑉𝑒𝑟𝑖𝑓𝑦(𝑇, 𝐻) 

 

3) Deep Learning - Anomaly Detection Output: 

 

𝐴 = 𝑓(𝑋) 

 

4) Post-Quantum Cryptography - Data Integrity 

Check: 

 

𝐼 = 𝐻𝑎𝑠ℎ(𝐸) 

 

Proposed algorithm 1.1  

Algorithm SecureIoTNetworks 

    Input: IoT Network, Post-Quantum Cryptographic 

Algorithms, Blockchain Technology, Deep Learning 

Models 

    Output: Secured IoT Network with Enhanced Cyber 

Defense 

 

Phase 1: Post-Quantum Cryptography Integration 

    Function 

IntegratePostQuantumCryptography(IoTNetwork, 

PQAlgorithms) 

        For each Device in IoTNetwork 

            If Device requires encryption, Then 

                Select appropriate PQAlgorithm from 

PQAlgorithms 

                Implement PQAlgorithm for data encryption 

and decryption 

                If Device communicates with other devices 

Then 

                    Ensure that communication uses 

PQAlgorithm 

                EndIf 

            EndIf 

        EndFor 

        Return IoTNetwork with PQCryptography 

    EndFunction 

 

This research initiates a new Blockchain and deep learning-

based method for IoT networks in post-quantum networks that 

could detect/categorize the DoS attacks at the pre-level of 
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execution, thus empowering both cyber defense services 

acting as an additional information source to implement robust 

countermeasures. The long-term solution is to expose Post-

Quantum Cryptography algorithms that can be used for 

ensuring data transportation and storage, starting with Psqqra. 

This means that known cryptographic algorithms may need to 

be replaced, which cannot be decrypted by a "classical" 

computer but require a future quantum machine. Begin by 

analyzing and implementing the use of post-quantum 

cryptographic algorithms across your IoT ecosystem to ensure 

data can securely travel in a quantum-safe manner. This will 

help the IoT transactions by making them impervious, 

transparent, and immutable using blockchain. This method 

makes a record of all transactions over the whole network on 

an immutable private or consortium blockchain. 

 

Proposed algorithm 1.2 

Phase 2: Blockchain Integration 

    Function IntegrateBlockchain(IoTNetwork, 

BlockchainType) 

        Initialize Blockchain with BlockchainType 

(Private/Consortium) 

        For each Transaction in IoTNetwork 

            If Transaction involves sensitive data, Then 

                Record Transaction on Blockchain 

                If security policy enforcement is required Then 

                    Use Smart Contracts to enforce security 

policies 

                EndIf 

            EndIf 

        EndFor 

        Return IoTNetwork with Blockchain Integration 

    EndFunction 

 

 

Proposed algorithm 1.3 

Phase 3: Deep Learning for Anomaly Detection 

    Function TrainDeepLearningModel(NetworkData) 

        If sufficient TrainingData is available Then 

            Prepare TrainingData from historical network 

data 

            Train DeepLearningModel using TrainingData 

        Else 

            Generate synthetic data to supplement training 

            Train DeepLearningModel with combined data 

        EndIf 

        Return TrainedDeepLearningModel 

    EndFunction 

 

    Function DeployAnomalyDetection(IoTNetwork, 

DeepLearningModel) 

        For each Device in IoTNetwork 

            If Device is critical to network operations, Then 

                Deploy DeepLearningModel to analyze 

network traffic 

                Monitor for anomalies and potential threats 

                If anomalies are detected Then 

                    Generate alerts for detected anomalies 

                EndIf 

            EndIf 

        EndFor 

        Return IoTNetwork with Anomaly Detection 

    EndFunction 

 

Proposed algorithm 1.4  

Evaluation Framework 

    Function EvaluateMethodology(IoTNetwork) 

        If synthetic data and attack scenarios are available 

Then 

            Perform Simulation using synthetic data and 

attack scenarios 

        Else 

            Conduct Testing in a controlled environment 

        EndIf 

        If possible, Validate through real-world case studies 

and pilot projects 

        Return EvaluationResults 

    EndFunction 

 

Proposed algorithm 1.5 

Continuous Monitoring and Refinement 

    Function ContinuousMonitoring(IoTNetwork) 

        Establish Feedback Loops from network operations 

and security incidents 

        If new PQCryptographic Algorithms, Blockchain 

Protocols, or DeepLearningModels are available Then 

            Update PQCryptographic Algorithms, 

Blockchain Protocols, and DeepLearningModels as needed 

        EndIf 

        Adapt to new threats and refine the security 

measures 

        Return Updated IoTNetwork 

    EndFunction 

 

Flow Chart 

Modern defence in depth for IoT networks using 

Blockchain Post Quantum and Deep Learning Techniques are 

represented on a flowchart shown in Figure 4. Before 

wrapping up, do you know how IoT network exposure 

searches for it? To this end, we need to install post-quantum 

cryptography after vulnerability analysis, deploy blockchain 

technology for secure transactions, and use AI in deep learning. 

Models of anomaly detectors. When we combine these non-

ingrained ways, Raghu can bypass them for his cyber hacking. 

They perform frequent security audits to ensure that their 

network is safe when there are no remaining vulnerabilities. 

The network needs to be monitored, and deep learning-based 

defenses should be provisioned if anomalies are detected. That 

process continues in case the monitor task has still not 

identified any peculiar activity. At the highest level, 

organizations would need advanced threat intelligence 

systems and updated security policies to defend against new 

threats challenging their existing defenses. 

With the growth of IoT devices advancing at a very high 

rate, IoT industries and human life have been transformed by 

IoT in smart homes, healthcare, industrial IoT, and intelligent 

city applications. But with this vast interconnected ecosystem 

comes the unprecedented security risks that come with billions 

of internet-connected devices that have exponentially 

expanded the attack surface area for threats. Most of these 

threats could not be dealt with effectively by conventional 

security solutions since they are designed mostly for resource 

rich systems in the IoT. Also, new technological advancement 

witnessed in quantum computing has exposed classical 

cryptographic algorithms such as RSA and ECC to quantum 

attacks. 
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Figure 4. Flow chart of the proposed approach 

 

This work provides new solutions to protect Io T networks 

through the approach of the post-quantum blockchain and 

deep learning techniques for anomaly detection. The 

blockchain post-quantum framework allows for preserving 

confidentiality and data integrity against quantum-attack kinds, 

and at the same time, it has overcome IoT challenges, 

including low computer power and memory. The 

decentralized and tamper-proof nature of blockchain only adds 

to the level of trust by providing for no single failure point and 

by offering secure broadcast and exchange of information 

between IoT devices. 

As an extension, the deep learning subfield involves itself 

in preventing threats, where the model identifies typical 

network activity and shouldn’t-be-there activity. Incorporating 

the stalwart aspects of deep learning, this system provides real-

time detection and threat handling, including real-time 

response to new threats that IoT networks face. Integration of 

these technologies provides a strong defense mechanism that 

covers quantum attacks and fortifies cybersecurity standards 

in IoT settings [20, 21]. 

By overcoming some of the existing Internet security 

deficiencies and applying a scalable resource-saving approach 

to secure the IoT networks of the next generation, this work 

helps to create the basis for their further development. 

 

 

4. RESULT ANALYSIS  

 

One of the critical uses of stimulation tools and technologies 

is evaluating the efficiency of the security frameworks for IoT 

networks. The stimulation parameter is shown in Figure 5, and 

its graphical representation is shown in Figure 6. NS3 and 

OMNeT++ enable the simulation of networks and their 

performance, while TensorFlow and PyTorch enable the 

training of deep learning models. CRYPTOLIBS are used to 

assess cryptographic security and BLOCKSIMS is for testing 

the integration of ledgers. It must test system performance plus 

security and scalability in all situations adequately. This 

research discusses the network size and complexity of 100 and 

10,000 IoT devices to illustrate its scalability in a higher 

number of devices. This is an important review to ensure 

everything runs smoothly when introducing another node. 

Lattice-based, Code-based, and Hash-based are just some 

post-quantum cryptographic methods. How well do they 

secure data from quantum attacks? This is interesting because 

of private or consortium blockchains' unique properties- 

immutability, transparency, and network performance. It helps 

people get a grip on the advantages and disadvantages of 

building design using blockchain. An evaluation of up to 5-50 

smart contracts as the complexity parameter can analyse how 

different numbers of overly-complicated smart halves 

influence execution times and network operations in order that 

automatic, device-to-device transactions remain responsive. 

Structured, language model-related benchmarks or standards 

are employed to allow users to make side-by-side comparisons 

in terms of performance and accuracy. Studies were either 

about the real-time anomaly detection frameworks (including 

Deep learning models like CNNs, RNNs etc) undergoing 

various training patterns across datasets with high metric 

scores on determined use cases. It is useful to resist cyber-

attacks such as DDoS, Data Breach and Eavesdropping but 

should not be done easily.  
 

 
 

Figure 5. Stimulation parameters for post-quantum cryptography system 
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Figure 6. Stimulation parameters for post-quantum cryptography system 

 

Table 2. Results analysis 

 

Component Performance Metric Measurement Result 

Post-Quantum Cryptography 

Encryption/Decryption Time Time (ms) per operation 10ms 

Quantum Resistance Security Strength (bits) 128 bits 

Computational Overhead CPU Usage (%) 15% 

Blockchain Integration 

Transaction Processing Time Time (ms) per transaction 50ms 

Ledger Size Size (MB) 200MB 

Smart Contract Execution Time Time (ms) per execution 30ms 

Deep Learning for Anomaly Detection 

Model Training Time Time (hours) 5 hours 

Detection Accuracy Accuracy (%) 95% 

False Positive Rate Rate (%) 2% 

Real-Time Processing Latency Time (ms) per detection 20ms 

Evaluation and Refinement 

Simulation Coverage Percentage of scenarios covered 90% 

Testing Impact on Network Performance Network Throughput (Mbps) -5% 

Real-World Validation Number of successful case studies 5 

Continuous Monitoring and Updates 
Feedback Loop Efficiency Time (hours) for feedback incorporation 4 hours 

Update Frequency Frequency (per month) 2 updates per month 

 

Different Data Volume (1GB/day-50/Day)-The device's 

efficiency is tested with numerous data masses at this level. 

Latency (1ms–100ms) and Throughput network performance 

(10Mbps-1Gbps). The feedback loop and update frequency 

dimensions evaluate how often a system would adapt its 

forecasts to new data (daily, weekly, or monthly). CPU and 

Memory usage are monitored to ensure that the service retains 

its functionality. Table 2 explains the result analysis in tabular 

form.  

The performance, if it can and should be run in multiple 

contexts. It hurts throughput with minimal delay in post-

quantum encryption because each operation takes 10ms to do 

encryption and decryption. In addition, this offers 128-bit 

security for quantum resistance and a reasonable ~15% 

computational overhead in CPU utilization. These data 

illustrate how post-quantum approaches could protect the 

computational infrastructure without harming performance in 

systems using backend math-based algorithms. This phase 

(immutable blockchain record), being the most critical, 

consumes 50 ms/transaction more than others, resulting in a 

bilateral average transaction processing time. Since the ledger 

is not very large, members of a consortium blockchain can 

easily scale and manage their data for about 200MB in total. 

We can enforce smart contracts digitally with as little latency 

as approximately 30 milliseconds at best case, though zero 

distance. A similar review shows that deep learning algorithms 

do the job in 5 hours of model training given the scale of data 

using Anomaly detection. The model has a 95% accuracy in 

detecting anomalies, and only alerts about them with type I 

error rate is capped to a low level (2%). The effectiveness of 

the proposed system for the protection of IoT networks 

consists of the following parameters: post-quantum 

cryptography with a time latency of 10 ms and a security factor 

of 128 bits. Blockchain integration to the workflow results in 

attaining 50 ms in terms of time per transaction and 200 MB 

in terms of the ledger size. Detection of the deep learning 

algorithm provides a 95% accuracy and 2% false positive. The 

system achieves comprehensive coverage for 90% of the 

scenarios while validated in the real world, and the updating 

was ongoing.  

 

 

5. CONCLUSIONS 

 

The exposed approach is the complete solution for IoT 

vulnerabilities and is the only one that guarantees a return on 

investment in current and future information security risks. It 

provides protection against data leakage by combining post-
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quantum cryptography with blockchain technology, allowing 

algorithms to learn how to develop efficient entry and exit 

strategies. To this, the solution will be to use post-quantum 

cryptography algorithms for quantum computer security in the 

future. This means that quantum positive cannot access IoT 

data protected with these methods. This latest approach 

fortifies the network against post-quantum computational 

threats. Intelligently so, it is backed by a tamper-proof ledged 

in blockchain, making It legitimate and transparent to the 

exchange. Security compliance gets automatically enforced by 

smart contracts together with private, or consortium 

blockchains to validate all the data transactions. This 

immutability and audit trail layer make IoT networks both 

secure & trustworthy. Deep Learning: Better anomaly 

detection and instant threat identification. These labelled 

training data likely reinforce the ability of these neural 

networks to reliably alert and defend against security breaches 

across many network patterns. This provides the network it 

acts like an approach to stay proactive and more resistant in its 

advance against new threats. As part of future work, 

researchers should work towards further refining the 

framework proposed in this paper with the aim of eliminating 

computational overhead and promoting better scalability for a 

broad IoT adoption. However, the research work might benefit 

from the integration of other lightweight cryptographic 

protocols and more efficient deep-learning models. 

Furthermore, the real massive-scale experiments and 

consistent improvements in the system will enhance its 

efficiency and stability. 
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