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Advancements in Deep Learning (DL) have led to innovative approaches to address 

complex issues, notably steganalysis concerning spatial domain images. Steganalysis is a 

counter art of steganography that aims to detect the presence of possible hidden data in the 

pixels of an image. Based on the DL logic, Convolutional Neural Networks (CNNs) have 

been instrumental in this domain. Over the past years, several CNN architectures have 

emerged, elevating the accuracy in detecting the images hosting the steganographically 

hidden data in images. However, existing CNN models face problems associated with 

limitations in the perceptibility of low payload capacities and less-than-optimal processes 

for feature learning. This study introduces a novel CNN architecture to enhance the 

steganalysis process and improve the accuracy of secret data detection for spatial domain 

images. In the proposed method, the key contributions to CNN development include the 

utilization of mixed pooling, which combines different pool sizes to enhance the network's 

ability to capture deeper and multiple shades, thereby providing flexibility in feature 

extraction. Additionally, depth steganalysis and separable convolution address kernel 

neglect in channel and residual spatial correlation. Integrating LeakyReLu is proposed to 

mitigate weak slopes and enhance network convergence. Experimental results demonstrate 

that employing the proposed CNN architecture improves steganalysis outcomes. It is 

important to highlight that the findings reveal an accurate improvement of up to 10.2% 

over the recently considered schemes. 
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1. INTRODUCTION

The emerging evolution of technology in data transmission 

has fostered global interactions, with individuals increasingly 

relying on these interactions to shape their social lives through 

the public network. People seamlessly transmit and receive 

diverse data daily through the Internet, particularly in digital 

media such as audio, video, and images. The possible 

existence of hidden data in digital media, specifically in 

images ubiquitous on the public network, poses a risk due to 

its rapid, widespread, and free distribution, making it 

susceptible to spreading harmful data [1, 2]. Steganography, 

the art of data hiding, compounds this issue in digital data 

distribution, as it can be utilized to transgress upon the privacy 

of others [3]. While steganography can be embedded in 

various digital media [4-6], images are the most conducive to 

this purpose due to their pervasiveness. Employing techniques 

such as the Least Significant Bit (LSB), Frequency Domain, 

and CNN-GAN, steganography necessitates a proactive 

solution, known as steganalysis, to mitigate its occurrence 

because this approach is mostly used in the transmission of the 

secret data, which may be harmful to the community [7]. 

Steganalysis, positioned as the counter-art to 

steganography, is tasked with detecting possible secret data 

within digital media, which gets more challenging due to the 

emergence of steganographic algorithms based on the adaptive 

logic of the cover image's features [8]. Steganography and 

steganalysis concepts are inherently intertwined, as 

steganography's evolution inevitably influences steganalysis's 

development. Steganalysis employs diverse techniques to 

identify statistical variances between the original cover image 

and the steganographic image, known as the stego image, 

conditional on the specific context in which it operates [9]. 

Initially, fundamental steganalysis techniques manually 

extracted statistical characteristics based on human expertise, 

transitioning to feature extraction methods rooted in pixel 

correlations. However, the separation between feature 

extraction and classification processes in these methods 

hindered their simultaneous optimization, emphasizing the 

need for iterative enhancement [10]. The persistent evolution 

of steganography introduces ongoing challenges with 

increasingly sophisticated designs and algorithms. 

Based on the limitations of traditional steganalysis methods, 

researchers are increasingly turning to Deep Learning (DL) 

techniques to formulate more effective approaches [11-15]. 

Successful implementations of Convolutional Neural 

Networks (CNNs) in various domains underscore their 

potential in steganalysis, leveraging CNNs' robust capabilities 

in computer vision [13].  
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Although DL methods exhibit strong learning capabilities, 

their training demands extensive data and time. It often yields 

poor accuracy and results in general, thus prompting continued 

reliance on manual steganalysis. Using DL models in 

steganalysis can increase feature dimensions, resulting in 

significant computational and storage overhead [16]. 

Existing solutions addressing accuracy issues in 

steganalysis applications have significantly contributed to 

achieving high accuracy levels. However, these solutions have 

several drawbacks, including high computing capacity 

requirements. Furthermore, the accuracy of these solutions 

still needs improvement to optimize correctness, especially for 

sensitive fields like military, medical, and forensic 

applications. 

In response to the identified challenges in existing solutions, 

this paper introduces an innovative CNN architecture inspired 

by previous research [12]. The primary goal is overcoming the 

accuracy challenges of earlier steganalysis methods. Our 

approach emphasizes memory efficiency and architectural 

simplicity, introducing a streamlined design that minimizes 

memory consumption and constrains the overall architecture. 

The model integrates a pre-processing layer that efficiently 

applies filters to analyze the input image's pixels. Feature 

extraction stages combine traditional and depth-wise 

convolutions with average pooling. Global average pooling is 

used during the classification phase, followed by a SoftMax 

function. 

Despite the significant advancements in steganalysis using 

deep learning techniques, existing methods face several 

critical limitations that reduce their effectiveness and 

efficiency. Traditional steganalysis techniques often struggle 

with high computational costs and complex feature extraction 

processes that are not optimized simultaneously, leading to 

suboptimal performance. Additionally, deep learning models, 

while powerful, require extensive datasets and prolonged 

training times, resulting in increased computational and 

storage overhead. Furthermore, although achieving high 

accuracy levels, current solutions demand significant 

computing capacity and iterative refinement, which are 

impractical for real-time applications.  

The novelty of this paper is highlighted through the 

following contributions:  

(1) Introduction of a design that reduces computational 

complexity while enhancing accuracy by employing depth-

wise separable convolutions and minimizing the number of 

convolutional layers. 

(2) Integration of a pre-processing layer for efficient pixel 

analysis, which combines traditional and depth-wise 

convolutions with average pooling to optimize feature 

extraction and classification processes. 

(3) Provides a robust solution for accurate and efficient 

steganalysis in spatial domain images, addressing the 

limitations of high computational costs, extensive datasets, 

and impracticality for real-time applications. 

The subsequent sections of this paper are organized as 

follows: Section 2, "Related Works," provides an overview of 

the image steganalysis framework and related research. 

Section 3 outlines the "Proposed Method," presenting our 

innovative approach. In Section 4, the "Results" section, we 

detail the experimental setup and obtain and discuss results. 

Finally, Section 5, the "Conclusion," summarizes our findings 

and concludes the article. 

 

 

2. RELATED WORKS 

 

In this section, the literature exploration focuses on 

steganalysis applied to digital images using DL methods that 

augment traditional Machine Learning (ML) approaches. The 

CNN architecture is modified across pre-processing, feature 

extraction, and classification models to address the cost issue 

of CNN training. These alterations are informed by several 

preceding studies that delve into the domain of steganalysis. 

Over time, the CNN architecture for steganalysis has evolved, 

with some studies showcasing significant advancements over 

their predecessors. The development of steganalysis CNN 

architecture is an ongoing process. 

Kang et al. [17] introduced an approach to detecting hidden 

data in color images by leveraging the correlation between 

gradient amplitudes of different color channels. By extracting 

co-occurrence matrix features from these gradient amplitude 

residuals, the method effectively identifies the weakened 

correlations that result from color image steganography, 

demonstrating robust detection capabilities. However, the 

approach is limited to color images, may face computational 

challenges due to the intensive feature extraction process, and 

relies heavily on the quality of training data. Building upon 

existing research in gradient-based features and co-occurrence 

matrices, this method enhances the robustness of steganalysis 

techniques. It provides a comprehensive analysis that could 

inform future research in the field. 

Liu et al. [18] also introduced a traditional approach to 

steganalysis by applying the Bat Algorithm (BA) for feature 

selection. The Bat Algorithm, inspired by the echolocation 

behavior of bats, effectively selects the most relevant features 

from a large set of candidate features, reducing the risk of 

overfitting and improving the generalization of steganalysis 

models. This method is particularly robust and scalable, 

making it suitable for real-world applications. However, it 

requires careful parameter tuning and can be computationally 

intensive. The approach builds upon previous research in 

feature selection by introducing a more robust and efficient 

method, enhancing the robustness of steganalysis models 

against various steganography techniques. 

The Xu-Net architecture, initially introduced in previous 

research [15], integrates conventional Convolutional Neural 

Network (CNN) components such as batch normalization, 

global average pooling, and convolutional layers. Its 

distinctive feature is High-Pass Filtering (HPF) filter banks 

and Absolute Value (ABS) activation functions during pre-

processing. This approach has demonstrated effectiveness in 

outperforming earlier systems in steganalysis tasks. However, 

while Xu-Net sets a solid foundation, its reliance on traditional 

CNN components may limit its adaptability to more complex 

data distributions in steganography detection. 

Previous research [16] presents the Ye-Net architecture 

following Xu-Net. This architecture enhances feature 

extraction in stego images by employing channel selection 

techniques derived from Xu-Net's HPF filters. These filters are 

transformed into Spatial Rich Models (SRM) filter banks, 

providing a robust pre-processing step. Introducing the 

Truncation Linear Unit (TLU) as an activation function marks 

a significant improvement, resulting in better detection 

performance. Ye-Net may face scalability and computational 

efficiency challenges despite these advancements, mainly 

when processing large datasets. 
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Yedroudj-Net [19] builds upon the foundational principles 

of both Xu-Net and Ye-Net, integrating SRM, TLU activation, 

and batch normalization to enhance its design. Additionally, it 

introduces data augmentation and adaptive filter banks, which 

significantly enhance steganography detection capabilities. 

While Yedroudj-Net shows promising improvements, its 

complexity may lead to overfitting, especially in scenarios 

with limited training data. This necessitates careful tuning of 

hyperparameters to maintain generalization. 

Recently, the steganalysis tasks to detect possible hidden 

data showed the development of many other approaches, such 

as the ones in the study [20, 21]. As referenced in recent works, 

Zhu-Net employs two separable convolutional layers, a 

method inspired by earlier architectures [20]. It aims to 

improve feature extraction by adding Spatial Pyramid Pooling 

(SPP) and SRM filter banks. Although Zhu-Net achieves 

promising results, its classification accuracy still requires 

enhancement. This limitation highlights the ongoing challenge 

of balancing model complexity with performance in 

steganalysis tasks. However, the recent one in the previous 

research improved the Zhu-Net previously proposed by adding 

the Spatial Pyramid Pooling (SPP) for feature extraction and 

SRM filter banks. Promising results were achieved, but 

classification accuracy required further improvement [20, 21]. 

Later, in 2021, GBRAS-Net [22] emerged as a significant 

advancement, drawing inspiration from Zhu-Net. It utilizes 

SRM filter bank pre-processing under non-trainable 

conditions and incorporates "skip connections" with depth-

wise separable convolutional layers. This architecture has 

demonstrated superior performance on benchmark datasets 

such as BOSSBase 1.01 and BOWS, indicating a successful 

refinement of previous methods. However, the reliance on 

non-trainable conditions may restrict adaptability in dynamic 

environments, where model retraining could enhance 

performance further. 

Most recently, the work [12] presented a CNN architecture 

using depth-wise separable convolution with a skip layer, 

seven 2D convolution layers, batch normalization, and average 

pooling layers. This architecture introduced LeakyReLu 

activation in steganalysis and employed multi-scale average 

pooling as a classification layer. This study introduced a novel 

approach to enhance the accuracy of confidential data 

discovery and stability during the training process for images 

in the spatial domain. Their method contributed significantly 

to advancing the field of hidden data detection in spatial 

domain images, outperforming previous architectures such as 

GBRAS-Net and Zhu-Net, achieving satisfactory 

steganography detection. Though the obtained results showed 

an outperformance in accuracy, a remarkable weakness related 

to resource consumption due to the heavy network is 

identified. 

In the realm of steganalysis, the development of CNN 

architectures has significantly contributed to advancing 

steganography. While adopting commonly used architectural 

elements, the influence of hyperparameter settings on feature 

extraction from stego images remains a critical consideration. 

This article highlights the existing works discussed to propose 

a new CNN to enhance existing steganalysis models, focusing 

on convolution operations, encompassing the type and number 

of layers, and improving computational efficiency during 

training. The classification phase emphasizes feature 

modeling and compilation efficiency, ultimately enhancing 

performance by detecting concealed messages within spatial 

domain image. 

3. PROPOSED METHOD 

 

This research introduces an innovative CNN approach to 

enhance the detection of concealed information within spatial 

domain images, thereby advancing steganalysis 

methodologies. The proposed model addresses the challenges 

inherent in steganalysis by incorporating insights gleaned 

from recent breakthroughs in CNN architecture. The method 

is anticipated to refine the process of image detail extraction 

through strengthened convolution operations, optimized layer 

architecture, and improved computational efficiency. 

Emphasis has also been placed on minimizing the 

computational effort required during the training phase. These 

modifications collectively enhance the efficacy of our method 

in identifying hidden messages within images, thereby 

contributing to the overall capability of detecting concealed 

information in spatial domain images. This section provides a 

detailed exposition of our proposed method's intricacies, 

elucidates the rationale behind the chosen architecture, and 

underscores the distinctive features that set our approach apart 

in the complex realm of steganalysis. 

 

3.1 Architecture 

 

Figure 1 illustrates an overview of the CNN-based 

steganalysis architecture proposed in this study. CNN is 

designed to generate two class labels, namely "stego" and 

"cover," based on an input image with dimensions of 

256 × 256 . The architecture comprises various layers, 

including an image pre-processing layer, two distinct 

convolution blocks (separable convolution (SepConv)), four 

basic blocks for feature extraction, mixed pooling, global 

average pooling, and a final layer with SoftMax activation. 

The convolution layer extracts spatial correlations between 

feature maps, which are then transmitted to the classification 

layer to determine probabilities. Each block within the 

architecture is defined by a specific set of steps, collectively 

enabling a comprehensive analysis of the input image. This 

structured design facilitates extracting features and their 

subsequent classification by the CNN, ultimately determining 

whether the image contains stego or cover content. 

 

3.1.1 Convolution layer 

This layer conducts a convolution operation on the input, 

forwarding the outcome to the subsequent layer. The operation 

entails multiplying weights with the input, resulting in 

activation. For this investigation, a 3 × 3  kernel size was 

chosen, signifying that the filter scans 3 × 3 blocks of pixels 

in the image during each convolution step. A relatively modest 

kernel size, such as 3 × 3, typically captures local features 

within the image. The strides (1,1) signify that the kernel 

moves one pixel to the right and one pixel down at each step. 

While smaller strides offer a more detailed representation of 

the image, they may necessitate additional computation time. 

The filter layers encompass 30, 32, 60, and 64. This assortment 

facilitates the extraction of multi-level and intricate features 

corresponding to the hierarchical information levels in the 

image. Padding, crucial for image edge processing, adopts the 

'same' value, signifying the addition of zero pixels around the 

image to maintain constant dimensions post-convolution. This 

preserves edge information and mitigates the risk of losing 

detail in the convolution process. The activation function 

chosen is the leaky rectified linear unit, introducing a 

nonlinear function into the model. LeakyReLu permits 
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gradients on inactive units, addressing the "dying ReLU" issue 

during training by assigning a small positive value (0.01) to 

the gradient when the input is less than zero. This enables the 

model to still learn from less significant information, which is 

crucial in handling steganographic data with complex 

variations. A comprehensive consideration of computational 

complexity and network performance guides determining the 

number of channels in each layer.  

Batch Normalization (BN) is applied following the 

convolutional operations to enhance the network's 

performance and stability further. BN normalizes the hidden 

layer output for each batch of data entering the network, 

overcoming training instability, accelerating convergence, and 

reducing sensitivity to weight initialization. By providing 

stable mean values and standard deviations, BN reduces the 

effects of internal covariate shifts, i.e., frequent changes in 

input distribution during training. This stabilization speeds up 

learning and helps improve the model's generalization ability, 

reducing overfitting and enhancing the stability of the learning 

process. This is particularly beneficial for steganalysis, where 

data can exhibit complex variations. Experimental results 

indicate that networks without BN are very sensitive to 

parameter initialization and may fail to converge if initialized 

improperly. By maintaining the stability and consistency of 

input values, BN plays a critical role in ensuring the reliability 

and performance of steganography detection models, 

balancing the model's performance and stability.

 

 
Note: Legend: (1) Orange-colored components represent the used 2D-convolutional layers, which entails multiplying weights with the input, resulting in activation; 

(2) Blue-colored components represent the used 2D-DepthwiseSeparable convolutions, involving two stages: depth-wise convolution and pointwise convolution; 

(3) Green-colored components represent the used mixed pooling layers, and the (4) Red-colored components are the ones used in the classification layer. 

 

Figure 1. Proposed CNN architecture 

 

3.1.2 Mixed pooling layer 

The Mixed Pooling Layer introduces an innovative 

approach by integrating different pooling types within a single 

structure, enabling neural networks to extract feature 

information more comprehensively. This layer incorporates 

two distinct types of pooling: Max Pooling and Average 

Pooling. Max Pooling selects the maximum value from each 

block or window in the input image during each pooling step, 

effectively representing the most significant feature within the 

corresponding pixel block. Conversely, Average Pooling 

calculates the average value of each block or window in the 

input image during each pooling step. The advantage of the 

mixed pooling layer lies in its capacity to capture both 

prominent and general feature information in the image. The 

mixing proportion determines the relative contribution of each 

pooling method to the final output. By integrating both types 

of pooling, this layer provides a more detailed and contextual 

representation, enabling the network to learn more effectively 

from various aspects of steganographic data. 

1710



 

The study implements two distinct pool sizes, (5 × 5) and 

(2 × 2 ), which offer advantages in the feature extraction 

hierarchy. The larger pool size (5 × 5) is adept at capturing 

more extensive and complex features, while the smaller pool 

size (2 × 2) excels at extracting subtle and local features. 

Combining these pool sizes allows the model to obtain a richer 

and more diverse image representation, contributing to 

enhanced feature extraction capabilities. This dual approach 

enables the model to handle the diverse and intricate 

characteristics of steganographic data, improving its 

proficiency in capturing hidden patterns at different levels of 

detail. The Mixed Pooling Layer, therefore, enhances the 

model's ability to extract comprehensive and nuanced features, 

making it a critical component in the steganalysis process. 

 

3.1.3 Depth-wise separable convolution 

Depth-wise separable convolution is a pivotal technique in 

modern CNN architectures [23], involving two stages: depth-

wise convolution and pointwise convolution. Depth-wise 

convolution performs convolution operations on each input 

channel independently, allowing the model to explore 

correlations within each channel in isolation. This technique is 

followed by pointwise convolution (1 × 1), which combines 

and enhances the information extracted from the depth-wise 

convolution stage. The proposed CNN architecture utilizes 

1 × 1 pointwise convolution and 3 × 3  depth-wise 

convolution. During depth-wise convolution, each input 

channel undergoes individual processing, facilitating the 

extraction of spatial correlations within each channel. This is 

achieved by using 30 groups in the depth-wise convolution 

stage. Subsequently, pointwise convolution integrates this 

information, enhancing feature representation richness and 

expressiveness. 

The combination of these techniques, known as depth-wise 

separable convolution, offers notable advantages, including a 

substantial parameter reduction and enhanced computational 

efficiency. This reduction in computational load results in a 

lighter network without compromising its representational 

capacity. Additionally, incorporating skip layers or residual 

connections in depth-wise separable convolution addresses 

challenges related to vanishing or exploding gradients during 

training, enhancing network stability and its ability to learn 

complex features. Skip layers, commonly applied as shortcut 

connections, merge information from the previous layer to the 

next, promoting more effective information flow within the 

network. By combining depth-wise and pointwise 

convolutions and integrating skip layers, the model balances 

computational efficiency and high representational capacity, 

making it well-suited for tasks like image processing and 

steganalysis, where detailed feature extraction and efficiency 

are paramount. 

 

3.1.4 Classification layer 

Global Average Pooling (GAP) is a pivotal technique that 

streamlines the spatial representation of the entire feature map 

within a CNN. Unlike conventional pooling methods such as 

Max Pooling or Average Pooling, GAP does not use a 

dedicated pooling window or kernel. Instead, it globally 

averages the pixel values in each channel, deriving the average 

value of each channel over the entire feature map. This global 

averaging aspect gives GAP its name and underscores its 

primary advantage: the ability to significantly reduce data 

dimensionality without sacrificing vital information. By 

averaging values, GAP fosters a more comprehensive 

representation of the image or feature from the preceding 

layer, prioritizing core and essential information. In the 

research work, the GAP helps focus the Proposed CNN on 

crucial details while mitigating the risk of overfitting, yielding 

a representation more invariant to translations and slight 

variations in object position. This process involves 

exponential normalization of input values, ensuring the sum of 

probabilities for all classes equals one. Using GAP and 

SoftMax enhances computational efficiency and robustness to 

changes in image size, simplifying feature representation to a 

single value per channel.  

 

3.2 Hyperparameter selection 

 

The hyperparameters of our CNN architecture, including 

kernel sizes, the number of filters, and pooling strategies, are 

selected based on theoretical principles and empirical 

evidence. We employ a combination of small (3 × 3) and 

medium (5 × 5) kernel sizes. The 3 × 3 kernel is widely used 

in image recognition tasks due to its efficiency in capturing 

fine details and lower computational cost. In contrast, the 

5 × 5  kernel in the pre-processing layer captures broader 

contextual information, enhancing the detection of 

steganographic artefacts that may span larger regions. The 

number of filters, set at 32, 64, and 128 in successive layers, 

balances the need for capturing sufficient feature 

representations while maintaining computational efficiency. 

This gradual filter increase aligns with the hierarchical nature 

of feature learning in CNNs, where initial layers capture basic 

features and deeper layers learn more complex patterns. 

Pooling strategies are crucial for reducing spatial 

dimensions and mitigating overfitting. We use average 

pooling instead of max pooling because it retains more spatial 

information, which is essential for distinguishing between 

cover and stego images. Additionally, global average pooling 

is employed before the final classification layer to aggregate 

feature maps robustly for the SoftMax classifier. These 

choices are guided by empirical studies showing that average 

pooling enhances performance in tasks requiring detailed 

spatial analysis [24]. Combining depth-wise separable 

convolutions and minimizing the convolutional layers further 

reduces computational complexity and mitigates overfitting, 

providing a practical and effective solution for steganalysis. 

Our model balances accuracy, efficiency, and computational 

feasibility by integrating these well-justified hyperparameters. 

 

3.3 Benchmarking the proposed method 

 

The proposed architecture undergoes a comparative 

analysis with cutting-edge steganalysis architectures 

highlighted in the preceding section. Specifically, this method 

is juxtaposed with the feature network structures of GBRAS-

Net and Zhu-Net. This selection is motivated by their 

relevance and prominence in CNN-based steganalysis 

development, showcasing performance on par with their 

predecessors in the literature. The input image dimensions for 

both GBRAS-Net and Zhu-Net are standardized at 256 ×
256 , which we also adopted in this research. In the pre-

processing stage, Zhu-Net utilizes a filter bank comprising 30 

SRM. At the same time, GBRAS-Net employs the same filter 

bank as a non-trainable filter. Our approach aligns with 

GBRAS-Net, utilizing 30 SRM as a non-trainable filter with a 

kernel size of 5 × 5.  
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Divergences arise in convolutional layers: Zhu-Net employs 

5, GBRAS-Net employs 9, and our research incorporates six 

convolutional layers. Additionally, variations exist in the 

utilization of depth-wise separable convolutional layers. Zhu-

Net employs two separable conv layers, GBRAS-Net uses four 

separable and four depth layers, and our research adopts two 

separable and two depth layers, halving the GBRAS-Net setup 

for computational efficiency. We introduce a skip layer to 

mitigate kernel issues and enhance the training process, 

particularly concerning SNR. 

All convolutional layers in the proposed architecture 

employ LeakyReLu as the nonlinear activation function, 

chosen for its capacity to improve feature extraction. In 

contrast, Zhu-Net uses ReLU, and GBRAS-Net employs ELU. 

In the final layer for the classification process, Zhu-Net 

incorporates multi-scale mean pooling and connects it to two 

dense layers with SoftMax for probability determination. 

GBRAS-Net opts for global average pooling and SoftMax as 

layers for the classification phase. Our approach aligns with 

GBRAS-Net, with the distinction that our process integrates 

mixed pooling extensively in the feature extraction phase, 

subsequently fed into global average pooling as a determinant 

of probability results. 

 

 

4. RESULTS 

 

This section unfolds the outcomes of this research, with a 

primary focus on the experimental setup, results, and 

discussion, accompanied by a comparative analysis of the 

proposed model results against prior research. The 

experimental setup constitutes the foundation of the 

investigation, delineating the methodology employed for data 

collection in intricate detail.  

 

4.1 Experimental setup 

 

4.1.1 Dataset 

This section details the dataset utilized in our study, sourced 

from Break Our Steganographic System Base 1.01 

(BOSSBase 1.01) [25]. The dataset comprises 10,000 spatial 

domain or grayscale images, each with a dimension of 

512 × 512  pixels, originating from seven distinct cameras. 

BOSSBase 1.01's widespread use in steganalysis research 

facilitates meaningful comparisons with previous studies. Two 

steganography algorithms, S-UNIWARD and WOW, 

configured with a payload of 0.4bpp, were tested on this 

dataset. 

Due to computational considerations and in alignment with 

certain prior research, we opted to resize the images to 

256 × 256 in this study. The dataset processing, including the 

image compression for secret message embedding, was 

executed using MATLAB. Our experiment fully employed 

this dataset as training, validation, and test data. Out of the 

10,000 processed images, designated as stego images, a 50:50 

division ensures 20,000 image data, evenly split between 

cover and stego images. Our approach aligns with established 

precedent for the training, testing, and validation data division. 

Specifically, 4,000 covers and 4,000 stego images constitute 

the training data, 1,000 covers and 1,000 stego images from 

the validation set, and the remaining data is allocated for the 

test set. 

 

 

4.1.2 Computational resource 

This study was conducted on a restrained scale, with Google 

Colaboratory as the primary computational resource for 

executing Convolutional Neural Network (CNN) 

computations. The CNN model was run on an NVIDIA T4 

GPU boasting 15 GB of dedicated GPU RAM. Concurrently, 

the dataset processing tasks were undertaken using MATLAB 

on a computer system featuring an AMD Ryzen 7 4800H CPU 

configuration and 16 GB of RAM. This hybrid setup was 

deliberately chosen to capitalize on the parallel processing 

capabilities of the GPU for resource-intensive CNN 

computations. At the same time, the robust CPU configuration 

adeptly managed dataset manipulations. The collaborative use 

of Google Colaboratory and the local computing facility, each 

equipped with distinct hardware specifications, was pivotal in 

establishing a harmonious and efficient workflow, ensuring a 

balanced approach throughout our research endeavors. 

 

4.1.3 Hyperparameter tuning 

In the proposed scheme, we have implemented a batch of 

size 32 during the CNN training with 100 epochs for a given 

payload. The epsilon and momentum norms are set to 0.001 

and 0.4, respectively, while the batch normalization is set to 

0.2. The convolutional layers use the Glorot normal 

initialization with a kernel size of 3 × 3 and several filters and 

adopt the LeakyReLu activation. The applied learning rate is 

0.001, while the gradient value of LeakyReLu equals 0.1.  

 

4.1.4 Metrics evaluation 

This study employs the accuracy (ACC) calculated using (1) 

as a primary evaluation metric, serving as a foundational 

benchmark to assess the performance of the proposed 

approach. Accuracy as the principal metric aims to deliver a 

comprehensive evaluation of the overall effectiveness of the 

proposed approach. Moreover, accuracy facilitates direct 

comparisons with previous research, fostering a unified 

understanding of the advancements or distinctions in the 

proposed methodology compared to existing studies. The 

consistent application accuracy ensures a standardized 

evaluation framework, enhancing the effectiveness of the 

analysis in assessing the proposed model and laying the 

groundwork for subsequent discussions regarding the 

implications of our findings in a broader scientific context. 

 

100%
TP TN

ACC
TP TN FP FN

+
= 

+ + +
 (1) 

 

Moreover, the proposed method is evaluated using precision 

(PRC) as Eq. (2), Recall (REC) obtained from Eq. (3), and F1-

Score computed using Eq. (4). Precision assesses the 

proportion of correct positive predictions among all positive 

predictions, offering insights into the model’s ability to avoid 

false positive predictions. Conversely, Recall evaluates the 

model's capacity to capture all true positive instances by 

assessing the ratio of true positives to the sum of true positives 

and false negatives. The F1-Score combines precision and 

Recall, providing a metric to measure false positives and 

negatives, especially in scenarios where a balance between 

precision and Recall is crucial. Including precision, Recall, 

and F1 scores offer a more nuanced perspective on the model's 

performance, enabling the identification of specific strengths 

and weaknesses in its predictive ability. 
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4.2 Results and discussion 

 

This section comprehensively analyzes the achieved 

conditions to elucidate the system's accuracy in detecting 

hidden data. Furthermore, comparisons with existing research 

benchmarks highlight the advancements introduced by our 

methodology. The subsequent section delves into the results 

within the broader context of steganalysis, outlining potential 

avenues for improvement and future research directions. The 

training and validation results of our CNN architecture are 

depicted in Figure 2, offering valuable insights into the 

performance of the S-UNIWARD and WOW steganography 

algorithms. Notably, the model optimized for the S-

UNIWARD algorithm exhibits a high training accuracy of 

95.82%  but a substantial drop in validation accuracy to 

83.77% . This discrepancy indicates overfitting, where the 

model excels in learning the training data but struggles to 

generalize patterns to unseen data. The disparity between 

training loss (0.30) and validation loss (0.40) in the S-

UNIWARD model suggests excessive complexity, hindering 

its adaptability to variations in the validation data. 

 

 
 

Figure 2. Accuracy and Loss Curves (a) S-UNIWARD Accuracy (b) S-UNIWARD Loss (c) WOW Accuracy (d) WOW Loss 

 

Conversely, the model optimized for the WOW algorithm 

displays better results, achieving high accuracy rates in both 

training (96.71%) and validation (86.29%) stages. However, 

a noticeable difference between training loss (0.30) and 

validation loss (0.41) hints at potential overfitting, albeit less 

pronounced than the S-UNIWARD model. While the training 

results showcase the model's proficiency in understanding 

patterns within the training data, weaknesses emerge in its 

ability to generalize to unseen data, particularly in the S-

UNIWARD-optimized model. Future research 

recommendations encompass exploring CNN architecture, 

parameter tuning, and implementing regularization techniques 

to mitigate overfitting. Additionally, utilizing larger and more 
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diverse datasets is advised to enhance the model's adaptability 

to various steganalysis scenarios. 

Further scrutiny of the training and validation data holds 

promise for additional insights to enhance the model's 

reliability and generalizability. The strength of the training 

results is the model's ability to understand and learn the 

patterns in the training data, as reflected in the high accuracy 

in the training stage. However, weaknesses arise in the model's 

ability to generalize to unseen data, especially in the model 

optimized for the S-UNIWARD algorithm. 

 
 

Figure 3. ROC curves (a) S-UNIWARD (b) WOW 

 

 
 

Figure 4. Confusion matrix (a) S-UNIWARD (b) WOW 

 

Table 1. ACC, PRC, REC, and FOS for the proposed CNN 

 
Algorithm ACC PRC REC FOS 

S-UNIWARD 83.7 84.1 83.6 83.8 

WOW 86.4 86.4 86.4 86.4 

 

The data in Table 1 include steganalysis classification 

results obtained by attacking the two commonly known 

adaptive steganography algorithms, S-UNIWARD and WOW, 

based on several key evaluation metrics: the ACC, the PRC, 

the REC, and the F1-Score. Overall, the WOW algorithm 

achieved an accuracy rate of 86.4%, slightly higher than S-

UNIWARD's 83.7%. These two algorithms do tend to have 

such characteristics. In many other studies, the trend has been 

the same. However, it should be noted that accuracy alone 

does not cover all aspects of model performance. In addition, 

precision and Recall provide a more in-depth picture of the 

model's ability to identify stego and cover images. 

Regarding precision, the S-UNIWARD algorithm scored 

slightly lower ( 84.1% ) than WOW ( 86.4% ). The high 

precision indicates that S-UNIWARD is more likely to make 
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correct positive predictions when the model states that an 

image is a stego image. On the other hand, despite its high 

precision, the WOW algorithm also needs to be balanced with 

other considerations. However, when looking at Recall, the S-

UNIWARD algorithm faces a relatively low value (83.6%). 

In comparison, the WOW algorithm shows a recall of 

86.4%. The low Recall indicates that both algorithms tend to 

miss many actual stego images and, therefore, may be less 

sensitive in detecting images that have been modified. The F1-

Score, a balanced measure of precision and Recall, provides 

an overall picture of the performance balance between the two 

algorithms. Although the WOW algorithm has a slightly lower 

F1 Score, it may show a slight decrease in the balance between 

precision and Recall compared to S-UNIWARD. 
 

Table 2. Best epoch based on validation accuracy 

 
S-UNIWARD WOW 

Val_acc Epoch Val_acc Epoch 

84.40 21 86.80 43 

84.30 30 86.80 59 

84.05 18 86.15 55 

83.95 33 86.00 42 

83.89 36 86.00 60 

 

Table 2 identifies epochs that have yielded the best 

validation accuracy and crucial information in optimizing 

training duration. Identifying the optimal epochs aids in 

achieving peak accuracy efficiently, potentially minimizing 

the need for extensive training. For S-UNIWARD, the optimal 

epoch falls within the 20-40 range. Similarly, the sweet spot 

lies between epochs 40-60 for WOW. Researchers can make 

informed decisions by recognizing these optimal epoch ranges 

and striking a balance between model performance and 

computational costs. 

The results of the proposed method are also visualized 

through the ROC curves in Figure 3. The S-UNIWARD model 

has a slight shift in the Stego and Cover classes. Then, the 

results of the AUC of the S-UNIWARD model are 0.89, and 

for the WOW model, they are 0.91. These results can provide 

insight into the extent to which the model can distinguish 

between positive and negative classes. Generally, these results 

illustrate the trade-off between different evaluation metrics, 

requiring careful consideration when choosing an algorithm 

based on specific needs and priorities in steganalysis. 

In addition to ROC Curves, the significance of the Proposed 

Method is further highlighted using a confusion matrix that 

displays the map of model prediction results on Stego and 

Cover images. Both SUNIWARD and WOW algorithms are 

mapped into the confusion matrix, as shown in Figure 4. The 

interesting result of this confusion matrix is that the model 

tends to predict "label 0" or "cover" in the SUNI algorithm, 

while it tends to predict "label 1" or "stego" in the WOW 

algorithm. However, the precision for the SUNI algorithm is 

0.82 and 0.85 for label "0" and label "1," respectively, while 

for the WOW algorithm, it is 0.90 and 0.84 for label "0" and 

label "1", respectively. The tendency of prediction on one of 

the labels does not mean high precision either, but thus, the 

correct or correctly predicted data is also high. This is 

evidenced by the higher Recall and f1 score values on the 

labels that tend to be chosen. This confusion matrix can help 

further explore and understand the CNN model built. 

 

 

 

4.3 Results comparison with the existing methods 

 

This subsection compares the accurate results of four 

significant steganalysis models, Yedroudj-Net, Zhu-Net, 

GBRAS-Net, and Proposed, each using two steganography 

algorithms, S-UNIWARD and WOW, as presented in Table 3. 

This comparative analysis compares these models' 

performance detecting stego images using different 

steganography techniques. We compared it with traditional 

and deep learning methods. We can identify the most effective 

model and algorithm combinations in steganalysis by 

exploring the differences in accuracy results. In-depth analysis 

of the performance comparison between four steganalysis 

models, namely Yedroudj-Net, Zhu-Net, GBRAS-Net, and 

our Proposed Method, by applying the S-UNIWARD and 

WOW algorithms with payload 0.4 bpp, reveals notable 

improvements in evaluation metrics, particularly accuracy. 

Compared to traditional methods such as Liu and Kang's, 

the results show a significant difference in accuracy, reaching 

22.33% on the WOW dataset. Liu's Bat Algorithm reached 

64.07% for its accuracy. Of course, this is possible due to 

advanced deep learning. The difference in ability that occurs 

causes a high-value gain. The Proposed Model demonstrates 

superior accuracy improvements. 

 

Table 3. Accuracy comparison between the existing methods 

and the proposed CNN 

 
CNN S-UNIWARD WOW 

Yedroudj-Net 77.2 84.1 

Zhu-Net 80.1 84.4 

GBRAS-Net 81.4 85.9 

Proposed 83.7 86.4 

 

Table 3 shows that the Proposed model attains remarkable 

accuracy, with the superior values highlighted in bold 

characters, reaching 83.7% using the S-UNIWARD algorithm 

and 86.4% with WOW. These exceptional results surpass the 

performance of other models across both algorithms, including 

Yedroudj-Net, Zhu-Net, and GBRAS-Net. This underscores 

the effectiveness of our Proposed Method in steganalysis, 

marking a significant stride in achieving superior accuracy 

compared to contemporary models. In model comparisons 

with Yedroudj-Net, a notable enhancement is observed for the 

Proposed model. The accuracy of the Proposed model 

witnessed an improvement of 6.5% with S-UNIWARD and 

2.3% with WOW. 

Similarly, compared to Zhu-Net, the Proposed model 

demonstrates an improvement of 3.6% (S-UNIWARD) and 

1.5% (WOW). Against GBRAS-Net, a recorded improvement 

of 2.3%  (S-UNIWARD) and 0.5%  (WOW) further 

underscores its superiority. This meticulous analysis 

highlights the Proposed model's effectiveness in stego image 

detection and provides profound insights into its enhanced 

performance with specific algorithm combinations. The 

Proposed model distinguishes itself by implementing 30 SRM 

filter banks, LeakyReLu functions, and mixed pooling, 

showcasing potential feature extraction and steganography 

detection advantages. However, the model's complexity 

introduces challenges such as increased computational 

demands and potential overfitting due to extensive feature 

extraction.  

 

1715



 

Additionally, while the Proposed Model excels in the 

evaluated benchmarks, its generalization to other 

steganographic domains and scalability in practical 

applications need further validation.  

Overall, the Proposed Model’s sophisticated architecture 

offers substantial improvements in accuracy and versatility but 

requires careful consideration of its computational and 

generalization limitations. 

This detailed analysis demonstrates that the proposed model 

offers a more efficient solution for detecting stego images, 

showing consistent and substantial improvements across 

various evaluation metrics.  

The integrated approach, incorporating nonlinear functions 

from filter banks, such as TLU and ReLU, along with feature 

normalization using BN, yields impressive results in 

steganalysis.  

However, the proposed method still requires improvements 

in the model's architecture to optimize training time, which 

remains a challenge common to existing works.

 
 

Figure 5. Feature map of (a) Input layer (b) 1st Conv2D layer (c) 1st depthwise layer (d) 1st separable layer (3) 2nd depthwise (f) 

3rd Conv2D layer (g) 4th Conv2D layer (h) Last Conv2D layer 

 

4.4 Model's learned features 

 

To understand the model in more detail, we visualize our 

proposed method's output layer or so-called feature map, 

which can be seen in Figure 5. In the given image, we observe 

the progression of feature maps from layer to layer. Initially, 

after the first 2D convolutional layer, the feature map 

highlights basic patterns such as edges and lines. These 

fundamental features serve as building blocks for more 

intricate representations. Subsequently, the depthwise and 

separable layers contribute to the abstraction process. Here, 

features become less recognizable but capture higher-level 

characteristics, textures, and context. Finally, the last 2D 

convolutional layer produces highly processed feature maps 

essential for subsequent classification tasks. These maps 

encode crucial information about the input image, enabling the 

network to make informed decisions. This gradual process 

allows the Proposed model to understand visual information 

step by step and acquire relevant feature representations 

 

4.5 Potential applications 

 

The proposed CNN-based steganalysis method has 

significant practical implications and offers various potential 

applications in digital forensics, cybersecurity, and privacy 

protection. In digital forensics, this method plays a critical role 

by uncovering hidden data within images, serving as crucial 

evidence in criminal investigations, and helping to maintain 

the chain of custody by verifying image integrity. In 

cybersecurity, the method is a powerful shield against data 

leakage by adeptly detecting hidden data transmissions in 

corporate and network environments, enhancing antivirus 

solutions, and identifying steganographic malware. 

Furthermore, the proposed model supports privacy 

protection goals by detecting unauthorized surveillance 

attempts, uncovering embedded spy software within images, 

and ensuring compliance with data protection laws by 

preventing unauthorized data transmission. These capabilities 

make the steganalysis method indispensable for law 

enforcement agencies, corporate security teams, and 

individuals seeking to safeguard sensitive information. 

Notably, its efficiency and effectiveness balance accuracy 

with computational feasibility, making it well-suited for real-

time applications. 

Beyond the technological aspects, steganalysis also 

considers its social impact. Evaluating the societal benefits and 

challenges associated with steganalysis tools is essential, as 

these tools address critical security needs. Ultimately, their 

practical value lies in their application during cybercrime 

investigations, where they unveil hidden data and enhance 

forensic analysis, thereby addressing specific cybersecurity 

threats. 
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5. CONCLUSION 

 

In the realm of advancing steganalysis methodologies, this 

research has been dedicated to enhancing performance through 

the application of a CNN approach. The proposed method not 

only surpasses existing techniques in detection accuracy but 

also demonstrates superiority, particularly in comparison with 

predecessor architectures, notably on the S-UNIWARD and 

WOW payload 0.4bpp steganography algorithms. The 

principal contributions to CNN development lie in the 

innovative utilization of mixed pooling techniques, providing 

flexibility in feature extraction by combining different pool 

sizes to capture deeper and more diverse nuances of images. 

Furthermore, incorporating depth-wise steganalysis and 

separable convolution prevents kernel neglect in channel 

correlation, ensuring a robust consideration of spatial 

correlation. The activation function LeakyReLu is adopted to 

address the issue of dim gradients, thereby enhancing network 

convergence. This research affirms the effectiveness of 

employing CNNs to address the steganalysis problem.  

Recommendations for future research include further 

exploration of CNN architecture, parameter tuning, and the 

application of regularization techniques to overcome 

overfitting. In addition, consideration should be given to using 

larger and more varied datasets so that the model can learn 

from various situations that may arise in steganalysis. Further 

analysis of the training and validation data may also provide 

additional insights to improve the reliability and 

generalizability of the model. 
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