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Surveillance is critical in ensuring security and safety in the modern world, with daytime 

surveillance systems operating under favorable conditions. In contrast, nighttime 

surveillance presents a far more complex challenge due to reduced visibility and varying 

lighting conditions. Performing object detection at night poses a distinct challenge due to 

limited visibility and low-light conditions. Most conventional object detection 

methodologies struggle to perform accurately for small and distant objects in low light 

conditions, leading to deep learning techniques like You Only Look Once (YOLO), 

which gained significant attention due to its ability to achieve higher detection accuracies 

at incredible speeds. Advancements in deep learning methods have led to substantial 

improvements, but object detection in low-light scenarios remains a formidable challenge. 

This article proposes a method based on YOLOv8, a computer vision and deep learning-

based technology on the ExDark dataset, which is a collection of images in low-light 

conditions using the maximum resources of high-performance computing (HPC) for an 

enhanced object detection model. The study demonstrates the effectiveness of YOLOv8 

in overcoming limitations seen in other object detection frameworks, including Fast R-

CNN, Faster R-CNN, and SSD, by utilizing a real-time processing approach that 

maintains high accuracy even under challenging conditions. This study explores various 

image augmentation techniques, optimization strategies, hyperparameters tuning, and 

optional techniques to improve the model's detection capabilities, further increasing 

object detection robustness in surveillance tasks. The results of this study showcase that 

the object detection effectiveness of YOLOv8 is promising and achieves a significant 

Precision of 0.908, Recall of 0.819, and accuracy mAP of 0.886, as well as other metrics 

in low light and nighttime surveillance for small and distant objects. This study 

contributes to the ongoing development of intelligent surveillance systems by 

comprehensively evaluating YOLOv8 every model's nano(n), small(s), medium(m), large 

(l), and extra-large (x) performance in low-light conditions. It offers insights into 

improving object detection in critical security operations. 

Keywords: 

object detection, YOLOv8, high-performance 

computing, deep learning, surveillance 

1. INTRODUCTION

Surveillance systems are vital in playing a pivotal role in 

ensuring safety and security across various environments in 

the present-day world. Surveillance technologies help monitor 

activities, roads, urban centers, private properties, critical 

infrastructures, and many more by responding swiftly to 

potential threats [1]. Advancements in computer vision 

technology have significantly impacted the development of 

surveillance systems, enabling automated and real-time object 

detection. However, one of the persistent challenges in 

surveillance systems is maintaining high performance under 

nighttime and dark conditions, where low light levels and poor 

visibility will severely impact the detection capabilities. 

Nighttime object detection is even more essential for security 

purposes. Object detection at nighttime and in dark scenarios 

poses unique challenges and requires particular approaches to 

ensure reliable performance. Traditional object detection 

models are not considered as they often struggle in dark and 

low-light conditions due to factors like occluding objects and 

shadows. These challenges highlight the need for robust object 

detection models for nighttime surveillance.  

Nighttime surveillance is challenging based on many 

environmental, technological, and physiological factors. The 

primary factor is the low-light conditions, but there are many 

other interrelated factors, such as shadows, glare from 

artificial lighting, motion blur due to slower camera shutter 

speeds, and occlusion by objects that are harder to distinguish 

at night. These factors make the accurate detection and 

identification of objects much more complex in low-light 

conditions, leading to higher failure rates in object detection 

systems. Low-light conditions often introduce visual noise, 

reducing the accuracy of the object detection algorithm and 

causing the system to miss a few objects or create false 
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positives, where non-objects are misidentified or misclassified 

as significant objects. Objects in motion at night are 

challenging to detect due to the need for more prolonged 

camera exposure, leading to motion blur. Objects may become 

completely distorted or unrecognizable due to this visual blur. 

Similarly, occlusion due to darkness can hide objects, creating 

blind spots in the surveillance footage.  

Research on nighttime object detection models by Wang et 

al. [2] showcases that traditional object detection models like 

Faster R-CNN exhibit a significant decline in accuracy and 

other metrics in low-light conditions. Moch and Supriyanto [3] 

studied thermal image-based object detection and showcased 

that, despite using advanced deep learning models such as 

YOLOv4, detection accuracy decreased when distinguishing 

between similar heat signatures at night. It is especially 

problematic in detecting industrial surveillance systems, 

where objects like machinery generate overlapping heat 

patterns. Liu et al. [4] studied YOLOv4 object detection was 

used for low-light surveillance tasks using the ExDark dataset. 

The model has showcased difficulty detecting objects that 

blended with dark backgrounds or were occluded by poor 

lighting conditions. Luo et al. [5] investigated the performance 

of the Single Shot Detector (SSD) model on nighttime traffic 

monitoring. This study indicated that glare from headlights 

and poor visibility have caused misclassifications in object 

categories like vehicles and pedestrians. 

The ExDark dataset [6] is an exclusively dark dataset 

consisting of extremely low-light nighttime images that 

provide and serve as a critical resource for developing and 

evaluating object detection algorithms in low-light, dark, and 

nighttime conditions. ExDark dataset comprises standard 

RGB images with detailed texture information, which is 

crucial for accurately identifying and differentiating objects at 

nighttime. Alternative to RGB images are thermal images, also 

considered for nighttime object detection. They provide an 

alternative method of computing heat signatures and 

effectively detecting objects based on temperature variations 

[3]. Infrared thermal data images are essential in object 

detection when visual light cameras may not meet 

performance standards. Still, RGB images have several 

advantages over thermal images in surveillance applications as 

they enable the detection of a wide variety of objects with 

much greater detail and context, as thermal images often lack 

fine-grained details and color information present in RGB 

images. RGB cameras are generally more affordable and 

widely available than thermal imaging devices. 

YOLO is one of the critical advancements in object 

detection, which uses a convolutional neural network (CNN), 

a deep learning model that revolutionized object detection into 

a single regression problem by directly predicting an image's 

bounding boxes and class probabilities in one stage. It is hence 

referred to as a one-stage detector [5]. This methodology 

enables YOLO to achieve high-speed performance without 

compromising accuracy, making it highly suitable for real-

time applications. In real-time object detection scenarios, the 

YOLO algorithm has outperformed other detection methods 

like Fast R-CNN, Faster R-CNN, and SSD regarding 

precision, recall, accuracy, and other metrics [7]. Every 

iteration of the YOLO model improves its precision, accuracy, 

and object recognition capabilities [2]. Surveillance systems 

require real-time monitoring and analyzing video feeds, 

detecting and tracking objects such as people, vehicles, and 

potential threats. The rapid processing of video frames by the 

YOLO model’s optimized design promotes increased 

situational awareness and swift responses to suspicious 

activities [8]. 

This study presents an overview of implementing the 

YOLOv8 object detection model using the ExDark dataset for 

nighttime surveillance. Section 2 provides an outline of 

relevant research, i.e., a literature review. Section 3 explains 

the usage of high-performance computing systems and its 

benefits. Section 4 explains the implementation of our 

methods and their outcomes. Section 5 discusses the results 

and outcomes of the research study. Finally, Section 6 

concludes this research study with a summary of our 

contributions and suggestions for future research studies. 

 

 

2. RELATED WORK 

 

Luo et al. [9] introduced a technique called Localization-

aware Logit Mimicking (LaLM) based on knowledge 

distillation. The method aims to enhance object detection 

accuracy in challenging weather situations by minimizing the 

disparity between predictions from degraded photos and clean 

images. The method performs outstanding on three datasets, 

RTTS, ExDark, and RID, in extreme weather conditions. The 

methodology employed in this is a knowledge distillation 

technique. Kou et al. [10] proposed a compact two-stage 

transformer for improving the quality of low-light images. It 

also presents a framework for detecting dark objects by 

combining the enhancement model with YOLO. It achieves 

excellent low-light enhancement and dark object detection on 

datasets like Exdark while maintaining a small model size and 

real-time performance. The methodology applied is a two-

stage transformer architecture. Secondly, it suggested the 

implementation of an FFT-Guidance Block (FGB) to extract 

frequency components and facilitate the retrieval of picture 

potential information. Almujally et al. [11] proposed a new 

framework for efficient and lightweight vehicle detection and 

tracking in nighttime aerial surveillance systems and for low-

illumination conditions, using the YOLOv5 algorithm to 

achieve high precision scores in VisDrone and UAVDT 

datasets. Defogging and image enhancement using MIRNet 

are used for vehicle detection systems, and IDs are assigned to 

detected vehicles using SIFT features. 

Abdusalomov et al. [12] proposed an improved YOLOv3 

algorithm to enhance the accuracy of their fire detection 

method, address blurring issues at night, and develop a 

lightweight model that can run on embedded devices with low 

computational capabilities on massive datasets—employed 

data augmentation and contrast enhancement techniques on 

the images running the YOLOv3 network with pre-trained 

weights and evaluating the accuracy and predicting fire 

occurrence. Sharma et al. [13] presented a study using the 

YOLOv5 deep learning model to detect and classify vehicles, 

pedestrians, and traffic signals in real-time video under 

different weather conditions to improve object detection for 

autonomous vehicles. The dataset used in this study is the 

Roboflow self-driving car dataset. Liu et al. [4] presented a 

technique for enhancing object detection in visually degraded 

environments by incorporating a feature-guided module and 

an image enhancement branch which elevates the performance 

of networks on hazy, night-time, and underwater datasets like 

URPC2021, ChinaMM, RTTS, ExDark, and LLVIP. The 

methodology employed in this paper is a parallel architecture 

using a feature grid module for the enhancement branch and 

detection branch without additional computational costs 
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during testing. Xu et al. [14] proposed a new efficient object 

detection model FL-YOLO in coal mines using a cloud-edge 

collaboration framework for real-time intelligent video 

surveillance using the multi-scene and single-scene pedestrian 

datasets. The edge-cloud collaboration ensures low latency 

and high accuracy, enabling real-time response to video events 

and continuous model optimization to ensure production 

safety.  

Song et al. [15] presented a hybrid deep learning framework 

for ship detection in remote sensing images, consisting of RSI 

dehaze, RSI enhancement, an image enhancement stage, a 

SplitShuffle module, and an improved YOLOv5s network. It 

is implemented on the HRSC2016 and DIOR datasets, 

achieving state-of-the-art performance. The Dehaze network 

maintains the colour balance. The hazy RSI Image 

enhancement network learns illumination mapping and 

recovers the RSI SplitShuffle module in the YOLOv5 

backbone to reduce redundant features. Hui et al. [16] 

proposed a novel algorithm called WSA-YOLO for object 

detection in low-light environments, which decomposes the 

image, predicts image parameters, and adaptively enhances the 

image to improve detection performance. The WSA-YOLO 

algorithm demonstrates good generalization ability and 

performs well on the RTTS dataset, which contains low-light 

and foggy conditions. Xiao and Liao [17] proposed that LIDA-

YOLO is an unsupervised domain adaptation method that 

improves upon YOLOv3 object detection by using local and 

global feature alignment modules to address data bias and 

achieves the highest mAP score of 56.65% on the ExDark 

dataset compared to other unsupervised methods while 

requiring fewer samples and having more vital generalization 

ability. It uses two main components: the multi-scale local 

feature alignment (MSLA) module and the multi-scale global 

feature alignment (MSGA) module. The MSLA module aligns 

perceptual fields. It reduces low-level feature differences 

between source and target domains. The MSGA module aligns 

overall image attributes and reduces feature biases like 

background, scene, and target layout. 

Peng et al. [18] presented a new innovative object detection 

model, NLE-YOLO, incorporating a C2fLEFEM feature 

extraction module for detecting objects under low light 

conditions using the ExDark dataset. This paper presents a 

new Attentional Receptive Field Block (AMRFB) designed to 

increase the receptive field and improve feature extraction by 

substituting the SPPF module with the SimSPPF module to 

achieve quicker inference speed and improved feature 

representation. Chen et al. [19] proposed a target detection 

algorithm based on YOLOv7 for underwater resources called 

Underwater-YCC. It uses data augmentation, attention 

mechanisms, Conv2Former, and Wise-IoU techniques on the 

URPC2020 dataset. It has incorporated the CBAM attention 

mechanism into the Neck component to improve feature 

extraction and replaced the ELAN-F convolution block in the 

Neck with the Conv2Former module to better handle blurred 

underwater images. Bose et al. [20] introduce a novel real-time 

two-wheeler traffic rule violation detection system that can 

operate effectively in low-light conditions. The significant 

contributions in this study are the development of a 

comprehensive low-light dataset using the latest YOLOv8 

model, a low-light enhancement module, and an integrated 

network of devices for efficient anomaly detection. The 

dataset used in the study is a custom dataset of two-wheeler 

traffic rule violations. The low-light videos are enhanced with 

OTSU's thresholding and CLAHE. The traffic violation 

detection was performed using the YOLOv8 object detection 

algorithm. 

Nie et al. [21] introduced a new dataset called TDND 

datasets, which comprises nighttime driving images from 

different countries and regions with various challenging visual 

conditions and evaluates the performance of six typical object 

detection methods on this dataset. Wang et al. [2] proposed a 

new object detection model called DK_YOLOv5 using the 

ExDark dataset and the expanded Mine_ExDark dataset to 

address the challenge of low detection accuracy in low-light 

environments, such as underground mines. Rahim et al. [22] 

proposed an efficient deep learning-based solution for real-

time social distance monitoring in low-light environments 

using the YOLOv4 algorithm and a motionless time-of-flight 

camera. The YOLOv4 model was trained on the ExDARK 

low-light dataset to detect people. The model was trained and 

evaluated on two network sizes. Wang et al. [23] presented a 

vision-based system that efficiently detects crashes in mixed-

traffic scenarios under very low-visibility conditions. The 

retina image enhancement technique was implemented to 

boost the image quality under low light conditions. The 

YOLOv3 model was designed to accurately identify and 

classify items from the dataset images, such as vehicles, 

pedestrians, and cyclists. A model was trained on features 

extracted from the YOLOv3 outputs to detect crashes. The 

dataset consists of many CCTV video clips collected online. 

Zhao et al. [24] proposed a real-time small object detection 

method for power line inspection in low-illuminance 

environments using an adaptive transformer-based image 

enhancement module and a lightweight object detection model 

using YOLOv7. 

These studies on low-light surveillance and object detection 

have significantly improved accuracy under challenging 

conditions. However, several limitations persist, such as the 

inability to detect small and occluded objects in shallow light 

conditions and the inability to detect distant objects. Many 

traditional object detection models, such as Faster R-CNN, 

Mask R-CNN, and SSD, struggle to maintain high 

performance in low-light environments, often due to 

inadequate feature extraction mechanisms for smaller objects. 

These models typically lack robust techniques for handling the 

extreme lighting variability encountered at night, which leads 

to low precision and recall metrics for detecting small or 

distant objects. In this study, in the subsequent sections, we 

discuss the implementation of YOLOv8, one of the finest 

object detection algorithms implemented on the ExDark 

dataset using the high computational resource HPC for small 

and distant object detection in low light surveillance 

applications. 

 

 

3. HIGH PERFORMANCE COMPUTING 

 

3.1 Introduction to high-performance computing 

 

High-performance computing (HPC) is a powerful 

processor with parallel processing, usually called 

supercomputer, used to solve complex computational 

problems. These can analyze data and execute complex 

computations at high speeds, significantly above standard 

computer capabilities. HPC uses the technology of parallel 

multiprocessing, which mainly works on the power of multiple 

processors working in parallel to deliver exceptional 

processing speed and efficiency. The applications that require 
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extensive computation, large-scale data analysis, and high-

speed processing that are crucial for various scientific, 

engineering, and business applications use these HPCs. HPC 

comprises Master Nodes and Compute Nodes. Master nodes 

function as the central control unit [25]. The master node is 

responsible for managing the distribution of computational 

tasks to the compute nodes, scheduling jobs, and monitoring 

the overall system performance. Compute nodes are the 

primary components of the HPC system, and they are 

equipped with powerful core CPUs and GPUs with ample 

memory to handle complex, extensive, and rigorous tasks. 

Compute nodes are responsible for performing complex 

computations and calculations. High-speed interconnect 

networks like Ethernet, InfiBand, and Omni-path 

communication technologies are most commonly used for 

interconnection. These high-speed interconnect networks 

connect these nodes for rapid data exchange and 

communication. HPC is integrated with robust storage 

systems. These storage systems mainly store large datasets, 

complex computational tasks, and high-end software. Parallel 

file systems like Lustre and GPFS manage the enormous 

amount of generated data. Software like SLURM and PBS are 

utilized to manage task queues, and Linux-based Operating 

systems are used for effective resource management and job 

scheduling in the HPC system. Figure 1 describes the basic 

block diagram of high-performance computing. 

 

 
 

Figure 1. Block diagram of high-performance computing 

 

3.2 Applications of high-performance computing 

 

HPC systems are utilized in applications like artificial 

intelligence, machine learning, quantum mechanics, and other 

significant applications requiring complex mechanisms and 

heavy computational resources. The main advantage of an 

HPC is that it reduces computational time by providing 

unparalleled speeds and enabling the rapid processing of large 

datasets and complex computations, optimizing resource 

usage through parallel processing and high-speed 

interconnects, and ensuring efficient performance. 

One of HPC's benefits is that it allows the addition of extra 

compute nodes to meet the growing computational demands. 

Scalability is an added advantage of HPC. HPC facilitates 

technological advancements that are not achievable using 

traditional computing capabilities. 

High-performance computing offers the computational 

power and efficiency needed to tackle some of the most 

challenging problems. It is combined with the capabilities of 

master nodes, compute nodes, high-speed interconnects, large 

storage systems, and software, which, in return, deliver 

exceptional performance, driving advancements and fostering 

innovation across various fields. 

 

 

4. MODEL AND PERFORMANCE METRICS 

 

4.1 YOLOv8 model 

 

YOLO is an object detection framework developed by 

Ultralytics, known for its exceptional speed and accuracy. 

YOLO has revolutionized the field of computer vision by 

enabling real-time object detection. YOLO divides the input 

image into an SxS grid. Each grid from that image predicts a 

set number of bounding boxes and confidence scores, and thus, 

those confidence scores of the bounding boxes indicate the 

probability that the bounding box contains an object. YOLO 

object detection mechanism is efficient because it 

simultaneously predicts multiple bounding boxes and class 

probabilities for every grid cell [26]. During inference, these 

predictions are processed using non-maximal suppression 

(NMS) to eliminate the redundant boxes and retain only the 

most accurate and precise ones.  

 

4.2 Architecture of YOLOv8 model 

 

The architecture of YOLO is divided into three main blocks: 

the backbone, neck, and head model illustrated in Figure 2. 

The backbone of YOLOv8 is used for feature extraction, 

which extracts features from the input images using a 

convolution neural network (CNN) structure with multiple 

layers of convolutions, batch normalization, and activation 

functions. YOLOv8 uses Cross-Stage Partial Darknet 

(CSPDarknet), the optimized version of Darknet-53, as its 

backbone [27]. The YOLOv8 neck uses the Path Aggregation 

Network (PANet) to aggregate features from different scales, 

enabling the detection of objects of various sizes. The neck 

comprises Spatial Pyramid Pooling (SPP) and Feature 

Pyramid Networks (FPN) [28]. The head of YOLOv8 

processes the aggregated features from the neck and produces 

prediction maps. These maps include the coordinates of 

bounding boxes, confidence scores indicating the object's 

presence, and each object's classification scores. 

 

4.3 Performance metrics 

 

Following the training, validation, and testing, a series of 

well-defined metrics are considered to calculate all the aspects 

of the model's accuracy and effectiveness. Understanding 

these metrics is essential to the model's evaluation as it is 

crucial for interpreting the results. The primary performance 

metrics in the YOLO models are precision, recall, mean 

average precision (mAP), and F1 score. These metrics are 

defined as 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
 (2) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 
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Figure 2. Architecture of YOLOv8 [29] 

 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

 (4) 

 

 

5. EXPERIMENT AND RESULTS 

 

5.1 Dataset and HPC configuration 

 

This study uses the Exdark dataset for object detection using 

YOLOv8. The ExDark dataset comprises of 7344 images 

divided into 70% training, 20% validation, and 10% testing 

purposes. The ExDark dataset is primarily not in YOLO 

format. First, it is converted into a YOLO format, with images 

and bounding box annotation files, and the class IDs are 

generated. The training of this dataset is conducted using high-

performance computing (HPC), which has GPU Nodes that are 

equipped with Dual Intel® Xeon® Platinum 8358 processors 

and four Nvidia A100 GPUs, each with 80 GB of memory with 

storage of the HPC system with 200 TiB usable capacity. 

Before the model training, hyperparameters are adjusted to 

help determine more optimal parameters for training the 

dataset. Table 1 describes the hyperparameters used to train 

the ExDark dataset using the YOLOv8 algorithm. 

 

Table 1. Parameter configuration 

 
Parameter Name Value 

Epochs 150 

Image size 640 

Batch size 32 

Learning rate 0.01 

Optimizer AdamW 

 

5.2 Techniques 

 

Several modifications and configurations were 

implemented to customize the YOLOv8 model for the ExDark 

dataset using high-performance computing (HPC) 

environments to enhance its efficacy in nighttime surveillance 

applications. The ExDark dataset contains 12 object classes: 

bicycle, boat, bottle, bus, car, cat, chair, cup, dog, motorbike, 

people, and table, in which only seven classes relevant to 

surveillance applications were selected for this study. Those 

classes include bicycle, bus, car, cat, dog, motorbike, and 

people, as they represent the key objects typically encountered 

in real-time monitoring for security and urban surveillance 

scenarios. The training is executed with the Visual Studio 

Code (VSCode), remotely connected to high-performance 

computing (HPC). Python 3.10.7 environment is used, and 

CUDA 11.8 and cuDNN 11.8 are used to enable GPU-

accelerated training. The training was conducted across all 

YOLOv8 models nano(n), small (s), medium (m), large (l), 

and extra large(x), with extensive augmentation techniques 

employed to address the challenges of low-light conditions. 

The augmentation techniques include horizontal and vertical 

flips, random brightness contrast adjustments, shift-scale-

rotate transformations, coarse dropout, random resized crop, 

hue saturation value adjustments, RGB shifts, motion blur, 

Gaussian blur, and CLAHE. Additionally, K-Means clustering 

was applied to optimize anchor boxes, allowing the model to 

detect objects more accurately by adjusting bounding box 

sizes to better fit the dataset’s object dimensions. 

To further enhance model performance, hyperparameter 

tuning was conducted using the Optuna framework, refining 

critical parameters such as learning rate, weight decay, and 

learning rate factor. AdamW (Adaptive Moment Estimation 

with Weight Decay) optimization algorithm is used to 

combine the advantages of AdaGrAD and RMSProp for 

improved training and generalization capabilities of the model. 

AdamW optimizer uses a Cosine Annealing learning rate 

scheduler, which helps in dynamic adjustments of the learning 

rate through the training process, thereby improving model 

convergence. The training process is executed with 

hyperparameters tuned with parameter configuration, with 

1767



 

image size 640, batch size 32, and epochs 150, ensuring 

comprehensive model learning. The early stopping method is 

implemented in the training process to automatically halt the 

training when there is no further improvement in the model's 

performance, preventing overfitting and ensuring efficient use 

of high-performance computing resources. After completion 

of training and validation, the best-performing model is 

selected for testing, where its performance is rigorously 

evaluated and metrics are calculated. Using advanced 

optimization techniques highlights the model's ability to 

address the unique challenges of low-light object detection, 

contributing to advancements in nighttime surveillance 

systems. Figure 3 illustrates the training outcomes of the 

YOLOv8m model on the ExDark dataset. The Figure 3 

showcases the model's ability and effectiveness in the training 

process, where the model learned to detect and classify objects 

across the ExDark dataset's seven classes. In the Exdark 

dataset, the classes are indexed explicitly as 0 for bicycle, 1 for 

bus, 2 for car, 3 for cat, 4 for dog, 5 for motorbike, and 6 for 

person. The results depicted in Figure 3 suggest that the 

training was adequate, whereby the model could classify the 

objects according to the designated classes and successfully 

adapted to the unique challenges of low-light object detection 

in nighttime surveillance. 

 

 
 

Figure 3. The training batch results of ExDark dataset using YOLOv8m 

 

5.3 Results and discussions 

 

The precision-recall (PR) curve for the YOLOv8m object 

detection model using the ExDark dataset is illustrated in 

Figure 4. The mAP@0.5 mean Average Precision for all 

classes is 0.895, indicating that the model is performing well 

across all classes, with one or two underperforming classes 

due to extremely low light conditions. The PR curve remains 

relatively smooth and stable, indicating that the YOLOv8m 

model achieves an ideal balance between precision and recall. 

This balance in the metrics is essential for achieving good 

object detection in low-light surveillance applications, where 

missing a critical object can have significant security 

implications, and false positives can trigger unnecessary alerts. 

The precision-recall curve remains consistently high for larger 

objects like Bus and Car, with mAP@0.5 values of 0.971 and 

0.878, respectively. These results indicate that the model 

effectively detects these classes in extremely low light 

conditions. Smaller or more ambiguous objects like cats and 

dogs can be detected under very low light conditions. The 

mAP@0.5 for cats is 0.888, and the dog is 0.956. This 

showcases that the proposed YOLOv8m model performs well 

and accurately detects smaller objects with less 

misclassification. 

As illustrated in Figure 5, the relationship between the F1 

score and the confidence thresholds is depicted for all the 

object classes in the ExDark dataset. The blue line indicates 

the aggregate performance of all the classes, with the highest 

F1 score being 0.85 at a confidence level of 0.468, thus 

indicating that the overall model's detection performance is 

optimal at this confidence threshold.  
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Figure 4. Precision-recall confidence curve of the ExDark 

dataset using YOLOv8m 

 

 
 

Figure 5. F1-confidence curve of the ExDark dataset using 

YOLOv8m 

 

 
 

Figure 6. Confusion matrix of the ExDark dataset using 

YOLOv8m 

 

Figure 6 illustrates the confusion matrix, showcasing how 

well the model classifies each category individually. The true 

classes are listed along the vertical axis, and the predicted 

classes are listed on the horizontal axis. The diagonal elements 

in the confusion matrix are essential as they are correct 

classifications. Off-diagonal elements indicate 

misclassifications where the model's prediction did not match 

the actual class. The color intensity in the matrix provides a 

visual representation of the frequency of predictions, with 

darker shades indicating higher counts. The 'Car' and 'Bus' 

classes show high accuracy, with minimal misclassifications. 

These objects are often prominent in nighttime surveillance. 

The 'Cat' and 'Dog' show occasional misclassifications, as 

these objects may blend into dark environments, making them 

harder to differentiate from one another. Analyzing the 

confusion matrix, it can be identified which specific class 

needs more training, and the model can be adjusted to reduce 

the misclassifications, improving the model's overall accuracy 

and reliability. The model summary parameters and the 

training time taken for each model are listed in Table 2. 

 

Table 2. Model summary parameters 

 
Model Layers Parameters  GFLOPs Time 

YOLOv8n 168 3,006,428 8.1 1.483 

YOLOv8s 192 9,385,763 39.4 1.628 

YOLOv8m 218 25,842,076 78.7 1.802 

YOLOv8l 268 43,609,692 164.8 2.424 

YOLOv8x 297 77,436,893 192.7 2.864 

 

Table 3. Training model results 

 
Method Precision Recall  mAP@50 F1-Score 

YOLOv8n 0.855 0.728 0.816 0.77 

YOLOv8s 0.854 0.767 0.827 0.79 

YOLOv8m 0.908 0.819 0.886 0.85 

YOLOv8l 0.897 0.790 0.865 0.84 

YOLOv8x 0.877 0.777 0.838 0.81 

 

In this study, extensive experiments are conducted on all the 

models of YOLOv8 on the ExDark dataset for object 

detection. The detailed comparison and evaluation of all the 

models of YOLOv8 showcase the detection performance of 

the YOLOv8 models on the ExDark dataset in nighttime and 

low-light conditions in Table 3. The results indicate that the 

YOLOv8m model performs well in all the metrics compared 

to the larger models. YOLOv8m demonstrated the best overall 

performance among all the tested models, achieving a 

precision of 0.908, recall of 0.819, mAP@50 of 0.886, and F1-

score of 0.85. Figure 7 illustrates the precision-recall and mAP 

metrics. It also illustrates the training and validation losses of 

box loss, class loss, and distribution focal loss (DFL loss). The 

box loss measures the predicted bounding box’s accuracy 

relative to the ground-truth box. A lower value indicates that 

the model is correctly learning the locations of objects. 

Throughout the training, the box loss shows a consistent 

decline, suggesting that the model is gradually improving in 

its ability to localize objects accurately in low-light 

environments. The class loss reflects how well the model is 

classifying the detected objects. Like the box loss, a steady 

decline in class loss during training indicates improved 

performance in distinguishing between different object 

classes. Distribution Focal Loss (DFL) measures the 

confidence with which the model assigns objects to predicted 

classes. The decrease in the DFL value indicates that the 

YOLOv8m model is performing well and becoming more 

confident in predicting the objects and their classes correctly, 

which indicates that the false positives and false negatives are 

occurring at a minimum. Figure 7 also showcases the 

validation performance. It shows a steady decrease in 
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validation loss, indicating that the model is not overfitting and 

generalizes effectively to unseen data. This is crucial in 

surveillance applications, where the model must detect objects 

in real time under various low-light conditions without 

degrading accuracy. These metrics indicate that YOLOv8m 

accurately identifies objects in highly dark conditions and 

maintains a balanced performance across various evaluation 

metrics. The metrics achieved with the extremely low-light 

dataset are promising and are comparably more than the 

previous studies. The results indicate that our proposed 

method performs reasonably better than all the previous 

studies in this area.  

 

 
 

Figure 7. The training and validation losses with metrics 

 

 
 

Figure 8. The testing batch results of the ExDark dataset using YOLOv8m 
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Table 4. Comparison with previous research 

 
Ref. Method Dataset mAP@50 

[16] Faster RCNN ExDark 0.783 

[16] Mask RCNN ExDark 0.802 

[16] SSD ExDark 0.693 

[2] YOLOv5s ExDark 0.713 

[16] YOLOv7 ExDark 0.798 

[2] YOLOv8s ExDark 0.683 

Proposed Model YOLOv8m ExDark 0.886 

 

Table 4 compares metrics from previous research, 

highlighting the superior performance of our model across all 

evaluated metrics. This indicates that our model is highly 

suitable for real-time object detection in surveillance 

applications, particularly in low-light conditions. Figure 8 

showcases the test and prediction results of the trained model. 

Table 4 presents a comparison between the proposed 

YOLOv8m model and various state-of-the-art models, 

including Faster R-CNN, Mask R-CNN, SSD, YOLOv5s, 

YOLOv7 and also YOLOv8s based on their mean Average 

Precision (mAP) on the same ExDark dataset. The proposed 

YOLOv8m model achieves a significantly higher mAP of 

0.886 than the previous studies. Faster R-CNN and Mask R-

CNN attain mAP values of 0.783 and 0.802, respectively, 

demonstrating that while these models perform well, they fall 

short in precision compared to YOLOv8m. Similarly, 

YOLOv7, another well-known model, achieves a competitive 

mAP of 0.798, yet it still needs to be improved compared to 

the proposed model. SSD lags with an mAP of 0.693, 

reflecting its limitations in handling complex low-light 

environments. These results highlight the advancements made 

by the YOLOv8m model, particularly in the context of 

nighttime surveillance, where the optimization techniques 

used in this study, such as data augmentation and anchor box 

refinement, contribute to a substantial improvement in 

detection accuracy. The results showcase that our proposed 

YOLOv8m model is highly suitable for real-time object 

detection in surveillance applications, particularly in low-light 

conditions. Figure 8 showcases the test and prediction results 

of the trained YOLOv8m model on the ExDark dataset. It thus 

demonstrates the model's ability to detect small and distant 

objects in low-light environments accurately. The model 

successfully detects small objects like a cat with an 86% 

confidence score and distant objects like bicycles with 84%, 

cars, and people with 87% and 83% confidence levels in 

extremely low light conditions. These results indicate that the 

YOLOv8m model performs exceptionally well in challenging 

low-light conditions, consistently identifying small and distant 

objects with high precision. The relatively high confidence 

levels for various object classes reflect the model's robustness 

and reduced instances of misclassification, further validating 

its effectiveness in real-time nighttime surveillance tasks. 

 

5.4 Limitations of the study 

 

Hyperparameter sensitivity: The performance of the 

YOLOv8m model is sensitive to hyperparameter tuning, 

particularly concerning learning rate and anchor box 

adjustments. Finding the optimal configuration required 

extensive experimentation and computing resources. Even 

slight variations in hyperparameter tuning led to model 

performance fluctuations. 

Model overfitting to specific augmentation techniques: 

Advanced data augmentation techniques improved the model's 

performance in low lighting conditions, but it may have 

inadvertently caused overfitting due to over-reliance on 

advanced augmentation techniques. Over-reliance on 

augmentation techniques may reduce the model's adaptability 

when exposed to novel lighting conditions not represented in 

the training set. 

Limited dataset diversity: The ExDark dataset images 

lack diversity regarding environmental conditions, such as 

varying levels of artificial lighting, and weather conditions, 

such as fog, rain, and background clutter. These factors can 

affect the generalizability of the YOLOv8 model when applied 

to real-world surveillance systems in diverse environments. 

Computational demands of HPC: The study relies heavily 

on HPC resources for training and testing YOLOv8, which 

may not be accessible to all organizations, especially for real-

time, low-cost surveillance systems. The reliance on expensive 

hardware and resources limits the practicality of the approach 

for broader applications. 

Impact of object motion in low-light conditions: The 

current study focuses on detecting stationary or slowly moving 

objects in low-light environments. However, rapidly moving 

objects, such as vehicles or people in motion, may introduce 

motion blur, which can significantly degrade detection 

accuracy. YOLOv8 may have limitations in capturing objects 

with high-speed movement under such conditions. 

 

 

6. CONCLUSIONS 

 

In this paper, the study presented an effective methodology 

for object detection in nighttime surveillance applications on 

the ExDark dataset based on the YOLOv8 model using high-

performance computing (HPC). The study trained and 

evaluated the performance of various YOLOv8 models 

nano(n), small(s), medium(m), large(l), and extra-large(x) on 

the Exdark dataset, and the YOLOv8m model emerged as the 

best model achieving balanced performance. The Yolov8m 

model achieved a precision value of 0.908, a recall of 0.819, 

and a mAP@50 of 0.886, proving its suitability for real-time 

object detection in surveillance applications for low light 

conditions. These results showcase the ability of the 

YOLOv8m model to address the challenges of low visibility 

small and distant object detection and make it an ideal choice 

for low-light surveillance applications. The study focused on 

the seven most relevant object classes for surveillance: 

bicycle, bus, car, cat, dog, motorbike, and people from the 

ExDark dataset, and the model was optimized for object 

detection in urban surveillance applications by concentrating 

on these essential objects. High-performance computing 

(HPC) significantly enabled effective model training by 

handling intensive computational tasks. It helped to reduce the 

computational training time by parallelly processing all 

complex operations, allowing the model to be trained more 

quickly than conventional hardware.  

The YOLOv8m model's performance was enhanced by 

implementing many argumentation techniques like brightness 

adjustments and Gaussian blur to improve the model's 

robustness in various low-light conditions. The performance 

of the YOLOv8m model was further enhanced by using 

hyperparameter tuning with the Optuna framework and the 

usage of the AdamW optimizer. Implementing K-Means 

clustering for anchor box optimization significantly enhanced 

the model's detection capabilities in complex, low-light 

scenarios. Implementing all these techniques helped improve 
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the YOLOv8m model's performance and perform 

exceptionally well in object detection tasks, such as detecting 

small and distant objects in extremely low light conditions. 

Future work can be focused on expanding the dataset or 

incorporating more diverse datasets further to test the 

robustness of the model under varying conditions and 

optimizing this model on edge computing or deploying lighter 

versions of YOLOv8 for real-time applications on lower-end 

systems for cost-sensitive and resource-limited environments. 

The performance achieved by this model YOLOv8m on the 

ExDark dataset signifies the model's potential for enhancing 

security systems and paves the way for further advancements 

in this critical field. 
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