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The rapid proliferation of the Internet of Things (IoT) has significantly increased the risk 

of Distributed Denial of Service (DDoS) attacks, threatening the reliability, availability, 

and security of services and infrastructure. To address these challenges, this study 

introduces a novel, integrated framework combining fog computing, machine learning, 

and lightweight encryption to enhance offline training and real-time detection of DDoS 

attacks in IoT environments. Our approach differs from existing methods by leveraging 

an offline phase for model training on recent DDoS patterns. This enables accurate, 

scalable detection when the model is deployed in the online fog layer. This two-phase 

strategy ensures timely and resource-efficient threat mitigation. In the offline phase, we 

extract four critical packet features (Src_IP, Port_IP, Dst_IP, Dst_Port) from the CIC-

DDoS2019 and Edge-IIoTset datasets. We then apply Chi-Square and entropy-based 

feature analysis, followed by synthetic minority oversampling (SMOTE), to address class 

imbalance. Three core classifiers—Random Forest (RF), Support Vector Machine 

(SVM), and Decision Tree (DT)—are trained to detect a variety of DDoS attacks (SYN, 

UDP, HTTP, and TCP) with high accuracy. The online phase deploys the trained model 

at the fog layer, employing the Speck lightweight encryption algorithm and Elliptic-Curve 

Diffie–Hellman (ECDH) for secure end-to-end communication. A voting mechanism 

among classifiers enhances detection reliability. The experiments proved that the 

framework achieves almost perfect detection accuracy (100% in most scenarios), 

surpassing current methods in accuracy, scalability, and applicability in resource-limited 

IoT environments. In addition, network performance metrics (throughput, latency, 

execution time, response time) confirm the solution's efficiency. This research provides a 

secure, adaptive, high-performance DDoS  attack detection system for IoT systems, laying 

the foundation for future studies to expand attack coverage, improve real-time 

performance, and investigate more robust encryption methods. 

Keywords: 

Internet of Things (IoT), fog computing, DDoS 

attack, IoT security, lightweight, speck 

encryption, real-time 

1. INTRODUCTION

The Internet of Things (IoT) has rapidly emerged as a 

transformative technological paradigm, integrating the 

physical and digital worlds to deliver advanced services across 

industry, healthcare, transportation, and other critical domains. 

By enabling pervasive connectivity and intelligent data 

exchange, IoT systems have introduced unprecedented 

convenience and automation. However, these benefits come 

with significant security challenges due to the inherently 

resource-constrained nature of IoT devices (e.g., limited 

memory and CPU) and their continuous connectivity to open 

and diverse networks [1, 2]. 

One of the core difficulties in IoT ecosystems is efficiently 

handling the massive volume of generated data while ensuring 

low latency and robust security. Traditional cloud-centric 

architectures often encounter high delays, bandwidth 

bottlenecks, and scalability issues as data travels between 

endpoints and remote servers. To overcome these limitations, 

fog computing has been introduced to process and store data 

closer to the network edge, thus reducing latency and 

enhancing Quality of Service (QoS) [3, 4]. Despite these 

advantages, fog computing inherits various security and 

privacy vulnerabilities from the cloud, including various 

attacks such as message replay, man-in-the-middle attacks, 

identity spoofing, and more [5]. These threats are especially 

concerning given IoT networks' increasing complexity and 

connectivity. 

Among the numerous cyber threats facing IoT systems, 

DDoS attacks are particularly severe. They flood targeted 

networks or services with a massive volume of traffic, 

exhausting resources and causing disruptions that can 

undermine service availability [6, 7]. With IoT devices often 

lacking powerful computational capabilities, distinguishing 

benign from malicious traffic in real-time becomes a 

formidable challenge. Although Machine Learning (ML) 

algorithms have shown promise in detecting known DDoS 

attack patterns, conventional methods often struggle to 
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identify novel or less common attacks, especially under 

conditions of data imbalance and limited device resources [8]. 

Security measures that ensure data privacy and integrity are 

equally critical in IoT environments. Sensitive information 

transmitted among IoT devices must be protected against 

unauthorized access [9]. Lightweight encryption and 

authentication schemes are essential for meeting IoT networks' 

real-time constraints and low-power requirements. Elliptic 

Curve Cryptography (ECC), for instance, has gained 

prominence for secure key sharing and digital identities [10]. 

The Diffie-Hellman (DH) algorithm, especially when 

combined with elliptic curves (ECDH), facilitates secure key 

exchange without transmitting the secret key directly over the 

network [11, 12]. Such cryptographic methods are vital for 

establishing trust and confidentiality in IoT ecosystems. 

In parallel, the demand for lightweight encryption 

algorithms suitable for resource-constrained environments has 

led to the adoption of ciphers like Speck. Speck is a family of 

lightweight, symmetric block ciphers that enable efficient and 

secure encryption on IoT devices [13]. Unlike traditional 

substitution-permutation networks, Speck relies on operations 

such as XOR, rotations, and modular additions to achieve 

cryptographic strength with minimal resource overhead. 

Integrating lightweight encryption ensures that data 

confidentiality does not compromise latency or power 

consumption in fog-based IoT scenarios. 

Building upon these insights, this work aims to enhance 

real-time DDoS detection and mitigation in a fog computing 

environment for IoT networks. Our proposed framework 

operates in two phases. The offline phase involves training 

robust detection models using recent IoT datasets (CIC-

DDoS2019 and Edge-IIoTset) to handle various DDoS attack 

patterns. We apply Chi-Square and entropy-based feature 

selection to improve classifier performance and employ 

SMOTE to address class imbalance. Machine learning 

algorithms such as SVM, DT, and RF are utilized and 

evaluated using accuracy, precision, recall, and F1-score 

metrics. The trained model is integrated into the fog layer in 

the online phase, where ECDH ensures secure end-to-end 

authentication. At the same time, the Speck algorithm provides 

lightweight encryption for data in transit. This dual-layered 

approach enables efficient, reliable, and secure DDoS 

detection in real-time, with network performance indicators 

such as latency, response time, and throughput also assessed 

to confirm system scalability and robustness. 

In short, our research addresses the urgent need for a secure, 

accurate, and low-latency solution for detecting denial-of-

service attacks in IoT environments. By integrating machine 

learning-based anomaly detection, fuzzy computing 

engineering, lightweight cryptographic primitives, and 

powerful feature engineering, we are developing the current 

state of IoT Cybersecurity and providing a foundation for 

future improvements in dealing with emerging threats. 

 

 

2. RELATED WORK 

 

This section will shed light on various studies discussed 

here. Many researchers use symmetric algorithms to detect 

DDoS attacks, using an algorithm that combines data mining 

and machine learning. A data encryption algorithm is proposed 

speck algorithm.  

Al-Razaq et al. [14] proposed an advanced system for 

classifying spam emails based on machine learning and deep 

learning. The study focused on using a hybrid model 

combining deep neural networks (DNN) and neural bypass 

networks (CNN), where the model was applied to a dataset of 

5,172 e-mails, with the most common 3,000 words used as the 

main features. To determine the top 500 features, I used the 

random Forest algorithm. The proposed model showed an 

overall accuracy of 99.8% in classifying messages, with a high 

detection rate of spam reaching 99.81% and a very low false 

positive rate. The proposed model also outperformed other 

models, such as random forests (95.45%), NB (96.47%), and 

traditional CNN networks (96.39%). This development 

reflects the importance of combining deep learning 

technologies to improve the performance of spam detection 

systems and reduce the negative effects of spam. 

Mallampati and Hegde [15] proposed the adoption of a 

hybrid model combining deep bypass neural networks (CNN) 

and a cost-sensing supporting machine algorithm (SVM), to 

improve the classification of spam, whether text or image. The 

model addresses the problem of unbalanced data distribution, 

emphasizing minimizing the cost of errors. The methodology 

was tested on two data sets, Spambase (4601 emails) and Wish 

(1730 images), where the model achieved an accuracy of 

98.05% and an AUC value of 99.01%, surpassing traditional 

models such as AdaBoost and random Forest. These results 

confirm the effectiveness of the hybrid model in recognizing 

spam with low error rates, with a recommendation to increase 

data diversity in future studies to ensure better generalization. 

Lawal et al. [16] introduced a framework for mitigating 

DDoS attacks within an IoT computing environment using fog 

computing to achieve swift and precise detection. This 

framework leverages an anomaly-based mitigation strategy 

that employs a k-NN classification algorithm with a 

specialized database. The database maintains signatures of 

previously identified attacks, facilitating quicker detection 

during recurring attacks. The proposed k-NN classifier was 

evaluated using the CIC-DDoS2019 dataset. The experimental 

outcomes revealed that the k-NN classifier successfully 

identified DDoS attacks with high accuracy, surpassing other 

ensemble classifiers in binary classification tasks. Specifically, 

the k-NN classifier attained an accuracy rate of 99.99%, while 

the DT and NB classifiers achieved 99.88% and 95.55%, 

respectively. Future research aims to implement the 

framework on existing fog computing platforms to validate the 

proposed methodology further. 

Machine learning techniques were adopted to contribute to 

developing an effective model that detects and classifies one 

of the most important DDoS attacks based on the analysis of 

the extent of valid data traffic in the network. Singh Samom 

and Taggu [17] pointed to the latest dataset, CIC-DDoS2019, 

which includes modern reflective DDoS attacks. The proposed 

system is evaluated based on four performance evaluation 

parameters: accuracy, predictive accuracy, recall, and F1 value, 

as well as prediction time. Experimental results showed that 

the model based on the RF classifier achieved an outstanding 

performance of 99.927%, superior to other classification 

algorithms. In the future, a framework based on this method of 

detecting and processing traffic attacks in real-time is expected 

to be developed to address security challenges more 

effectively. 

The performance values of three techniques of group 

learning, namely packing, reinforcement, and stacking, as well 

as three traditional techniques in machine learning, namely the 

nearest neighbor algorithm K, the RF, and NB, to detect 

intrusion in smart grid networks, as proposed by Khoei et al. 
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[18]. Use the CIC-DDoS2019 standard as the evaluation 

criterion. The stack-based group learning technique showed 

the best performance results of exploit attacks compared to all 

other classifiers, achieving TPR rates of 96%, FPR of 1%, 

FNR of 0.7%, and accuracy of 97.3%. Current systems face 

many limitations, such as low detection rates and high false 

alarm rates. Based on this, many studies have focused on 

addressing these issues. 

Yungaicela-Naula et al. [19] proposed the implementation 

of a modular and flexible Software-Defined Networking 

(SDN)-based architecture to detect DDoS attacks at both the 

transport and application layers. It used multiple frameworks 

for ML and DL. By exploring various ML/DL approaches, the 

study identified the best models under different types of 

attacks and conditions. Among the machine learning 

technologies, the KNN and SVM models successfully detected 

high-volume attacks using the CIC-DDoS2019 dataset with an 

accuracy exceeding 99.77%. The RF achieved an accuracy of 

96.36%. Future work involves integrating a scalability 

component and a mitigation module into the proposed 

architecture. Through the integration of various algorithm 

performances, DDoS attacks have been classified into multiple 

categories using machine learning algorithms proposed by 

Mishra in 2022. Each type of attack was detected and validated 

using specific characteristic criteria. To identify multi-

category cyber threats associated with DDoS attacks, a 

comprehensive analysis of diverse machine learning 

algorithms was conducted. The RF and SVM classifiers 

demonstrated the highest accuracy, each achieving an 

accuracy rate of 99.99%. In contrast, the NB classifier attained 

an accuracy of 99.98%, while the DT classifier recorded an 

accuracy of 99.89% using the CIC-DoS2019 dataset. Future 

research indicates that this approach could be extended to 

target, classify, and predict various other DDoS attacks [20]. 

Ogini et al. [21] found that a design-based model is 

proposed to detect and prevent DDoS attacks by controlling 

malicious traffic and reducing it on the network within the 

computing of IoTs, based on machine learning techniques. 

Their experiments utilized five ensemble classifiers tested on 

the latest DDoS attack dataset, CIC-DDoS2019. The results 

showed that the DT algorithm for the combined encapsulation 

classifier contributed to improving the classification accuracy 

of data traffic by 99.75%, which could further enhance the 

model's performance and enable real-time deployment in IoT 

environments. This study specifically targets identifying both 

'IoT attacks' and 'DDoS attacks' using the CIC-DDoS2019 

dataset provided by the Canadian Institute of Cybersecurity. 

Garg suggested this [22]. A boosting and non-boosting 

approach was used to identify the attacks. The boosting 

approach was found to be suitable for identifying attacks. 

LGBM is the most efficient of the two boosting methods, with 

an accuracy of 94.79%. 

Tareq et al. [23] suggested a model for detecting cyber-

attacks through a multiclass classification approach—the 

evaluation commenced by assessing the performance of the 

Edge-IIoTset dataset. Comparative analysis was conducted to 

discern various cyber-attacks. The highest accuracy obtained 

was 94.94%, which achieved training and validation accuracy. 

After 34 epochs, the spill can be seen, where the introduction 

Time algorithm was used in the Edge-IIoTsetset dataset 

because one of the challenges faced by using memory in the 

experiments was this dataset. Hence, the classes used weights 

instead of SMOTE as the experiments were within the limited 

possibilities of the CPU with celibacy regarding the use of 

memory and test time. 

AI-based learning models enable security analysts to 

understand better the nature of cyber threats and devices and 

more effective mitigation strategies. This study focused on 

preprocessing, analyzing, and evaluating data collected from 

digital sensors within an IoT system to identify potential 

vulnerabilities associated with IoT and IIoT network 

protocols  has been proposed by Hamza et al. [24]. To this end, 

various machine learning algorithms were evaluated, 

including KNN, achieving 90.3% accuracy; DTC, 92.5% 

accuracy; (LR, 81.5% accuracy; SVM, 84.3% accuracy; and 

RF, 94.1% accuracy, using the publicly available Edge-IIoTset 

malware detection dataset. The experimental results clearly 

show that RF outperformed other algorithms, achieving an 

impressive 94% accuracy in malware detection. Future 

research would be on investigating the efficacy of transfer 

learning techniques in the context of malware  detection. 

Laiq et al. [25] aimed  this study to identify normal or 

malicious DDoS attacks in the IoT terminal network (DDOS 

traffic). The proposed study used XGBoost, a combination of 

SVM, DT, and NB, through strict voting to predict normal and 

harmful traffic using the Edge-IIoTset dataset. In addition, the 

results indicate that the strict voting classifier achieved 88.7% 

accuracy of XGBoost and 99.88% and outperformed the strict 

voting group classifier by 11%. Future research will be on 

investigating the effectiveness of transformational learning 

techniques in the context of malware detection. Present a 

Federated Learning (FL) method to detect intrusions and 

defend IoT networks. To test the method's efficacy, we ran 

thorough experiments on Edge-IIoTset. The suggested 

intrusion detection model's accuracy (92.49%) is close to the 

standard centralized ML models' (93.92%) utilizing the FL 

approach, proving its dependability and effectiveness. Future 

directions are based on making the system more reliable for 

the case study where nodes at the edges are harmful to the 

network [26]. 

 

 

3. THE PROPOSED SYSTEM 

 

In the proposed framework, the system operates through an 

integrated two-phase approach: an offline phase for 

preprocessing, feature extraction, and model training and an 

online phase for real-time detection and response. This design 

ensures that robust models are trained on historical data and 

refined feature sets (using Chi-Square, Entropy, and SMOTE) 

before being deployed at the fog layer. By separating these two 

phases, the system combines the analytical depth of offline 

processing with the immediacy and security needs of online 

DDoS detection. 

The research technique comprises two distinct layers: the 

first is dedicated to IoT devices, and the second is the fog layer. 

The following is a comprehensive explanation of the 

suggested system: 

 

3.1 IoT layer 

 

This layer consists of two Raspberry Pi devices and several 

sensors. The temperature sensor on the first device and the 

temperature and humidity sensor on the second have unique IP 

addresses (192.168. 0.9 and 192.168. 0.10). These devices use 

the Python programming language and the TCP protocol, port 
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2024, to send data to a fog computing server with an address 

of 192.168.0.200 fog computing. 

The IoT layer’s compact and low-power sensor nodes 

continuously gather environmental data. These data are sent 

securely to the fog layer, where offline-trained models ensure 

that even resource-limited IoT devices benefit from robust 

anomaly detection without incurring additional computational 

overhead locally. 

a) Reading sensor data 

The gathering technique involves using two Raspberry Pi 

devices: a Raspberry Pi 4 Model B with 4 GB of RAM and a 

Raspberry Pi 3 Model A+ with an 8 GB microSD card slot. 

The devices included in Table 1 are a temperature sensor and 

a temperature and humidity sensor to read sensor data. These 

devices are programmable computers facilitating 

communication and supporting various network protocols and 

peripherals. This is made possible due to their compact size 

and affordable cost. Due to its compact size and affordable 

price, the Raspberry Pi is a competent and efficient computer. 

 

Table 1. Specifications of device nodes 

 
Device Model Size Voltage 

1 Raspberry Pi 4 Model B 

85.6mm × 

56.5mm × 

17mm 

5V(3A) 

1 Raspberry Pi 3 Model A+ 

65mm × 

56mm × 

12mm 

5(2.5A) 

2 Temperature 

Sensor 

DS18B20 

Waterproof 

Digital 

6*50mm 
3 to 5.5 

V 

2 Temperatureand  

humidity sensor 

DHT11 

Digital 
3cm*1cm 

3.5V to 

5.5V 

 

b) Authentication and encryption 

In a fog computing environment, when a sensor for 

humidity and temperature senses communication, each party 

needs to get authenticated, exchange public keys, and generate 

a shared key using the ECDH algorithm. Following the two 

parties' authentication to create a shared key, the data will be 

encrypted using the Speck algorithm and decrypted in the 

server, as can be seen in Figure 1 below; authentication was 

completed, a communication channel was established, and a 

shared key was decided upon for data encryption in the IoT 

environment (represented by the Raspberry Pi) and decryption 

in the fog computing environment (represented by the server 

computer). The humidity and temperature were measured at 

28.5 degrees Celsius.  

 

 
 

Figure 1. Decryption process in fog node 

 

Speck was selected for its lightweight properties, making it 

ideal for constrained IoT devices. By coupling Speck 

encryption with ECDH key exchange, the system ensures end-

to-end data confidentiality and integrity, allowing secure real-

time communications. This combination provides a balanced 

security model that supports the low-latency requirements of 

IoT environments. 

Algorithm 1 shows the main steps of the Speck lightweight 

encryption stage 

 
Algorithm 1. Pseudo code for speck algorithm (Encryption stage) 

Input: plaintext p, encryption key K 

Output: cipher text C 

1: Split plaintext p into two n-bit values: x and y 

        x ← p[0: n-1] 

        y ← p[n:2n-1] 

2: Initialize constants 

        T ← number_of_rounds    

        α ← some_ constant       

        β ← some_constant       

3: Generate round keys 

        Generate round keys K_0, K_1, ..., K_(T-1) using the key K 

4: For i = 0 to T-1 do 

        4.1: Update x 

            x ← (x + y) ⊕ (S^(-α) (x + y)) ⊕ K_i 

        4.2: Update y 

            y ← (S^β (y)) ⊕ x 

        End For Loop 

5: Combine the final values of x and y to get the cipher text C 

       C ← combine (x, y) 

End Algorithm 

 

3.2 Fog layer 

 

The work was done from a computer with Core i7 features 

and 256 GB SSD RAM. The sensors used are based on 

detecting the extent of changes that occur in the surrounding 

environment and transferring the information obtained to the 

fog layer in the network.  In the online phase, the fog layer uses 

the pre-trained model (from the offline phase) to analyze 

incoming traffic in real-time. By converting raw packet data 

into entropy and Chi-Square values over defined sliding 

windows, the fog layer promptly classifies traffic as usual or 

suspicious, enabling immediate, informed responses to 

potential DDoS attacks. 

a) Set (n) window time 

It is essential in contributing to real-time data retrieval. 

Several applications, such as Wireshark, support this stage and 

are powerful tools for analyzing traffic networks. This inquiry 

will utilize Wireshark, a notable software tool for analyzing 

network traffic. This software is both open-source and free to 

use, and it can be easily installed on machines running the 

Windows operating system. During packet analysis, 

Wireshark examines four important features of the packet in 

the network: the source address, the source port, the 

destination address, and the destination port, to help reduce 

and identify any attacks that occur during communication 

between nodes. The data will be received at regular intervals 

of exactly (20) seconds until it has been comprehensively 

analyzed. 

b) Convert window time to a numeric value 

Measurement of the network's randomness using entropy 

and Chi-Square for four attributes (Src_IP, Port_IP, Dst_IP, 

and Dst_Port) is required to identify distributed service attacks. 

These properties were transformed into values using the 

Claude Shannon-proposed mathematical equation for entropy, 

the standard entropy formula in Eq. (1) [27]. a measure of 

predictive power, and the Chi-Square test, a statistical method, 

to ascertain the level of subjective reliability between the two 

property formulas found in Eq. (2) [28]. It determines whether 
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the observed and anticipated values of the equation deviate 

significantly from one another. After it was transformed into 

values, the Chi-Square and entropy values were added together. 

Every (100) packets are collected using Python, the Pyshark 

package, and Wireshark. Each receiver package's four 

attributes (source IP/port, destination IP/port, and package) are 

obtained and entered into the sliding window period. 

 

𝐻(𝑥) = − ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2(𝑝(𝑥𝑖))
𝑛

𝑖=1
 (1) 

 

where, H is entropy, and P is Probability. 

 

∑ 𝑥2

𝑖−𝑗=
(𝑂−𝐸)2

𝐸

 (2) 

 

where, c=degree of freedom, O=observed values, E=Expected 

Values. 

Combining entropy and Chi-Square statistics enhances the 

model’s sensitivity to subtle deviations in traffic behavior. 

Entropy quantifies randomness and highlights unusual 

patterns, while the Chi-Square test assesses how observed 

distributions differ from expectations. Their joint use provides 

a more robust feature representation, improving the classifier’s 

precision in distinguishing between benign and malicious 

traffic. 

Algorithm 2 shows the main steps of entropy and Chi-

Square sliding windows calculation. 

 
Algorithm 2. Calculate the entropy& Chi-Square Sliding Window 

Input: Sliding window (Src_IP, Port_IP, Dst_IP, and Dst_Port) 

Output: Chi-Square value (χ²), Entropy (H) 

1: Initialize sliding_window  

While (every incoming packet) do 

2: Filter out packets with null values 

            If packet is null, then 

                Pass 

            End If 

3: Extract relevant features from the packet: 

            source_ip ← packet.Source_IP 

            source_port ← packet.Source_Port 

            destination_ip ← packet.Destination_IP 

            destination_port ← packet.Destination_Port 

4: Add extracted features to the sliding window 

            sliding_window. append((Src_IP, Port_IP, Dst_IP, and 

Dst_Port)) 

5: If sliding_window is full (reaches max size), then 

        6: Calculate Entropy 

            Call Entropy(sliding_window) 

         7: Calculate Chi-Square 

            Call Chi_Square(sliding_window) 

         8: Clear or shift the sliding window for the next set of 100 

packets 

    End If 

 

 

4. METHODOLOGY 

 

This methodology integrates two primary stages: (1) an 

offline preprocessing and training stage, where datasets are 

prepared, balanced with SMOTE, and enhanced using Entropy 

and Chi-Square feature analyses; and (2) an online deployment 

stage, where the trained model is applied within a fog 

computing environment. The following subsections detail the 

datasets, feature extraction techniques, handling of class 

imbalance, the selection and training of classifiers, and the 

evaluation metrics used to measure performance and real-time 

responsiveness. The proposed methodology consists of many 

preprocessing steps in the following sub-sections. 

 

4.1 Classification methods 

 

We used two publicly accessible datasets: the Canadian 

Cybersecurity Institute's (CIC) CIC-DDoS2019 [29] dataset. 

Its entire number of records is 50,063,112, according to 

reference [30]. The CSV files make up the datasets. UDP, 

SSDP, SYN, NTP, NETBOIS, MSSQL, LDAP, and udp_lag 

is captured in the CIC-DDoS2019 dataset concerning training 

and testing days. The quantity of benign traffic in this dataset 

is small compared to the abundant aggressive traffic. This 

presents a hurdle because innocuous occurrences are not 

sufficiently represented during training. As a result, we 

considered most of the innocuous traffic that was captured 

from a single file taken during each attack. 

The Edge-IIoTset [31] dataset used in this study is publicly 

accessible on Kaggle. It includes records for 14 types of 

attacks and five categories of attacks in the original dataset. 

However, since our research focuses solely on DDoS attacks, 

we eliminate all other attack types. Consequently, we are left 

with data containing only DDoS attacks and average traffic 

data. The dataset names TCP flood attacks, SYN flood attacks, 

UDP flood attacks, HTTP flood attacks, and ICMP flood 

attacks as the other four DDoS attacks. The data utilized is 

separated into two categories: the threat category and the 

normal category. These datasets were chosen due to their 

comprehensive coverage of modern DDoS attack vectors and 

realistic traffic patterns. CIC-DDoS2019 offers a broad range 

of attack types with highly imbalanced classes, while Edge-

IIoTset reflects heterogeneous IoT scenarios. Using both 

datasets ensure the trained models can generalize across 

diverse conditions. 

Four attacks were taken from the CIC-DDoS2019 and 

Edge-IIoT datasets, two attacks from each group, and the 

entropy and Chi-Square values were calculated. The results 

were then gathered and obtained a third time, and they are used 

in the proposed model as indicated in Table 2. Before training 

by 80% and testing by 20% on the SVM, DT, and RF 

algorithms, the results are finally balanced using SMOTE, 

which aims to equalize the distribution of classes by creating 

artificial instances for the minority class. By using 

extrapolation techniques to estimate values between existing 

examples of the minority class and their nearest neighbors, 

new training records are generated. SMOTE helps address the 

issue of overfitting caused by random oversampling by 

selectively oversampling the minority class [32]. 

To address class imbalance, we applied SMOTE with 

carefully tuned parameters to synthesize new minority-class 

samples. This approach reduces bias towards majority classes, 

ensuring that the classifier learns robust decision boundaries. 

Preliminary experiments confirmed that SMOTE improved 

recall for underrepresented attack types without overfitting. 

We have identified and extracted four key features: source 

IP, source port, destination IP, and destination port. Three 

machine learning approaches (ML) will be used in the 

proposed model to train on these datasets: RF and SVM. 
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Table 2. Data distribution utilized in the suggested model 

 
Dataset Used Attack No. of DDoS No. of Benign Entropy Chi-Square Entropy& Chi-Square 

CIC-DDoS2019 
SYN 1048228 347 10701 10701 10701 

UDP 1047441 1134 10693 10693 10693 

Edge-IIoTset 
http 10561 24301 349 349 349 

TCP 10247 24301 346 346 346 

 

 
 

Figure 2. Flowchart of the proposed system 

 

SVM was chosen because it is able to handle highly 

dimensional data robustly and contributes to finding solutions 

that support optimal decisions during classification. DT 

provides interpretability and efficient handling of both 

numerical and categorical features. RF, as an ensemble of DT, 

offers robustness against noise and improves generalization. 

Collectively, these algorithms are well-suited to detecting 

complex DDoS patterns in IoT traffic and can be efficiently 

implemented at the fog layer (Figure 2). 

a) Support vector machine (SVM) 

The support-vector network's concept is to transform input 

vectors into a higher-dimensional feature space, Z, using a 

predetermined non-linear mapping.  

The unique properties of an established linear decision 

boundary in this field enhance the network's capacity for 

efficient information generalization. Each data point in SVM 

is represented as a point in a multidimensional space, with 

dimensions that match the characteristics of the data. The 

approach visualizes the data in this space and searches for an 

optimal hyperplane that partitions the two groups. The SVM 

categorizes new instances based on them location in the 

hyperplane, which acts as the decision boundary [33]. 

b) Random forest classifier (RF) 

One technique for categorization that involves creating 

numerous classification trees is RF and DT are classification 

trees that are employed in RF. The number of classification 

trees created influences the accuracy of the categorization 

outcomes. The range of 64 to 128 DT is ideal Every decision 

tree in the RF classification makes a forecast, and the RF final 

prediction is determined by the majority vote of the trees' 

predictions [34]. 

c) Decision tree classifier (DT) 

It is considered one of the supervised learning techniques 

that contribute to the analysis of the regression of packets and 

their classification in the network. The DT performs best when 

dealing with both numerical and category data. To forecast 

target variables, these hierarchical data structures partition the 

input data space into multiple subspaces [35, 36].  

Algorithm 3 shows the main machine-learning pseudo-code.  
 

Algorithm3: Machine learning algorithms pseudo-code 

Input: - Features: (Src_IP, Port_IP, Dst_IP, and Dst_Port)  

- Train data: CIC-DDoS2019, Edge-IIoTset  

- Classifiers: SVM, DT, RF 

 Output: (Class label: Attack or Normal)  

Begin 

1: Load the training data - Train data ← load_data(CIC-

DDoS2019, Edge-IIoTset)  

2: Pre-process the training data - Extract features: (Src_IP, Src_ 

Port, Dst_IP, Dst_Port) 

 - Extract class labels: Attack or Normal  

3: Train classifiers (SVM, DT, RF)  

4: Test phase using sliding window  

While (incoming test data) do  

5: Collect test data into the sliding window - Extract features from 

each incoming packet: 

 source_ip ← packet.Source_IP  

source_port ← packet.Source_Port 

 destination_ip ← packet.Destination_IP  

destination_port ← packet.Destination_Port  

- Add extracted features to the sliding window 

6: Calculate Entropy for the sliding window  

- entropy_value ← calculate_entropy(sliding_window)  

7: Calculate the Chi-Square value for the sliding window  

-chi_square_value← calculate_chi_square(sliding_window)  

 8: Create feature vector for classification  

- feature_vector ← [entropy_value, chi_square_value] Step 9: 

Predict class label using the trained classifiers (SVM, RF, DT)  

10: Label sliding window  

If final_prediction = "Attack" then  

Label sliding window as "Attack" 

Else: Label sliding window as "Normal"  

End IF and While  

End  

 

4.2 Evaluation metrics 
 

The following measures are used to assess the model's 

performance: The model is evaluated using the evaluation 

metrics are as follows: 
 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

4.2.1 Precision 

It is the ratio of correctly predicted attack results to the 

network's total number of attack categories. 
 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

4.2.2 Recall 

It is used to evaluate the effectiveness of a classification 

model to identify DDoS attacks by measuring the ratio of 

correctly classified positive cases to the total number of 
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positive cases that attack the network, calculated as follows: 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

4.2.3 F1-Score 

It is used to calculate the harmonic mean balanced between 

precision and recall, especially when the data is distributed 

unevenly, as is the case in DDoS attacks, as it contributes to 

evaluating the effectiveness of the classification model to 

identify true positive cases and reduce false positive ones. The 

Eq. (6) is: 

 

F1 − Score = 2.
Precision. Recall

Precision + Recall
 (6) 

 

4.2.4 Throughput 

It is used to evaluate the download efficiency of completed 

packets within a specified period. The high value contributes 

to increased throughput and improved download efficiency 

while classifying DDoS attacks [37]. 

 

Throughput = (
Total Num of send and received packet

Time
)  (7) 

 

4.2.5 Response time 

It is the takes for the system to respond during an attack. It 

is considered very important to assess the impact of the attack 

to respond to the actual requests of operations in the network, 

which gives an impression of the availability and performance 

of the service. This revealed that the result is dependent on the 

Mt and Et. [38]:  

 

Rt = Mt + Et + NdL. (8) 

 

4.2.6 Execution time 

As stated in Eq. (9), the performance of a computer 

operating system depends on various elements, such as the 

number of processors (Js) and the speed of the central 

processing unit (CPUs) [39]. 

 

𝐸
𝑡=

𝐽𝑠
𝐶𝑃𝑈𝑡

 (9) 

 

4.2.7 Latency 

The phrase refers to the time interval between when the load 

balancer gets a request and when it sends a response [40]. 

 

𝑑𝑡𝑟𝑎𝑛𝑠 = 𝐿
𝑅⁄  (10) 

 

The components of the equation are represented by the letter 

D, which represents the packet delay time in seconds, the letter 

L represents the length of the transmitted packet in bits, and 

the letter R represents the rate of data transmitted between 

nodes in bits during each time unit [40]. 

 

 

5. RESULTS AND DISCUSSION 

 

The SVM, DT, and RF algorithms were tested on both CIC-

DDoS2019 and Edge-IIoTset datasets.  

The accuracy, precision, recall, and F1-score metrics were 

computed. SVM achieved 99% accuracy for the SYN attack, 

while DT and RF performed similarly with 98% and 99% 

respectively. On the HTTP attack, RF outperformed SVM and 

DT, reaching 94% accuracy. 

These performance differences can be attributed to the 

inherent characteristics of each classifier and the 

preprocessing techniques applied. SVM's ability to find an 

optimal decision boundary in high-dimensional spaces often 

leads to strong performance on complex attack patterns. DT’s 

interpretability and efficient handling of both numerical and 

categorical features allow it to adapt quickly to varying traffic 

distributions. RF, benefiting from ensemble voting and 

reduced variance, demonstrates robustness against noisy or 

imbalanced data. The combined use of Entropy and Chi-

Square ensured that only highly discriminative features were 

used, enhancing classifier sensitivity. Moreover, the 

application of SMOTE to balance minority classes contributed 

to improved recall rates, ensuring that subtle attack signatures 

were not overshadowed by majority classes. Collectively, 

these factors explain why certain classifiers excelled in 

detecting specific DDoS attacks, ultimately leading to more 

reliable and generalizable detection performance. 

Subsequently, we evaluated network parameters such as 

latency and throughput to ensure that the detection system 

operates effectively in real-time environments. 

This section summarizes the results of the proposed system, 

which consists of two stages: offline and online. 

 

5.1 Detection attack in offline 

 

In this point, the offline results of a trained model for 

detecting DDoS attacks are presented in this stage. Two 

attacks, namely the SYN flood attack and the UDP flood attack, 

were selected from the CIC-DDoS2019 dataset. Then, the data 

were processed using an entropy equation; entropy results 

were obtained in Figure 3, and Chi-Square equations and Chi-

Square results were obtained in Figure 4. Next, we combine 

the findings from the Chi-Square and entropy values to get 

good results, as shown in Figure 5. Adopted in the proposed 

model. Three algorithms, namely SVM, RF Classifier, and DT, 

were applied to each attack. 

 

Table 3. Results of SVM, DR, and RF accuracy using 

entropy for CIC-DDoS2019 dataset 

 

Classifier Attack Accuracy Recall Precision 
F1-

Score 

SVM 

SYN 

0.99 0.99 0.99 0.99 

DT 0.99 0.99 0.99 0.99 

RF 0.99 0.99 0.99 0.99 

SVM 

UDP 

0.98 0.98 0.98 0.98 

DT 0.98 0.98 0.98 0.98 

RF 0.99 0.99 0.99 0.99 

 

The entropy findings for the SYN attack are displayed in 

Table 3. The three algorithms—SVM, DT, and RF—obtained 

a precision of 0.99 in this case. They also achieved an accuracy 

of 0.99 in the remaining metrics, which include recall, F1-

score, and precision. The SVM and DT techniques obtained an 

accuracy of 0.98 for the UDP attack, while the RF algorithm 

reached 0.99 for the remaining metrics. The RF algorithm also 

achieved an accuracy 0.99 for the remaining recall metrics, f1-

score, and precision. 

Table 4 displays the Chi-Square results for the Syn flood 

attack. The SVM algorithm demonstrated an accuracy of 0.99 

while also achieving 0.99 in the precision, recall, and f1-score 

metrics. The DT and RF algorithms showed an accuracy of 
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0.98 in the precision, recall, and f1-score metrics. The SVM 

and DT algorithms performed 0.98 well in the UDP flood 

attack and 0.98 well in the precision, recall, and f1-score 

metrics. The RF method performed 0.99 well in the UDP flood 

attack; the accuracy reached 0.99 in the precision, recall, and 

f1-score metrics. 

 

Table 4. Accuracy results of CIC-DDoS2019Set using Chi-

Square 

 

Classifier Attack Accuracy Recall Precision 
F1-

Score 

SVM 

SYN 

0.99 0.99 0.99 0.99 

DT 0.98 0.98 0.98 0.98 

RF 0.98 0.98 0.98 0.98 

SVM 
UDP 

0.98 0.98 0.98 0.98 

DT 0.98 0.98 0.98 0.98 

 

Table 5. Accuracy results for CIC-DDoS2019 dataset using 

calculation of entropy and Chi-Square 

 
Classifier Attack Accuracy Recall Precision F1-Score 

SVM 

SYN 

1.00 1.00 1.00 1.00 

DT 1.00 1.00 1.00 1.00 

RF 1.00 1.00 1.00 1.00 
SVM 

UDP 

1.00 1.00 1.00 1.00 

DT 1.00 1.00 1.00 1.00 

RF 1.00 1.00 1.00 1.00 

 

The results in Table 5, which displays the outcomes of 

applying three algorithms to each attack are presented. The 

precision, recall, accuracy, and f1-score criteria were used to 

evaluate these methods. The SVM, RF, and DT algorithms all 

had a 100% success rate in detecting the SYN Flood attack. 

Similarly, all three algorithms used in the UDP attack 

demonstrated perfect scores of 100 for precision, recall, 

accuracy, and f1-score metrics. The efficiency of the model 

trained on the CIC-DDoS2019 dataset enables it to detect 

DDoS attacks accurately. 

Two attacks—an HTTP attack and a TCP attack—were 

selected from the Edge-IIoTset dataset. Then, the entropy and 

Chi-Square values of the data were calculated in Figures 3 and 

4. 

The HTTP attack entropy findings are displayed in Table 6. 

The accuracy of the SVM and DT algorithms was 0.898. 

Precision was 0.899, and recall was 0.90; the f1-score was 

0.898. The RF algorithm's accuracy was 0.949. They also 

attained 0.949 precision in the remaining metrics, recall, and 

f1-score. Three algorithms—SVM, DT, and RF—achieved 

0.99 precision in the TCP attack. They obtained a 0.99 in the 

metrics of recall, precision, and F1-score. 

 

 
 

Figure 3. Accuracy results of machine learning (SVM, DR, 

and RF) using entropy for HTTP and TCP attacks 

 
 

Figure 4. Accuracy results of machine learning (SVM, DR, 

and RF) using Chi-Square 

 

Table 6. Machine learning accuracy result for Edge-IIoTset 

using entropy 

 

Classifier Attack Accuracy Recall precision 
F1-

Score 

SVM 

HTTP 

0.898 0.90 0.899 0.898 

DT 0.898 0.90 0.899 0.898 

RF 0.949 0.949 0.949 0.949 

SVM 

TCP 

0.99 0.99 0.99 0.99 

DT 0.99 0.99 0.99 0.99 

RF 0.99 0.99 0.99 0.99 

 

Figure 4 shows the accuracy of two attacks, HTTP and TCP, 

for all machine learning algorithms (SVM, DT, and RF) using 

the Chi-Square. 

Table 7 displays the Chi-Square findings for the HTTP 

attack in the SVM and DT algorithms. Both methods achieved 

an accuracy of 0.909, recall of 0.913, precision of 0.909, and 

f1-score of 0.908. The RF algorithm produced the following 

results: recall of 0.91, accuracy of 0.909, precision of 0.909, 

and f1-score of 0.908. The SVM, DT, and RF algorithms all 

obtained an accuracy of 0.98 in the TCP attack. They both 

scored 0.98 in the remaining metrics: F1-score, recall, and 

precision. 

 

Table 7. Machine learning accuracy results for Edge-IIoTset 

using Chi-Square 

 

Classifier Attack Accuracy Recall precision 
F1-

Score 

SVM 

http 

0.909 0.913 0.909 0.908 

DT 0.909 0.913 0.909 0.908 

RF 0.909 0.91 0.909 0.908 

SVM 

TCP 

0.98 0.98 0.98 0.98 

DT 0.98 0.98 0.98 0.98 

RF 0.98 0.98 0.98 0.98 

 

The three algorithms, SVM, DT, and RF, were applied for 

each attack, and the entropy and Chi-Square values were 

combined, as shown in Figure 5, to produce good and 

trustworthy results in the proposed model. 

Table 8 below shows three classifiers, one for each attack. 

Each classifier assesses a different set of metrics. The SVM 

classifier in the HTTP attack achieved precision, F1-Score, 

accuracy, and recall of 0.93 and 0.94, respectively. The DT 

classifier's accuracy, precision, F1-Score, and recall were 0.93, 

0.94, and 0.94, respectively.  
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Figure 5. Accuracy results of machine learning (SVM, DR, 

and RF) using Chi-Square & entropy 

 

Regarding the RF classifier, it attained precision, accuracy, 

F1-Score, and recall of 0.97, 0.96, and 0.96, respectively. We 

observe that in terms of identifying the HTTP attack, the RF 

classifier performs better than the other classifiers. Three 

classifiers detected the TCP attack with an accuracy of 100. 

Likewise, accuracy was attained in the remaining measures. It 

is observed that the model. It performs better in identifying 

TCP attacks than in identifying HTTP attacks. 

 

Table 8. Machine learning accuracy results in Edge-IIoTset 

by entropy & Chi-Square 

 
Classifier Attack Accuracy Recall Precision F1-Score 

SVM 

HTTP 

0.938 0.945 0.938 0.938 

DT 0.938 0.945 0.938 0.938 

RF 0.969 0.97 0.969 0.969 

SVM  1.00 1.00 1.00 1.00 

DT TCP 1.00 1.00 1.00 1.00 
RF  1.00 1.00 1.00 1.00 

 

5.2 Detection attack in real-time 

 

At this point, the pre-trained model—which comprises the 

three algorithms SVM, DT, and RF—is used to detect whether 

the network condition is normal or under attack. That is the 

case when two algorithms concur on whether a network is 

under attack. The metrics used to test the network performance 

during authentication, encryption, and decryption were 

throughput, which was recorded at 0.991k/sec; response time, 

which was reported at 0.004sec; latency, which was recorded  

at 0.015sec; and execution time, which was recorded at 

1.033sec. When the Wireshark program detects a DDoS attack 

in real-time, see Figure 6.  

Table 9 shows the proposed work comparisons with other 

related works to detect DDoS attacks. Table 9 clearly shows 

that the suggested model detected DDoS attacks with a higher 

degree of accuracy than earlier efforts. 

 

 
 

Figure 6. DDoS attacks in real-time in Wireshark program 

Table 9. A comparison between the suggested model and 

related work for machine learning algorithms 

 

Accuracy 
Real-

Time 
Dataset Classification Year Ref. 

0.97 Yes 
predefined 
parameters 

SVM 2018 [14] 

0.99 Yes 
a limited 

feature set 
SVM 2018 [15] 

99.99% 

Yes 
CIC-DDoS 

2019 

K nearest 

neighbor, 
2021 [16] 

99.88% DT 
94.55% NB 

99.92% No 
CIC-

DDoS2019 
Random Forest 2021 [17] 

99.77% 

No 
CIC-

DDoS2019 

SVM 

2021 [19] 99.77% 
K nearest 

neighbor, 
96.36% RF 

94.36% No 
Edge-

IIoTset 

Inception Time 

algorithm 
2022 [23] 

94% No 
Edge-

IIoTset 
RF 2023 [24] 

99.88% No 
Edge-

IIoTset 
XGBoost 2023 [25] 

100 

Yes 
CIC-

DDoS2019 

SVM 

The 

proposed 

system 

100 RF 

100 DT 

100 

Yes 
Edge-

IIoTset 

SVM 

96% RF 

100 DT 

 

 

6. CONCLUSIONS 

 

To quickly identify DDoS attacks, we aimed to establish a 

safe fog computing environment in this paper. We used SVM, 

DT, and RF machine learning algorithms in the first offline 

stage to design a pre-trained model. We then trained the model 

on the CIC-DDoS2019 and Edge-IIoTset dataset, 

extractedfour features (SreIP, Port_IP, Dst_IP, and Dst_Port), 

calculated the Chi-Square entropy, and tested the model using 

TCP, UDP, and SYN attacks. Except for HTTP, all algorithms 

yielded a 100-accuracy rate. In the DT and SVM algorithms, 

it obtained an accuracy of 0.93; in the RF method, it received 

an accuracy of 0.96. During the online phase, the model was 

evaluated in real-time by monitoring network latency, 

encrypting data using the Speck method, and verifying 

communication between transmitting and receiving parties. 

performance, a collection of parameters including latency, 

response time, execution time, throughput, and the ability to 

use the learned model to identify attacks in real time. When a 

DDoS assault is detected in the future, we will employ the 

quantum technique, close the port, and train the model using 

data that includes all kinds of DDoS attacks. 
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