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Herein, analyzed is a symmetric finite element method (FEM) formulation that can be 

used to calculate time-harmonic acoustic waves in external domains by using finite 

elements. The dispersion study shows how mesh refining affects the discrete 

representation of the FEM parameters. In the Helmholtz area, stabilization through 

coefficient modification is used in conjunction with conventionally stabilized finite 

elements to enhance FEM performance. Numerical evidence backs up the robust 

performance of this finite element perfectly matched layer (PML) approach. We suggest 

and evaluate a quick technique for calculating the answer to the Helmholtz equation in 

a confined region using a changing wave speed function. Wave splitting is the method's 

foundation. To solve iteratively for a specified tolerance, the Helmholtz equation is first 

divided into one-way wave equations. The wave speed function and the previously 

solved one-way wave equations are both necessary for the source functions to function. 

Then, using the sum of one-way solutions for each iteration, the Helmholtz equation's 

solution is roughly determined. to decrease computational expenses. The findings show 

that each model under consideration has significant variances in density and speed. The 

findings show the effective application of MATLAB R2021 software and the finite 

element method to solve both first and second-order Helmholtz equations. 
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1. INTRODUCTION

The PML is a widely utilized artificial absorbing layer that 

completes the computational domain when solving Maxwell's 

equations using the FEM or the Finite Difference Time 

Domain method (FDTD) to simulate an unbounded region. 

Compared to conventional absorption techniques, PML offers 

notable advantages in terms of ease, adaptability, and the 

simplicity of Absorbing Boundary Conditions (ABCs) [1, 2]. 

One of the primary benefits of PML is its ability to be 

conformal; additionally, its inner boundary can be positioned 

very close to the sources. This configuration not only 

minimizes the computational domain's unused space but also 

effectively absorbs waves that are incident on the PML region, 

thereby preventing spurious reflections from the truncation 

border of the PML's interior [3]. 

In the context of solving Maxwell's equations using the 

FDTD method, the PML concept was first introduced by 

Lyche and Merrien [4]. Berenger's implementation of PML, 

also known as the split-field PML, uniquely divides the 

electromagnetic wave fields within the PML region into two 

distinct non-Maxwellian fields. Further developments by 

Cheney and Kincaid [5] introduced a novel formulation of 

PML for FDTD termed uniaxial PML, which treats the PML 

as a synthetic anisotropic medium. Expanding on these 

concepts, Greenleaf et al. [6] proposed the stretched-

coordinate PML, a more comprehensive approach that utilizes 

a complex coordinate transformation to generate non-

Maxwellian fields within the PML region. 

Later, Ammari et al. [7] proposed a substitute PML for FEM 

modelling. They did this by creating an anisotropic stratum 

with Maxwellian PML synthetic material tensors explained by 

means of difficult synchronized stretching. Earliest by Kohn 

and Vogelius [8], Kohn et al. [9], and subsequently by Schurig 

et al. [10], this approach was first devised in Cartesian 

dimensions and afterwards extended to cylinder-shaped and 

sphere-shaped coordinates using a locally curved coordinate 

system. PML was initially created in the 1990s to resolve 

Maxwell's equations for electromagnetic waves, but it has 

subsequently been effectively used in a few different domains, 

such as acoustics, electrodynamics, and the linearization of 

Euler's equations. 

In contrast to the earlier method, which we present in this 

work, a different coordinate transformation is applied to 

produce the decay function. The technique is also used in a 

FEM code. The authors come up with a new formalism in 

which Jacobian matrices are made directly, without the need 

for any complicated parts, and the effect of converting 

coordinates for the FEM is considered. The approach is 

referred to as LCPML-log, with "log" standing for the 

logarithmic decay function. The LCPML-log technique has 

the advantage of only needing a few (for instance, 1–3) PML 

layers to produce trustworthy results. 

The Helmholtz equation boundary value issues: 

∆𝑣 + Ķ2𝑣 = 𝑔 (1) 
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emerge in a variety of practical implementations [4], 

particularly in cases of wave spreading and fluid-solid contact. 

where Ķ is the wave number. 

The physical parameter Ķ has a large impact on the 

goodness of discrete numerical Helmholtz equation solutions. 

The step width h of meshes for a limited element or finite It is 

obvious and well-known that variance computations should be 

tailored to the wave number Ķ. One usually tracks a "rule of 

thumb" of the following formula: 

Ķℎ = 𝑐𝑜𝑛𝑠𝑡 (2) 

The relationship between the wave number Ķ and the step 

width h of the computational meshes is crucial, and a common 

guideline is to ensure that their product, Ķh, is consistent for 

accurate computations. This rule helps optimize numerical 

solutions, especially when dealing with wave phenomena and 

fluid-solid interactions in practical implementations. 

This rule generates results that are sufficiently precise for 

calculations with low wavenumber. However, the quality of 

the numerical results decreases as wavenumber k increases. 

Therefore, according to Mu et al. [11], in order to explain the 

two-dimensional Helmholtz equation using piecewise linear 

FEM, 𝐿2- norm. The solutions show that the errors get worse 

when h = const. Nevertheless, the inaccuracies are limited by 

the quantity of meshes with Ķ3ℎ2 ≈ 𝑐𝑜𝑛𝑠𝑡.

Aldirany et al. [12] and Oliveira and Leite [13] stated a 

convergence theory with the presumption that Ķ2ℎ  is 

adequately little. As a result of this theory, it is demonstrated 

that for the relative errors are for certain data classes 

𝒪((Ķℎ)2) in 𝐻1-norm and Ķ ((Ķℎ)𝒫+1) in 𝐿2-norm, where 𝒫 

denotes the polynomial's order approximation.  

Rong and Xu [14] discussed a study on approximating the 

propagation of acoustic waves using the Newmark schema for 

time and spectral element methods for space discretization. 

The focus was on analyzing the stability, convergence, and 

accuracy of the method, particularly when dealing with non-

homogeneous boundary data. The study provided detailed 

error estimates and numerical examples to support the 

theoretical analysis and demonstrates the method's advantages 

through comparison with the finite element method. 

Quarteroni et al. [15] introduced different types of ABCs at 

a theoretical boundary within the Galerkin method framework 

to study the behavior of elastic waves in infinite domains; they 

were designed to effectively handle wave propagation of 

elastic materials in unbounded regions, thereby serving as a 

means for the simulation and analysis of wave phenomena 

without requiring physical boundaries. Hence, the study 

propagated the development of numerical methods for 

accurate wave propagation modelling in different fields. 

The propagation of acoustic waves within a unit square was 

examined by Quarteroni and Valli [16]. Their study utilized a 

spectral collocation method for spatial discretization and a 

finite difference method for time discretization. Additionally, 

Absorbing Boundary Conditions were tailored to fit their 

numerical approach. The application of monodomain spectral 

methods in solving elastic wave problems was also explored 

by Zampieri and Tagliani. 

The issue of numerical accuracy in solving the Helmholtz 

equation at increasing wavenumber has been addressed in 

several studies [17-19], with some scholars exploring the use 

of different finite element formulations, such as specialized 

basis functions or higher-order elements to enhance accuracy 

at increasing wavenumbers. The improvement of the quality 

of quality of results for problems with varying wavenumbers 

using adaptive mesh refinement techniques and advanced 

numerical methods such as spectral/hp element methods have 

also been studied, with the aim of mitigating issues related to 

oscillations and dispersion associated with the use of standard 

finite element methods for solving high-wavenumber 

problems in wave propagation or acoustics simulations. 

Evidently, Helmholtz equations have been the basis in 

physics and engineering, representing heat conduction, wave 

propagation phenomena, and many others; however, the 

simulation of their solution with MATLAB and finite element 

methods has been a practical way of examining the application 

of mathematical concepts to real-world cases. Hence, in this 

work, both first and second-order Helmholtz equations were 

solved using the finite element method and MATLAB R2021 

software, with the novel contribution of the work being the 

development and analysis of a symmetrical FEM formulation 

designed specifically for time-harmonic sound waves 

calculation in external fields. The influence of mesh 

optimization on discrete representation of FEM parameters 

was also studied. Stabilization techniques were also 

introduced for the modification of the parameters to enhance 

performance. Numerical evidence that supports the efficacy of 

these methods were equally provided.  

This work also proposed and evaluated a rapid technique for 

solving the Helmholtz equation in confined regions using a 

variable wave velocity function; this involves the use of wave 

splitting to recursively solve one-way wave equations derived 

from the Helmholtz equation. This will minimize the 

computational costs and maintain the accuracy of the process. 

Therefore, the use of finite element methods for efficient 

solving of first- and second-order Helmholtz equations has 

been proposed and validated in this study. 

2. MODEL PROBLEM

This part of the study delved into the Dirichlet and non-

reflection-inducing boundary conditions of the one-

dimensional miniatured wave equation's existence-

uniqueness, focusing on the examination of the instances 𝑛 ∈
𝐻2(0.1)  and 𝑛 ∈ 𝐻1(0,1)  independently and demonstration

of the various stability requirements within the two instances. 

However, the manner of construction of the problem's Green's 

function determines the validity of both proofs. The specific 

boundary conditions and function space consideration 

assumption are significant for demonstrating the uniqueness 

and existence of solutions as they ai the definition of the scope 

within which the results are applicable. The assumptions are 

also important for the interpretation and generalization of the 

results as researchers can consider these details in assessing 

the generalizability or peculiarity of the results in practical 

scenarios beyond the presently considered application. 

2.1 Boundary value problem 

Boundary conditions are greatly important for solving such 

equations using numerical methods such as finite element 

analysis that is implemented via MATLAB R2021 software. 

A well-defined problem suitable for FEM solution techniques 

can be set up by defining the boundary conditions at the range 

of 1-4 with appropriate constraints or zero Neumann 

conditions. This formulation generally merges mathematical 

representations with physical principles to arrive at a robust 
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numerical solution to Helmholtz equations using FEM within 

MATLAB environment. 

Assume that v∈ (0,1) and let �̅� the issue of boundary values 

Lv=-g by given: 

 

𝑣′′(𝑦) + Ķ2𝑣(𝑦) = −𝑔(𝑦) (3) 

 

When v(0)=0, then: 

 

𝑣′(𝑦) − 𝑖Ķ𝑣(1) = 0 (4) 

 

Also, explanation the relationship between v, the pressure in 

an acoustic middle, and Ķ, the wave number at that instant: 

 

Ķ =
𝑤𝑙

𝑐
 (5) 

 

Example: find the solution of Helmholtz equation by using 

MATLAB for the common second-order Helmholtz. 

 

𝑣′′(𝑦) − ∇ ∗ ∇𝑣 = 0 (6) 

 

Solved by using MATLAB with version R2021 and find 

function to solve the Helmholtz equation. 

Where the standard Helmholtz equation has variables ɱ=1, 

Ƈ=1, ą=0, and £=0. 

On a square domain, find the solution. This geometry is 

described by the square g function. Make a model object with 

geometry included. View the edge labels when creating the 

geometry (Figure 1). 

 

 
 

Figure 1. Using MATLAB to plot edge 

 

 
 

Figure 2. MATLAB code to plot boundary conditions 

To determine FEM coefficients, boundary situations on the 

upper (edge 1), lowest (edge 3), and left (edge 4), as well as 

right (edge 2) and zero Neumann boundary situation. Then, 

generate and vision the finite element method for the problem 

is shown in Figure 2. 

 

2.2 Derivation of the method in one dimension 

 

The below equation outlines a mathematical model 

describing wave propagation in a specific medium, where the 

equation captures the behavior of waves within a defined range 

[-a, a] and is enhanced by boundary conditions that determine 

the wave's amplitude and behavior at the boundaries. Also, v 

and w are related to the wave speed and frequency, 

respectively.  

Consider the 1D Helmholtz equation: 

 

𝑣𝑦𝑦 +
𝑤2

𝑐(𝑦)2
𝑣 = 𝑤𝑔, 𝑦 ∈ [−𝑎, 𝑎] (7) 

 

where, (𝑚𝑦)⸦(-a,a) and m(y) and is the frequency as a result 

are dependent on wave speed.  

Based on current objective, Eq. (7) is part of a larger study 

aiming to improve the accuracy of wave propagation models, 

particularly at lower frequencies, by considering different 

approaches like the WKB equation system. 

The equation is enhanced by the following boundary 

conditions: 

 

{
Ķ𝑦(−𝑎) − 𝑖𝑟Ķ(−𝑎) = −2𝑖𝑟𝐵

Ķ𝑦(𝑎) + 𝑖𝑟Ķ(𝑎) = 0
 (8) 

 

where, B is the wave's incoming amplitude. at high 

frequencies, GO is a good approximation of the answer. We're 

working on a method to make up for the errors it produces at 

lower frequencies. The WKB equation system would be the 

sensible option. However, does not converge even under 

simple circumstances. There is just an asymptotic sequence. 

Its limitation to waves travelling in a single direction is a 

weakness. When c_y0, waves are truly reflected. As a result, 

we develop the ansatz with two orientations. 

The transition from Eq. (7) to boundary conditions (8) 

involves considering the wave equation vyy+w2c(y)2v=wg in a 

one-dimensional domain [-a, a].  

The boundary conditions are derived by imposing 

constraints at the boundaries of the domain. At y=-a and y=a, 

we have: Ķ𝑦(−𝑎) − 𝑖Ķ(−𝑎) = −2𝑖𝐵. 

This condition represents how the wave amplitude and its 

reflection behave at the left boundary (-a). 

 

Ķ𝑦(𝑎) + 𝑖Ķ(𝑎) = 0 

 

This condition describes how these quantities behave at the 

right boundary (a). 

These two conditions help define how waves interact with 

boundaries within this specified range [-a, a], providing 

crucial insights into their behavior within this confined region. 
 

{
𝑖𝑟𝑣 + 𝑐(𝑦)𝑣𝑥 −

1

2
𝑚𝑦(𝑦)𝑣 = 𝑔

𝑖𝑟𝑣 − 𝑐(𝑦)𝑣𝑦 −
1

2
𝑚𝑦(𝑦)𝑣 = 𝑔

 (9) 

 

where, z=r+v then it satisfies the following equation: 
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𝑚2𝑧𝑦𝑦 + 𝑟2𝑧 = −𝑖𝑟𝑔 + 𝛼(𝑦)z (10) 

where, 

𝛼(𝑦) =
1

2
𝑚𝑚𝑦𝑦 −

1

4
𝑚2

𝑦 (11) 

Now, we increase the powers of v and w. 

𝑉 = ∑ 𝑟𝑎𝑎 𝑟−𝑎, 𝑊 = ∑ 𝑠𝑎𝑎 𝑟−𝑎 (12) 

From above equation: 

∑(𝑖𝑟𝑟𝑎 + 𝑐(𝑥) ∂𝑦𝑟𝑎) −
1

2
𝑚𝑦(𝑦)𝑟𝑎 −

𝛼(𝑦)

2𝑖
(𝑟𝑎−1

𝑎

+ 𝑠𝑎−1)𝑟−𝑎 = 0

∑(𝑖𝑟𝑟𝑎 + 𝑚(𝑦) ∂𝑦𝑠𝑎 )−
1

2
𝑚𝑦(𝑦)𝑠𝑎 −

𝛼(𝑦)

2𝑖
(𝑟𝑎−1

𝑎

+ 𝑠𝑎−1)𝑚−𝑎 = 0

(13) 

Define 𝑣𝑎 = 𝑟𝑎𝑤−𝑎 and 𝑤𝑎 = 𝑠𝑎𝑤−𝑎 then get:

𝑖𝑟𝑟𝑎 − 𝑐(𝑦) ∂𝑦𝑟𝑎 +
1

2
𝑚(𝑦)𝑟𝑎 =

1

2𝑖𝑟
𝑔𝑎(𝑦) (14) 

3. RESULTS AND DISCUSSION

This section explains the numerical solution for Helmholtz 

equation using finite element method by MATLAB 

programming where this equation dependent in many electric 

problems such that it helps the engineering to find variables of 

different. The Helmholtz problem is resolved using a spectral 

element solver program developed in MATLAB. The element 

stiffness matrices and the element mass matrices for the 

isoperimetric quadrilateral and rectangular elements are 

assessed to provide steady diffusion and Helmholtz operations 

with this program. 

Figure 3. Electric problem model in MATLAB 

Researchers must build and validate a new set of Helmholtz 

equations to solve an electrical problem. After researching the 

issue, we discovered that each model has significant variances 

in density and speed. For testing, we contoured the scaled 

model to have Nz Nx = 400 2000 microelements and to have a 

horizontal extent of 10 km and a depth of 2 km. Spatial 

heterogeneity is not impacted by rescaling. The net has a fine 

mesh size of 5 meters in each direction. To test our FEM-based 

methodology, we created two different types of course 

meshes: Mesh 1 includes Nz Nx = 20 100 coarse variables and 

has a mesh size of 100 m; Mesh 2 includes Nz Nx = 40 200 

coarse variables and has a grid size of 50 m. The source lies at 

a depth of 0.2 km and a horizontal distance of 5 km. Figure 3 

shows the electric problem model in MATLAB. 

Helmholtz problems with homogeneous or 

nonhomogeneous Dirichlet and Neumann boundary 

conditions are resolved using the stable diffusion operator, 

which is equivalent to the rectangular element stiffness matrix 

for a single element. The global in order to solve the steady 

diffusion operators in domains with multiple elements, 

stiffness matrices made by merging the element stiffness 

matrices are used. The Helmholtz equation only needs one 

rectangular element to be solved. The formulas for the 

Helmholtz operator evaluation are discussed. The use of the 

Helmholtz equation is demonstrated. Rectangular element 

formulas are used to evaluate the Helmholtz operator. The 

results are presented as contour graphs and 3D models. 

Helmholtz equation with Dirichlet boundary conditions and 

λ=1. 

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+ 𝑣 = 𝑔 on 𝑎 ∈ [−1,1] × [−1,1]

𝑣 = 𝑣𝑒𝑥𝑎𝑐𝑡  on 𝜇

(15) 

Result in the exact solution of 

𝑣𝑒𝑥𝑎𝑐𝑡 = sin(𝜋𝑥) cos (𝜋𝑦) (16) 
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by MATLAB version R2021 discussion the result and draw 

the solution 2D as shown in Figure 4. 

To address the scattering problem using the solved function 

within the general FEM model container framework, one 

should refer to the electromagnetic workflow that utilizes the 

Electromagnetic Model in conjunction with a well-established 

domain-specific language. This setup is crucial for solving the 

Helmholtz equation effectively. In examining the outcomes, 

we observe that the solutions manifest as an infinite curve with 

a definitive endpoint, illustrating the significance and spatial 

extent of employing the Helmholtz equation. This method is 

particularly effective in modeling dipole electric functions in 

physics using the FEM technique. 

In a specific scenario involving straightforward scattering, 

we analyze how incident waves from the left are reflected by 

a square object. The model considers an infinite horizontal 

membrane that is slightly displaced vertically, anchored 

securely at the object's perimeter. Within this homogeneous 

medium, the phase velocity of the wave remains constant. 

The procedure begins by constructing an FEM model 

centered on a single dependent variable. Following this, the 

scattering problem is tackled using a programmed approach, 

and subsequently, the value coefficients are determined. As 

the analysis progresses, the geometry is transformed, 

expanding the model where constants have already been 

defined. Towards the conclusion of this process, one should 

begin formulating the necessary equations, plot the geometry, 

and display the edge labels crucial for defining the boundary 

conditions. 

The next step involves applying bounded conditions and 

solving for the complex amplitude by securing a real-value 

solution of the Helmholtz equation, which is then stored in the 

real component of vector u. To visually demonstrate the 

dynamics of the time-dependent wave equation, an animation 

is created using the solution derived from the Helmholtz 

equation as a reference. 

To implement the central difference scheme for the wave 

equation, a computational program is developed using 

MATLAB. This scientific programming environment is 

instrumental in facilitating a deeper understanding of wave 

behaviors and the impact of boundary conditions on the 

system. 

The number of grid points representing time and space, 

respectively, is input as sl and sd. If the initial velocity is 

applied as the initial condition, then R is the right end point of 

[0, R] Ķ𝑚 is the right end point of [0, b] Apply as a boundary 

value but the velocity at the boundary point. 

The output v(s, d) the solution and ds=
𝑠−0

𝑙𝑠
 temporal grid 

size, 𝑑Ķ =
𝑏−0

𝑙𝑠
, 𝑐 =0.5, 𝑦𝑚 =ds/d Ķ  for 𝑗 =3:nsns, 𝑖 =2: 𝑛Ķ -1. 

Then, by MATLAB with version R2021 FEM model with a 

single dependent variable first, then use the programmatic 

method to address the scattering problem. 

The function used to define the geometry provides detailed 

specifications for the parameters k, c, a, f, where a represents 

the term with inhomogeneous coefficients.  

The section Parametrized Function for 2D Geometry 

Creation in the documentation. the coefficients and the 

inhomogeneous terms. The geometry should be converted and 

added to the model. For use in the definition of the boundary 

conditions, draw the geometry and show the edge figure 

(Figure 5). 

Figure 5 refers to a visual representation showing the 

boundaries or edges of a mathematical model related to the 

second derivative in a three-dimensional space. This 

visualization is part of the process of solving the Helmholtz 

equations using MATLAB and the finite element method, 

demonstrating the application of computational tools to 

analyze and solve complex mathematical problems in physics 

or engineering. 

By examining this plot, it can gain insights into how 

different parameters impact wave propagation and acoustic 

phenomena within external domains. 

By using the boundary conditions, to determine the 

coefficients and create a mesh. For this program, we tried to 

take the extremely small numbers in the interval and the 

complex numbers from all sides in the form of a circle to be of 

significant values, so that the analysis would be more accurate. 

As a result, the shape is as follows as shown in Figure 6. 

In Figure 6, the plot visualizes the second differential 

equation in a three-dimensional space. The graph represents 

the mathematical relationship between the variables in the 

equation, providing a visual representation of how the 

equation behaves in a 3D environment. This visualization aids 

in understanding the behavior and properties of the second 

differential equation in a more tangible and intuitive way. 

 

 
 

Figure 4. Second differential of Helmholtz equation in 2D 

 

 
 

Figure 5. Plot edge of second differential in 3D 
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Figure 6. Plot the second differential equation in 3D 

 

 
 

Figure 7. Second differential equation for many points in 

interval 

 

The complex amplitude should be solved for. The real 

portion of the vector u contains an approximation to the real 

value result of the Helmholtz equation. Due to the prior 

drawing's confusion, the drawing appears (Figure 7) to us in 

the form that is more generic and correct for Interval because 

the above drawing only uses a subset of the numbers contained 

in [1,4,1].  

Additionally, Figure 7 provides a visual depiction of the 

equation's behavior across these points. This visualization aids 

in understanding the complex amplitude solutions and the 

accuracy of the Helmholtz equation's real value approximation 

within the specified interval. 

 

 

4. CONCLUSIONS 

 

MATLAB R2021 software and the FEM were used in this 

work to design a spectral element solver program for 

effectively solving first and second-order Helmholtz 

equations. To ensure steady diffusion and Helmholtz 

operations with this program, the element stiffness matrices 

and the element mass matrices were assessed for the 

isoperimetric quadrilateral and rectangular elements, giving 

rise to the development and validation of a new set of 

Helmholtz equations for solving electrical problems. The 

derivative variables and their graphical representation were 

computed to arrive at a reliable solution to complex electrical 

circuit analysis. Scholars can rely on this study when 

designing and analyzing electrical circuits that involves deep 

understanding of derivatives; the importance of computational 

tools in modern scientific research has also been underscored 

by the emphasis on developing software tailored to identify 

key components and represent research outcomes, especially 

in electrical engineering field. A quick and reliable way of 

finding solution to the Helmholtz equation in a confined region 

at varying wave speed functions has also been provided in this 

work. Even though this work has advanced the capability to 

model and optimize complex electrical systems, it is important 

that future studies should aim at the development of parallel 

algorithms, model reduction methods, or optimization 

techniques for the improvement of the computational 

efficiency and accuracy of the system. 
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