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In big cities, traffic congestion is a prevalent issue. In order to decide how to manipulate 

traffic in order to alleviate congestion, traffic regulators, who supervise traffic flow, must 

conduct an analysis of present conditions. Classifying traffic conditions from road 

information is a critical step that impacts these decisions. Traffic conditions can be 

categorized using a variety of techniques, each with benefits and drawbacks of its own. 

Recently, the rapid development of machine learning techniques has accelerated their use 

in a variety of sectors, including intelligent transportation systems (ITS). In this study, a 

competitive machine learning system is introduced to support the decision-making process 

in ITS, specifically in traffic condition classification. The proposed system operates in two 

stages: first, identifying the best model configuration from various machine learning 

methods, and second, deciding through a voting system based on the selected models. The 

proposed system employs six machine learning methods, each with 4-5 variations in model 

configurations. The methods tested include Neural Networks, k-Nearest Neighbor, 

Logistic Regression, Bayesian Networks, Decision Trees, and Random Forests, with 

individual accuracy rates of 66.2%, 70.5%, 44.4%, 46.1%, 72.2%, and 72.6%, respectively. 

The models that achieved the highest performance for each method proceed to a voting 

system, both non-weighted and weighted. The experimental results indicate that the non-

weighted system achieved an accuracy of 68.6% to 69.3%, while the weighted system 

reached 71.9% to 72.5%. The findings show that the proposed competitive machine 

learning system offers a viable solution for classifying traffic conditions with promising 

results, especially for implementation in Bandung City, Indonesia.  
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1. INTRODUCTION

Recently, the rapid development of machine learning 

techniques has accelerated their use in a variety of sectors, 

including intelligent transportation systems (ITS) [1]. ITS is 

one of the key ways to advance technology in the 

transportation sector. It can be applied at both microscopic [2] 

and macroscopic [3] levels. In the microscopic view, ITS tends 

to measure the in-car situation, including the vehicle’s 

headway [4], direction [5], speed [6], traffic sign [7], 

pedestrian detection [8], distance calculation [9], etc. In a 

simple word, microscopic lets the technology understand the 

detailed information of the vehicles that run on the road. On 

the other hand, in the macroscopic view, the technology allows 

control of the road infrastructure, such as traffic management 

system [10], shortest route calculation [11], road closure 

information [12], balancing the vehicle’s emission [13], and 

any other situation that impacts community needs. 

Commonly, ITS implementation in a macroscopic view can 

be done by implementing machine learning methods to define 

the traffic situation based on historical information [14]. 

Machine learning is able to classify traffic conditions based on 

its knowledge about historical data. The classification itself is 

defined as a process of grouping a dataset with similar 

conditions into a specific category [11]. By using the training 

data, which is collected previously, machine learning is able 

to understand the current situation and check the category that 

has the most similar situation to the situation in the past. 

Machine learning can be implemented as well as a prediction 

system to forecast the conditions in the future [15]. 

The machine learning method itself has not stopped 

developing. However, almost all machine learning methods 

evolved from basic methods such as Neural Networks (NN) 

[16], Decision Trees [17], k-Nearest Neighbor (kNN) [18], 

Bayesian Networks [19], Logistic Regression [20], Random 

Forest [21], etc. The knowledge-growing system was 

developed by Husni et al., who modified the NN, Decision 

Trees, and Bayesian Networks to adaptively learn from 

previous information [15]. Nasution et al. [22] also developed 

a semi-ensemble learning system that is supported by using 

several models that use NN as its basic method. 

Every machine learning model delivered different results 

according to the data that used in the training and testing of the 

model. It contradicts any papers that declare their model is 
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using the best machine learning method. In fact, the 

performances of the model depend on the data that used in the 

model [23]. This means the statements of researchers can be 

falsified since the quality of the machine learning model is 

influenced by the data quality. According to this condition, this 

paper proposed a competitive machine learning system that 

lets the classification system choose the best methods based on 

the performances of the several models that are implemented 

in the system.  

The competitive learning system will be implemented by 

using the traffic condition dataset in Bandung City that was 

collected by Nasution et al. in 2023 [24]. The data is gathered 

by them using several methods: (1) direct calculation by 

implementing object detection method to the public Close 

Circuit Television (CCTV) and (2) indirect calculation by 

gathering traffic information from TOMTOM, and the traffic 

condition will be measured by using several formulations. The 

dataset from these collection methods was joined to create a 

comprehensive dataset so it will be able to categorize traffic 

density in Bandung, which is the second largest metropolitan 

area in Indonesia after Jakarta, which suffers from extreme 

traffic congestion [25]. 

Bandung’s unique urban layout and tourism-driven traffic 

surges present unique issues that set it apart from other big 

cities. The city’s dense layout, which includes narrow streets 

and historic districts, limits the opportunity for road 

construction and alternate routing. In contrast to cities with 

more expansive and flexible road networks, such as Jakarta or 

Surabaya, Bandung’s infrastructure is unable to handle 

unexpected surges in traffic, particularly during weekends and 

holidays when travel is at its highest. Accurate and real-time 

traffic classification is crucial for efficient city planning 

because of the evolving traffic pattern, which necessitates a 

flexible traffic management strategy that can respond to these 

periodic, high-intensity congestion situations.  

In general, traffic information needs several key parameters, 

such as time (days, rush-hour time, etc.) and weather data 

(weather, temperature, etc.). By using these parameters, this 

research tries to classify the traffic situation by using several 

machine learning models and tries to find the best 

configuration for each machine learning algorithm that is 

implemented. By the time the best model for each machine 

learning method is defined, the classification stage will 

continue to measure the final result by counting the number of 

categories that are classified by each model. 

This paper proposed a breakthrough by creating a multi-

level classification system that uses a competitive concept that 

is able to (1) compare machine learning models with various 

configurations and (2) implement the voting system to define 

the final classification result of the category. By proposing this 

concept, the learning system’s performance will be better than 

the classification system by using a single common machine 

learning method. In terms of intelligent transport systems, this 

work has significance since it is the only one that addresses 

traffic condition classification through the use of the 

competitive machine learning approach. More novel traffic 

prediction models may also be included in the system to 

increase performance. Additionally, some models could be 

modified to be integrated into the voting system, thereby 

increasing the scalability and adaptability of traffic prediction. 

This paper is organized as follows. Section 2 will discuss 

the literature review that is related to the research. The 

proposed systems will be discussed in Section 3, followed by 

the simulation result and discussion in Section 4. Finally, 

Section 5 will provide the conclusion of this research. 

 

 

2. LITERATURE REVIEW 
 

A machine learning model can be used to solve the traffic 

condition classification approach by supplying basic input to 

the system. Many researchers have generally been using 

machine learning to classify traffic conditions [15] or other 

traffic-related situations [26, 27] based on historical events. 

Classification models that are frequently used include NN, 

kNN, Bayesian Networks, Logistic Regression, Decision 

Trees, and Random Forests. This chapter covers the literature 

review of the machine learning model that was employed in 

the course of the research. 

 

2.1 Neural Networks (NN) 

 

The multilayer perceptron (MLP) is an NN algorithm that 

includes an input layer, one or more hidden layers, and an 

output layer [28]. The neurons in these layers produce outputs 

by applying an activation function to the weighted sum of the 

inputs. To identify complex patterns and non-linear 

relationships in the data, the hidden layers are essential.  

Eq. (1) is used to compute the input to the hidden layer Z in 

the single hidden layer MLP. Input feature categories are 

represented by the value of X, whereas weight matrices 

between the input and hidden layers indicate the relevance of 

each feature W1. In the following layer, the inputs are 

multiplied by a set of weights assigned to each neuron. Biases 

b, on the other hand, are the values that cause the input to be 

shifted to the activation function. 

 
𝑍1 = 𝑊1𝑋 + 𝑏1 (1) 

 

Next, as Eq. (2) illustrates, Z1 is the input used to activate 

the hidden layer (H). Additionally, as shown by Eq. (3), the H 

will serve as the input for the following hidden layer, Z2. With 

activation functions (σ), the weighted sum of inputs (such as 

ReLU, sigmoid, and tanh) is transformed nonlinearly. A NN 

would essentially be a linear model without an activation 

function. Consequently, its capacity to resolve complex 

problems involving highly non-linear data relationships is 

limited. 

 
𝐻 = 𝜎(𝑊1𝑋 + 𝑏1)  (2) 

 

𝑍2 = 𝑊2𝐻 + 𝑏2  (3) 

 

The network can learn increasingly complex representations 

by adding one or more hidden layers. In order to capture non-

linear relationships, the hidden layers perform non-linear 

adjustments to the input data. When there are several hidden 

layers, the output of the l-th hidden layer can be broadly 

expressed in Eq. (4). 

 
𝑦 = 𝜎(𝑊𝑙𝐻𝑙−1 + 𝑏𝑙)  (4) 

 

NN models generally vary based on how the number of 

layers is configured. Additionally, the use of hyperparameters 

such as the activation function, solver, regularization term, and 

learning rate represents the variances in configuration. 
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2.2 k-Nearest Neighbor (kNN) 

 

kNN classifies data by combining the results of calculations 

from data (recent occurrences) and determining the distance 

from the centroid of a grouped class, which is different from 

the method used in NN [29, 30]. This method categorizes the 

output data according to how similar it is to the previously 

computed training data output, taking into account the training 

process that was conducted. The new data point (𝑥), which 

needs to be classified, and each other data point in the training 

set must first be separated by a certain amount of distance. The 

literature review indicates that there are several ways to 

determine this distance calculation method. The most utilized 

distance metric is Euclidean distance [30], which is 

represented mathematically in Eq. (5). The Euclidean distance 

emphasizes the shortest path along a straight line, as illustrated 

in Figure 1. As a result, it works best for continuous data with 

the same scale and smooth change in data points. 

 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (5) 

 

 
 

Figure 1. Distance measurement using Euclidean distance 

 

The Manhattan distance [31] is defined as the distance 

between two places along right-angled axes. As shown in 

Figure 2, the distance between A and B is measured based on 

the summation of the difference between two points on each 

axis. It is commonly compared to the distance you would walk 

in a city with a grid layout. It is the total of the absolute 

differences between their locations. Therefore, the Manhattan 

distance is useful when dealing with high-dimensional data or 

when it is necessary to total the differences between 

dimensions separately. The formula for Manhattan distance is 

presented in Eq. (6). 

 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (6) 

 

 
 

Figure 2. Distance measurement using Manhattan distance 

The Manhattan and Euclidean distances are both 

generalized to form the Minkowski distance [32]. It can be 

seen in Figure 3 that the distance between information is 

measured by using the combination of previous distance 

measurement methods. It adds a parameter called p that allows 

for fine-tuning and selects the metric to be utilized. The 

formula for Minkowski distance is presented in Eq. (7). 

 

𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 (7) 

 

 
 

Figure 3. Distance measurement using Minkowski distance 

 

The Chebyshev distance [33], often known as the maximum 

distance, takes into account the greatest difference between 

any two places’ coordinates. Figure 4 shows the illustration of 

calculating the distance between information using 

Chebyshev. It calculates the greatest absolute difference in 

every dimension by using Eq. (8). 

 
𝑑(𝑥, 𝑦) = max

𝑖
|𝑥𝑖 − 𝑦𝑖| (8) 

 

 
 

Figure 4. Distance measurement using Chebyshev distance 

 

The particular dataset and classification problem must be 

taken into consideration while selecting the distance metric. 

The weights, algorithm, and leaf size are the hyperparameters 

that affect its performance. Weights affect whether neighbors 

are taken into account uniformly or based on proximity when 

making predictions. Meanwhile, the algorithm influences the 

speed and efficiency of the search process. Lastly, when 

employing tree-based algorithms, the leaf size regulates the 

trade-off between search speed and accuracy. 

 

2.3 Logistic Regression 

 

A statistical technique known as Logistic Regression uses a 

categorical, typically binary, dependent variable [34]. It 

simulates the likelihood that an input falls into a specific 

category. To predict the likelihood of the positive class, 

Logistic Regression combines the sigmoid function and the 

555



 

linear regression equation. By using Eq. (9), the positive class 

is defined in this method. 

 

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒−(𝑊𝑇𝑋+𝑏)
 (9) 

 

The parameters penalty, solver, and regularization strength 

(C) in Logistic Regression to determine how the model 

responds to overfitting, adjust weights, and strikes a 

compromise between prediction accuracy and model 

complexity. The penalty parameter (L1, L2, ElasticNet) 

defines the type of regularization performed on the model.  

The optimization algorithm that finds the best-fitting 

weights and bias is determined by the solver parameter. In 

terms of the value of parameter C, a simpler model with fewer 

large coefficients will be produced by a smaller 𝑐, which may 

help avoid overfitting. A greater c makes it possible for the 

model to match the training data more closely, which runs the 

risk of overfitting but may boost accuracy on the training set. 

 

2.4 Bayesian Network 

 

Bayesian Network is a directed acyclic graph (DAG)-based 

probabilistic graphical model that represents variables and 

their conditional dependencies. In a Bayesian Network, every 

node represents a variable, and direct dependencies between 

nodes are indicated by edges. It is helpful for inferring 

outcomes, making decisions in complicated systems, and 

reasoning under uncertainty since it applies Bayes’s Theorem 

to calculate the likelihood of events. 

In this literature research, there are five distribution models 

used for classifying the traffic situation, namely, (1) Gaussian, 

(2) Multinomial, (3) Bernoulli, (4) Complement, and (5) 

Categorical Naive Bayes. Gaussian Naive Bayes assumes that 

the continuous features follow a Gaussian distribution. The 

Gaussian Naive Bayes assumes that the continuous features 

follow a Gaussian distribution. It is easy to implement and 

works well with small continuous datasets due to its 

simplicity. However, if the features are not normally 

distributed, the performance may degrade. The Gaussian 

distribution likelihood is the value of the features (xi), mean 

(μy), and variance (𝜎𝑦
2) given a class (y), modeled as shown in 

Eq. (10). 

 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

exp (−
(𝑥𝑖 − 𝜇𝑦)2

2𝜎𝑦
2 )  

(10) 

 

Multinomial Naive Bayes is commonly used when the 

features represent counts discrete non-negative integers, such 

as word frequency in text classification. Since it requires 

discrete counts, it is unable to handle continuous variables 

directly without the preprocessing stage. The Multinomial 

distribution likelihood of the feature (xi) is the count of the i-

th feature and θy,i is the probability of observing feature xi, is 

present in class y, modeled as shown in Eq. (11). 

 

𝑃(𝑥𝑖|𝑦) =
𝜃𝑦,𝑖

𝑥𝑖

𝑥𝑖!
 (11) 

 

The Bernoulli Naive Bayes assumes binary features have 0 

or 1 for its value. It’s commonly used for text classification, 

but it focuses on whether a word that appears in a document 

rather than how often it appears. The Bernoulli distribution 

likelihood of binary feature value 𝑥𝑖 is modeled, as shown in 

Eq. (12). 

 

𝑃(𝑥𝑖|𝑦) = 𝜃𝑦,𝑖
𝑥𝑖  (1 − 𝜃𝑦,𝑖)

(1−𝑥𝑖) (12) 

 

Complement Naive Bayes is designed to handle imbalanced 

data in each class. It computes the likelihood based on the 

complement of the data for each class. It is slightly more 

complicated to implement and computationally heavier than 

standard Multinomial Naive Bayes. The probability of a 

feature, given the complement of the class y, is modeled as 

shown in Eq. (13). 

 

𝑃(𝑥𝑖|�̅�) =
𝜃�̅�,𝑖

𝑥𝑖

𝑥𝑖!
  (13) 

 

Categorical Naive Bayes assumes that features are 

categorical, not in the numerical form. It is suited for datasets 

where features are discrete categories. The likelihood of each 

feature xi, with θy,i,v is the probability of feature xi, taking value 

𝑣 in class 𝑦, is calculated by using Eq. (14). 

 

𝑃(𝑥𝑖|𝑦 = 𝑣) = 𝜃𝑦,𝑖,𝑣 (14) 

 

Each variant of Naive Bayes has its specific strengths based 

on the type of data, making it versatile for different 

classification tasks. The comparison of the 5-distribution 

models is displayed in the following Table 1. 

 

2.5 Decision Tree 

 

The Decision Tree algorithm is a popular supervised 

machine-learning technique that may be used for both 

classification and regression tasks [35]. It functions by 

progressively dividing a dataset into smaller and smaller 

subsets and creating a Decision Tree to go along with it. A tree 

with decision nodes and leaf nodes is in the product. Criterion 

is a statistic used in Decision Trees to assess the quality of a 

split at each node in the tree. This metric aids in choosing the 

optimal feature and value to split the data on to produce 

homogeneous groups. The objective is to optimize the split’s 

effectiveness, which improves the model’s predictive 

capacity. Previous research works have identified two 

common criteria: Gini and Entropy. 

 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2

𝐶

𝑖=1

 (15) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝐶

𝑖=1

  (16) 

 

The Gini index, which is shown in Eq. (15), measures how 

effectively a split divides the classes. The lower the Gini value, 

the better the algorithm’s classification performance. Another 

method that tries to measure the value of Entropy is by 

quantifying the amount of information obtained by splitting 

the dataset [35]. Eq. (16) is used to formulate the Entropy of 

each feature in the dataset. The higher the entropy index, the 

better the algorithm’s classification performance. pi is the 

probability of a data point belonging to class i, and C is the 

number of classes. 
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Table 1. Bayesian distribution model comparison 

 
Distribution Data Type Use Case Advantages Disadvantages 

Gaussian 

(GNB) 

Continuous 

(numerical) 

Classification with 

continuous features 

Works well with 

continuous data, simple to 

use 

Asses normal 

distribution 

Multinomial 

(MNB) 

Discrete counts 

(integers) 

Text or document 

classification 

Effective for text data, 

handles high dimensions 

Requires discrete count 

data 

Bernoulli 

(BNB) 

Binary  

(0 or 1) 

Binary text, features 

classification 

Ideal for binary data, 

simple to implement 

Limited to binary 

features 

Complement 

(CNB) 

Discrete counts, 

imbalanced 

Text classification with 

imbalance class 

Works well with 

imbalanced datasets 

Assumes independence 

of features 

Categorical 

(CatNB) 
Categorical (discrete) 

Data with finite discrete 

categories 

Naturally handles 

categorical 

Cannot handle 

continuous data 

2.6 Random Forest 

 

Random Forest is categorized as an ensemble learning 

algorithm that combines multiple Decision Trees to improve 

the performance of a machine learning model. It operates by 

building numerous Decision Trees during training and 

combining their results (typically by averaging or majority 

voting) to produce a final output. For classification, given 

𝑁 training sample {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where xi is the real number 

feature vector, and yi is the class label. A Random Forest builds 

T Decision Trees, each Decision Tree Tj outputs a predicted 

class �̂�𝑖
(𝑗)

 for a sample xi. The final predicted class �̂�𝑖  for 

Random Forest is the mode (majority vote) of individual tree 

predictions is measured by using Eq. (17). 

 

�̂�𝑖 = mode (�̂�𝑖
(1)

, �̂�𝑖
(2)

, . . . , �̂�𝑖
(𝑇)

) (17) 

 

Random Forest works by building multiple Decision Trees, 

introducing randomness through bootstrapped sampling and 

random feature selection, and then combining the predictions 

from individual trees to make the final decision. Its 

performance depends on tuning hyperparameters like the 

number of trees, maximum depth, and feature selection.  

The advancement of machine learning models resulted in 

increasingly complicated approaches to traffic prediction. 

Although these models increased prediction accuracy, they 

were frequently constrained by their great sensitivity to 

variations in traffic patterns and dependence on feature 

engineering. The weather, time of day, season, special events, 

and other factors all have an impact on the extremely variable 

traffic conditions in Bandung. As a result, the majority of 

traffic prediction models may not be completely adaptable to 

be used in Bandung. This study will experiment with several 

models and their configurations in competitive machine 

learning. 

 

 

3. PROPOSED METHOD 
 

In order to implement the competitive learning system 

concept, several machine learning methods are applied with 

various configurations. It addresses finding the best model and 

its configuration from each machine-learning method. This 

research aims to classify the traffic conditions in Bandung 

City, Indonesia, by using the proposed system, as shown in 

Figure 5. As seen in the figure, there are at least six common 

methods that could be used to classify road traffic. At the first 

stage of the proposed system, each method will have several 

models with different configurations. Each model will be 

trained and built by using the training data. Then, there will be 

a model selection based on the performance comparison. By 

the time the best model in each method is defined, the system 

will enter the final stage of competitive learning system by 

gathering the classification results from all selected models 

and finding the majority class that has been calculated by using 

testing data. 

Refers to the literature review that has been conducted in 

the previous chapter, the most common classification methods 

are NN [16], Decision Trees [17], kNN [18], Bayesian 

Networks [19], Logistic Regression [20], Random Forest [21], 

etc. The models that will be built are formed from these 

methods with various configurations. The configurations 

include the training approach, such as the number of hidden 

layers in NN, distance metrics in kNN, criterion calculation in 

the Decision Tree, etc. 

As mentioned earlier, each model will be built based on 

various configurations. The model is trained by using a dataset 

that is divided into training and testing data. The training data 

itself will be divided into two sections, namely, training data 

and validation data. The competition of selecting the best 

model for each method will be done by comparing the 

performances of the model when tested using validation data. 

In the latest stage of this system, the chosen models will 

classify the testing data. Each result will be stored and counted 

by the system. The final classification will be measured by 

calculating the maximum number of voters in the categories. 

 

3.1 Dataset 

 

The dataset that used in this research covers 265 road 

segments on the main road of Bandung City, Indonesia. The 

dataset is spread into 265 files and already categorized for 

specific road segments. In order to simplify the process, the 

modification of the dataset is conducted by recompiling the 

dataset into one dataset and adding the origin and destination 

of the road information that appears in the original dataset. The 

observation area of the dataset is shown in Figure 6. 

According to Nasution et al. [24], the dataset was collected 

in 2020. The features of the dataset are days (D), rush hour 

(RH), weather information (We), temperature (T), humidity 

(H), and traffic situation or density (TD). Additional features 

that were added to the latest dataset are the origination point 

(Ori) and the destination point (Dest). The modification that 

has been done in this study is elaborating the 265 road 

segments dataset into one. Table 2 shows the sample dataset 

that will be used to classify the traffic situation in Bandung. 
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Figure 5. Proposed system 

 

 
 

Figure 6. The observation area 

 

Table 2. Sample dataset  

 
Ori Dest D RH We T H TD 

43 55 0.83 0 0.75 0.73 0.23 1 

52 51 0.5 0 0.50 0.79 0.04 0 

58 12 0.33 0 0.50 0.76 0.55 2 

45 64 0 1 0.62 0.76 0.55 0 

33 32 0.33 0 0.50 0.76 0.55 2 

 

The pre-processing stage is conducted on the modified 

dataset in order to reduce the classification error at the training, 

validation, and testing. Whenever the data finishes the pre-

processing stage, the dataset must be shuffled to balance the 

population of the class for training, validation, and testing 

data. The dataset consists of 575,578 road information that will 

be split into 70% and 10% for training and validation, 

respectively, and the rest will be used as testing data. 

 

3.2 Machine learning model 

 

3.2.1 Implementation of NN model 

In this study, several configurations could be implemented 

to the NN, as Gurcan et al. [36] did in 2021 by using one 

hidden layer that consists of 100 neurons. The hidden layer 

will be activated by using ReLU and optimized by using Adam 

Optimizer. In the end, to get better classification results, the 

training process is set to 200 times with 0.001 as the learning 

rate.  

Other researchers implement other configurations in NN 

[36]. They used more than one hidden layer with various 

numbers of neurons, as He and Chen [28] did in their model, 

who used three hidden layers with 50 neurons in each layer. 

Gu et al. [37] also used three hidden layers with a greater 

number than He and Chen did, as in 200, 100, and 50 neurons 

in the first, second, and third layers, respectively. As another 
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configuration, Yu and Zhu [38] use an unusual number of 

neurons for the three hidden layers in the NN, with 128, 64, 

and 32 neurons, respectively. These models were created by 

using more than 300 iterations and have various learning rates, 

from 0.001 to 0.01. 

Anowar and Sadaoui [39] also developed an NN model that 

is slightly similar to Gurcan et al. [36], but it is built with a 

greater number of neurons by 50, and it has a 10 times larger 

learning rate (0.01). Anowar and Sadaoui [39] use an adaptive 

learning rate, so it’s able to adapt the learning rate as needed. 

According to the literature review, the common activation 

functions used are ReLU, tanh, and sigmoid. Because of its 

simplicity and capacity to prevent vanishing gradients, the 

ReLU activation function has become the standard option for 

NN. Meanwhile, the common optimizers that are used in NN 

are Adam (A) and (SGD). In terms of the solver, SGD is 

slower but more generalizable than Adam, which converges 

quickly. Then, the types of learning rate (LR) are categorized 

as Constant(C), Adaptive (Ad), and InvScalling (I). The 

configurations utilized in various research applying NN-based 

system classification are shown in Table 3. Column ‘LR Init.’ 

in Table 3 shows the initialization of the learning rate, while 

column ‘Iter.’ shows the number of iterations. 

 

Table 3. NN model’s configuration 

 
Study HL AF Solver LR LR Init.  Iter. 

[36] 100 ReLU A C 0.001 200 

[28] 50, 50, 50 tanh SGD Ad 0.01 300 

[37] 200, 100, 50 ReLU A I 0.005 500 

[38] 128, 64, 32 ReLU A Ad 0.001 300 

[39] 150 ReLU SGD Ad 0.01 200 

 

3.2.2 Implementation of kNN model 

As explained in the previous section, kNN works based on 

the distance between the centroid of each category and the 

classification result. The method tries to measure the number 

of category member that has the nearest distance to the results. 

The category that has the maximum number will be claimed 

as the result’s category. It is common to use the nearest 

neighbor for each category with odd numbers, such as 3, 5, 7, 

9, etc. However, in the configuration that is compared, the 

neighbors are set to 1, 5, 7, 10, and 15. Every kNN distance 

metric has benefits of its own. Euclidean Distance is 

appropriate for geometric or visual data, but Manhattan 

Distance is best suited for grid data, such as cities or 

transportation lines with block patterns. Minkowski Distance 

is adaptable to various forms of multidimensional data since it 

can be configured with parameters to test different distance 

measurements. For grid-based applications, Chebyshev 

Distance is particularly helpful in identifying notable shifts in 

a single dimension among multi-dimensional data. The data 

structure and analysis objectives determine which metric is 

best, which might have an impact on the kNN model’s 

accuracy and performance.  

 

Table 4. kNN model’s configuration 

 

Study N_Neighbors Weights Algorithm 
Leaf 

Size 
Metric 

[29] 5  Distance Ball_tree 40 Minkowski 

[31] 10 Uniform Kd_tree 20 Manhattan 

[34] 1 Distance Brute - Euclidean 

[32] 7 Distance Auto 30 Euclidean 

[40] 15 Distance Auto 30 Chebyshev 

Table 4 shows the various kNN configurations that were 

used in this research. As seen in the table, the distance metrics 

used to classify the data are Minkowski, Manhattan, 

Euclidean, and Chebyshev. 

 

3.2.3 Implementation of Logistic Regression model 

In this method, the configurations are diverse in their 

penalty regularization, which is categorized as L1, L2, and 

Elasticnet, as previously explained. L1 regularization (Lasso) 

adequately selects features by adding an absolute penalty to 

coefficients, driving some to zero and promoting sparsity. This 

is effective when only a few variables are predicted to be more 

significant, such as traffic situation or density. When several 

predictors (weather, temperature, days, humidity, rush hour, 

etc.) contribute, L2 regularization (Ridge) distributes the 

penalty more evenly and applies a squared penalty, decreasing 

coefficients towards zero but usually not to exactly zero. 

Elastic Net is especially helpful for datasets with highly 

correlated features, as it can improve stability and predictive 

performance by choosing groups of correlated features 

together. It does this by balancing sparsity and shrinkage by 

combining L1 and L2 penalties. Each compared model has 100 

to 500 iterations before the model is ready to be used as a 

classification system. The common methods for solving the 

regression are Limited-memory Broyden–Fletcher–Goldfarb–

Shanno (LBFGS), Coordinate Descent (Liblinear), and 

Stochastic Average Gradient Augmented (SAGA). Table 5 

shows the comparison between configurations for Logistic 

Regression. 
 

Table 5. Logistic Regression model’s configuration 
 

Study Penalty Solver C Iterations 

[41] L2  Lbfgs 1.0 100 

[42] L1 Liblinear 0.5 100 

[43] Elasticnet Saga 1.0 200 

[44] L2 Lbfgs 1.0 100 

[45] L2 Saga 0.1 500 

 

3.2.4 Implementation of Bayesian Network model 

The implementation of Bayesian Networks will follow its 

variances as explained in the previous section, namely: 

Gaussian (GNB) [46], Multinomial (MNB) [47], Bernoulli 

(BNB) [48], Complement (CNB) [49], dan Categorical 

(CatNB) [50]. Gaussian Naive Bayes is frequently used when 

features have a normal distribution, as in real-valued attributes 

like sensor data, and it performs well with continuous data. 

Multinomial Naive Bayes is perfect for the classification of 

texts (e.g., word frequency counts) because it works well with 

count-based data. Bernoulli Naive Bayes is frequently 

employed in document classification problems using binary 

word presence characteristics because it is built for binary or 

Boolean data. Complement Naive Bayes works well with 

unbalanced classes and frequently increases text classification 

accuracy. Categorical Naive Bayes is used for issues when 

features are not numerical, such as demographics or nominal 

survey replies, and performs best for categorical features with 

numerous classes. Inferencing using Bayesian Networks with 

various configurations means the system will conclude the 

classification by using different formulas, as explained in the 

literature. 

 

3.2.5 Implementation of Decision Tree model 

The Decision Tree is the most common method for 

classification systems. Commonly, it also delivers great 
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performances when classifying some problems. In order to 

build a Decision Tree, the importance (C) of each feature from 

the dataset will be calculated either using the Gini Index or 

Entropy [35] measurement. Gini Impurity, which ranges from 

0 (pure) to 0.5 (maximally impure), determines the probability 

of incorrectly classifying a randomly selected element based 

on the node’s class distribution. In contrast, entropy measures 

the uncertainty within a node and ranges from 0 (pure) to 

log(n), where n represents the number of classes. In general, 

the outcomes of both criteria are comparable: Entropy may be 

marginally more sensitive to shifts in the class distribution, 

while Gini is easier to compute and has a tendency to divide 

more conservatively. Other important parameters required to 

construct the tree are the maximum tree’s depth (DoT), 

minimum samples split and the leaf (SpL), maximum feature 

per leaf nodes (FLN), minimum value of impurity (ID), and 

class weight (Wc). 

As an additional parameter, the Decision Tree is allowed to 

use the randomization technique (RS), to ensure the 

classification result’s consistency. Table 6 shows the 

configurations that used to be compared whenever the trained 

model was built. 

 

Table 6. Decision Tree model’s configuration 

 
Study C DoT SpL FLN ID Wc RS 

[35] Gini  - 2,1 - 0.0 - 42 
[51] Entropy 10 4,2 Sqrt, 20 0.01 Balanced - 

[52] Gini 20 10,5 Log2, 50 0.0 - 42 

[53] Entropy 15 5,3 0.5, -  0.005 - - 
[54] Gini - 2,1 - 0.01 Balanced - 

 

3.2.6 Implementation of Random Forest model 

Theoretically, a Random Forest is generated from multiple 

Decision Trees that elaborate their result to conclude the final 

result. Indirectly, the parameters used in the Random Forest 

are almost similar to the Decision Tree. The maximum depth 

(DoT), maximum features (FLN), minimum sample leaf (SpL), 

and random state (RS) are similar parameters to the Decision 

Tree. In this method, the most important parameter is the 

number of estimators (nE), which define the number of 

Decision Trees that are used to generate the final result. The 

configurations utilized in various research are shown in Table 

7. 

 

Table 7. Random Forest model’s configuration 

 
Study nE DoT FLN SpL RS 

[55] 500 10 sqrt 5 42 

[56] 200 None None 2 42 

[46] 300 None log2 None 42 

[57] 1000 15 0.3 None 42 

 

3.3 Competitive machine learning system 

 

3.3.1 Performance measurement between methods 

The implementation of each classification model that has 

been discussed in the previous section will be done in this 

stage. The performance of each model is measured in order to 

conclude which model shows the best performance among 

others. It is measured based on the validation data that is split 

from the training data. Thus, the performance (accuracy or 

another metric) will be compared to each other, and the model 

with the best performance will be selected as the 

representation of the method. 

The implementation and testing are conducted in a 

computer using M3Pro Processor with 18 GB DDR5 Memory. 

The competitive machine learning system is built under 

python3 and supported by the sckit-learn library. Figure 7 

shows the illustration of the first stage of the proposed system 

that proposed in this research. As seen in the picture above, 

each classification model has been compared to each other. 

Later, in the final stage of the system, the voting schemes are 

implemented to decide the final classification. 

The performance metric measured in this research covers 

the accuracy, precision, recall, F1-Score, Matthew Correlation 

Coefficient (MCC), training time (first stage), and testing time 

(final stage). Eqs. (18)-(22) show the formulation to calculate 

the accuracy, precision, recall, F1-Score, and MCC 

respectively. These formulas need the values of true positive 

(TP), true negative (TN), false positive (FP), and false 

negative (FN). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (20) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (21) 

 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑁)
 (22) 

 

 

 
 

Figure 7. Competitive machine learning system 

 

3.3.2 Majority voting system 

According to the result from the first stage of the 

competitive machine learning system, the chosen models from 

each method are prepared to classify the brand-new data test. 

Every model must deliver the classification result and report it 

to the voting system, which is the final stage of the competitive 

machine learning system. In the implementation of the voting 

system, there are two concepts to decide the final result from 

the system, namely: (1) non-weighted and (2) weighted voting 

system. Overall, the final stage of the system is illustrated in 

Figure 8. 

In the non-weighted system, each classification model (N) 

has similar impacts in delivering the final classification result 

(Y) based on the category of traffic condition (j) as stated in 

the dataset. By the time the classification from each chosen 

model (ci) equals to the specific category (vj), the system 

records the vote by using Kronecker Delta function δ(ci, vj), 

and it continuously adds whenever the results are similar to a 

category. The number of voters is calculated by using Eq. (23), 

where the value equals to 1 when ci=vj, otherwise it is zero. 
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𝑌(𝑣𝑗) = ∑ 𝛿(𝑐𝑖 , 𝑣𝑗)

𝑁

𝑖=1

 (23) 

 

 
 

Figure 8. Voting scheme in competitive machine learning 

system  

 

On the other hand, each model has a different impact when 

calculating the final result using a weighted voting system. In 

this method, all models have their weight (wi), which is taken 

from the accuracy of the validation. This situation delivers an 

impact when concluding the result based on the voters in each 

category. Eq. (24) is used to measure the weighted voters. The 

result in this equation is not defined based on the number of 

voters but by calculating the total weight from similar 

classification results. 

 

𝑌(𝑣𝑗) = ∑ 𝑤𝑖 × 𝛿(𝑐𝑖 , 𝑣𝑗)

𝑁

𝑖=1

 (24) 

 

Whenever all data is already tested, the system decides its 

conclusion (cfin) by finding the maximum number of voters 

from each category using Eq. (25). 

 
𝑐𝑓𝑖𝑛 = arg max

𝑗
𝑌(𝑣𝑗) (25) 

 

Based on these measurements, this learning system is able 

to decide the final classification result from various machine 

learning methods. 

 

 

4. RESULTS AND DISCUSSION  

 

In this chapter, the implementation results of competitive 

learning for all stages are discussed. At the beginning, there 

was a discussion about the selection of the best model for each 

method. Later, there was also a discussion about the final 

decision of the classification using a voting system. 
 

4.1 Machine learning performance 
 

4.1.1 Performance of Neural Networks 

In this section, the performance measurement for NN is 

conducted. The models are implemented based on the 

configuration that was previously explained. In general, NN 

needs longer training time than other methods. It is proven 

through the experiment that shown in Table 8, the training time 

for NN models is 85.35 s to 866.714 s. The training time itself 

is influenced by the configuration. Even though it needs a 

longer time to build the model, it still delivers 61% - 66% for 

accuracy, precision, recall, and F1-Score, respectively. 

 

Table 8. Performance of NN models 

 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 61.127 61.247 61.127 60.89 0.483 85.35 

2 66.134 66.606 66.134 66.232 0.549 673 

3 64.911 65.094 64.911 64.804 0.533 866.714 

4 65.034 65.148 65.034 64.996 0.534 321.552 

5 62.048 62.014 62.048 61.901 0.494 156.302 

 

The average MCC value from the models is around 0.5 

points, and it means the model is categorized as a good 

condition method but not in a perfect condition since there is 

still has a probability of yielding a misclassification. Figure 9 

shows an illustration of the NN performance measurements. 

The major shortcoming of this method is the training time that 

it takes to build a model compared with other methods. 

 

 
 

Figure 9. Performance measurements for NN 

 

4.1.2 Performance of k-Nearest Neighbor 

This method delivers slightly better performance results 

than the NN in classifying using the traffic condition dataset. 

It has a performance range of 64% to 70% for accuracy, 

precision, recall, and F1-Score. Table 9 shows the detailed 

testing result for the kNN with various configurations. 

Based on the training time, this method only takes 1 to 18 

seconds to build various kNN models. Figure 10 illustrates the 

performance comparison of kNN that was developed using 

various configurations. Meanwhile, the average value of MCC 

is around 0.53 to 0.607 points. These values have similar 

meanings to the previous method that was discussed since it 

has a slightly better performance than the NN. 

 

 
 

Figure 10. Performance measurements for kNN 
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Table 9. Performance of kNN models 

 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 69.446 69.673 69.446 69.41 0.593 18.029 

2 69.003 69.345 69.003 69.014 0.588 4.319 

3 64.775 64.818 64.775 64.792 0.53 10.675 

4 69.993 70.206 69.993 69.968 0.601 3.326 

5 70.509 70.726 70.509 70.502 0.607 1.54 

 

4.1.3 Performance of Logistic Regression 

This method appears to exert significant effort in classifying 

the test data. Unfortunately, the performance is under the 

previous methods. It only reaches 44% for the accuracy and 

recall, around 43%-44% for the precision’s value, and only 

43% for its harmonic means. Table 10 provides detailed 

experimental results for the model built using Logistic 

Regression, while Figure 11 illustrates the primary 

performance outcomes in graphical form. 

 

Table 10. Performance of Logistic Regression models 

 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 44.248 43.813 44.248 43.336 0.258 2.334 

2 44.384 44.036 44.384 43.432 0.26 8.957 

3 44.303 43.892 44.303 43.432 0.258 3.412 

4 44.076 43.785 44.076 43.515 0.255 2.557 

5 44.294 43.883 44.294 43.424 0.258 2.313 

 

 
 

Figure 11. Performance measurements for Logistic 

Regression 

 

The main advantage of using this method is the time that is 

needed to train the data and build the model takes less than 10 

seconds. However, the faster processing time does not imply 

greater performance since this method’s limitations are the 

linearity assumptions, sensitivity to outliers, and poor 

handling of complex or high-dimensional data, making it less 

effective than advanced models for non-linear or large-scale 

problems. The measurement of MCC only reached 0.25 points, 

which categorizes this method as a low-performance method 

since there were lots of mistakes in deciding the classification 

results. Overall, this method is still feasible to use in the 

system. 

 

4.1.4 Performance of Bayesian Networks 

The Bayesian Networks are able to build a model in less 

than a second. It is even faster than generating the Logistic 

Regression model. Commonly, this method can classify better 

when the training data has a balanced distribution and less 

variation, which became the main limitation of this method. 

The value of MCC in Bayesian Networks is similar to the 

previous method; it’s around 0.22 to 0.29 points. Table 11 

shows the detailed training and validation results of various 

Bayesian Network configurations. Figure 12 shows the 

comparison of the accuracy, precision, recall, and F1-Score for 

each configuration. As seen in the figure, the first model 

dominated others, especially in the precision and F1-Score. 

 

Table 11. Performance of Bayesian Networks models 
 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 46.085 45.911 46.085 43.143 0.29 0.137 

2 39.735 30.255 39.735 27.267 0.233 0.149 

3 39.713 33.8 39.713 26.83 0.234 0.173 

4 39.919 31.697 39.919 28.238 0.234 0.167 

5 41.672 42.233 41.672 39.792 0.228 0.227 

 

 
 

Figure 12. Performance measurements for Bayesian 

Networks 

 

4.1.5 Performance of Decision Tree 

Decision Tree is famous for its performance, which often 

appears beyond the average. In addition, the high performance 

is also supported by short-time processing to build the tree. 

The disadvantage of this method is that it tends to deliver 

overfitting results. According to the model configurations in 

this research, the performances do not show any overfitting 

results. The accuracy, precision, recall, F1-Score, and MCC 

are around 42%-72%, 37%-72%, 42%-72%, 36%-72% and 

0.24-0.632, respectively. 

 

 
 

Figure 13. Performance measurements for DT 

 

As for the value of MCC, several configurations put the 

model in bad condition since it has 0.24 points, but on the other 

hand, there is a model that has 0.632 as its MCC value. It 

shows that the highest performance of the model is categorized 
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as good. Table 12 and Figure 13 show the experimental result 

and its illustration from the Decision Tree. According to the 

results, it can be that the first model is the best model that will 

represent the Decision Tree in the final stage of the 

competitive machine learning system. 

 

Table 12. Performance of Decision Tree models 
 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 72.28 72.687 72.28 72.287 0.632 0.574 

2 42.564 45.009 42.564 42.105 0.24 0.218 

3 54.674 54.84 54.674 53.558 0.402 0.175 

4 50.468 51.629 50.468 44.879 0.359 0.214 

5 44.804 37.369 44.804 36.597 0.292 0.255 

 

 

4.1.6 Performance of Random Forest 

At a glance, this method delivers better results compared to 

other methods when classifying the traffic condition. On 

average, the accuracy, precision, recall, and F1-Score are 

higher than 65% for each model configuration. Table 13 shows 

the Random Forest performance for four different 

configurations. The training time that Random Forest takes is 

categorized as acceptable. Figure 14 shows the comparison of 

the main parameters of Random Forest’s models. 

The MCC values in the Random Forest spread from 0.538 

to 0.636 points. This value is the best MCC’s value among 

other methods. Unfortunately, this method takes slightly 

longer to be built. The training time is around 35 to 145 

seconds. This happened since Random Forest is the 

modification of Decision Tree, so it needs to make several 

trees first before it decides the configuration results. 

 

Table 13. Performance of Random Forest models 
 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

1 65.255 65.447 65.255 65.067 0.538 56.549 

2 72.601 72.997 72.601 72.595 0.636 35.023 

3 72.527 72.856 72.527 72.507 0.635 54.944 

4 71.008 71.177 71.008 70.981 0.614 145.444 

 

 
 

Figure 14. Performance measurements for RF 

 

4.2 Model’s configuration selection 
 

Based on the model that was already built in the previous 

chapter, the model that has the best performance (accuracy) is 

used as a representation of the method. According to the 

method’s accuracy that already acquired, the machine learning 

methods that will be used in the voting system are (1) NN 

model-2; (2) K-NN model-5; (3) Logistic Regression model-

2; (4) Bayesian Networks model-1; (5) Decision Tree model-

1; and (6) Random Forest model-2. Table 14 shows the 

compiled model that represents the machine learning method. 
 

Table 14. Performance of methods for competitive machine 

learning system 
 

Model 
Acc. 

(%) 

Prec. 

(%) 

Rec. 

(%) 

F1-Score 

(%) 
MCC 

TTrain 

(s) 

NN-2 66.2 66.6 66.2 66.3 0.55 673 

KNN-5 70.5 70.7 70.5 70.5 0.607 1.54 

LR-2 44.4 44 44.4 43.4 0.26 8.957 

BN-1 46.1 45.9 46.1 43.1 0.29 0.137 

DT-1 72.2 72.6 72.2 72.2 0.632 0.574 

RF-2 72.6 73 72.6 72.6 0.636 35.023 

 

4.3 Majority voting system performance results 
 

In this section, the voting system is implemented, analyzed, 

and discussed. As aforementioned, two voting systems tried to 

decide the final classification result. In the experiment, the 

testing data used is 1000, 2000, 5000, and 10000 data. 
 

4.3.1 Non-weighted voting system 

At first, the non-weighted voting system was implemented 

to improve the classification system’s performance. As shown 

in Table 15, the accuracy, precision, recall, and F1-Score are 

68.6%-69.3%, 68.9%-69.6%, 68.6%-69.3%, and 68%-69.3% 

respectively. These values enhance the performances of NN, 

Logistic Regression, and Bayesian Networks. Even though its 

performances are slightly lower than kNN, Decision Tree, and 

Random Forest. Figure 15 shows the performance 

comparisons of the non-weighted voting system on various 

numbers of data tests. 

The MCC value of the voting result is around 0.58-0.59 

points. This value is two times better than the Logistic 

Regression’s and Bayesian’s MCC. It’s concluded that the 

non-weighted voting system is able to be used as a 

classification method since it has good performance. 

 

 
 

Figure 15. Classification results based on non-weighted 

voting system  
 

From the point of view of time processing, the voting 

system needs 165.619 seconds to classify 1000 data. It means 

a datum will be classified in 0.165619 seconds. The other 

testing numbers take 0.16131 s, 0.1708618 s, and 0.173875 s 

for 2000, 5000, and 10000 data tests. The average time 

processing for the non-weighted voting system is 0.1679185 s.
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Table 15. Performance of competitive machine learning 

system using non-weighted voting 
 

Testing 
Acc 

(%) 

Prec 

(%) 

Rec 

(%) 

F1-Score 

(%) 
MCC 

TTesting 

(s) 

1000 68.6 68.9 68.6 68.6 0.582 165.619 

2000 68.9 69 68.8 68 0.585 322.636 

5000 68.7 69 68.7 68.7 0.583 854.309 

10000 69.3 69.6 69.3 69.3 0.591 1738.75 

 

4.3.2 Weighted voting system 

Based on each method’s performance, it seems unfair if 

each method has a similar impact on the voting system. In this 

section, the weighted voting system is implemented. The 

weight used in this system is collected from the value of 

accuracy in each method. Later, the weight will be 

summarized when several methods vote for similar categories 

for each test. 

Table 16 shows the weighted voting system results from the 

data test. As seen from the table, when the system tries to 

classify 1000 data from the dataset, the accuracy, precision, 

recall, and F1-Score reach more than 71.9%, with an MCC 

value of 0.627 points. These results show that this method 

delivers 3.1 and 0.04 points better for accuracy and MCC 

compared to the non-weighted version. Overall, the 

performance of this method is better than other methods that 

have been discussed in the paper. Figure 16 shows the 

performances based on the various number of data tests. 

 

Table 16. Performance of competitive machine learning 

system using weighted voting 
 

Testing 
Acc 

(%) 

Prec 

(%) 

Rec 

(%) 

F1-Score 

(%) 
MCC 

TTesting 

(s) 

1000 71.9 72.5 71.9 71.9 0.627 166.27 

2000 72.5 72.8 72.4 72.4 0.634 330.056 

5000 72 72.5 72 72 0.628 831.303 

10000 72.3 72.7 72.3 72.4 0.632 1629.126 

 

 
 

Figure 16. Classification results based on weighted voting 

system 

 

The classification results came after 166.27, 330.056, 

831.303, and 1629.126 seconds for 1000, 2000, 5000, and 

10000 data tests. It means that in processing a datum, it takes 

0.16627, 0.165028, 0.1662606, and 0.1629126 seconds. On 

average, it takes 0.1651178 seconds to classify a traffic 

situation. 

Based on the implementation, testing, and discussion that 

have been conducted, the competitive machine learning 

system is able to classify the traffic situation in good condition. 

It may be categorized as a non-perfect system since there are 

still classification mistakes. The methods used in the voting 

system have an accuracy of only around 60%-72%, and some 

of them only reach around 40%. These voting methods are able 

to define the class from data tests, even though there are 

several methods categorized as low-performance methods. 

Non-weighted voting systems can enhance the method’s 

performance, but the weighted voting system can do it better. 

In the final stage of a competitive machine learning system, 

the weighted voting system is preferred to be used with this 

proposed learning system over the non-weighted one. 

The findings in the proposed system must be validated by 

traffic regulators before it can be applied in the real world. 

According to the performance testing, the system’s accuracy 

is acceptable since it is neither categorized as overfitting nor 

underfitting. For broader applications, this traffic 

classification system could be adapted as a predictive tool 

capable of forecasting traffic conditions several minutes in 

advance. This feature could support traffic management 

systems, suggest tourist itineraries based on departure time, or 

benefit other traffic-related applications.  

This research was conducted in Bandung City, Indonesia, 

where the challenge lies in the relatively limited variety of 

road types compared to larger cities with numerous alleyways. 

Despite this, the proposed system can be effectively applied to 

predict traffic congestion in cities with similar characteristics, 

provided that an appropriate dataset is available for analysis. 

 

 

5. CONCLUSION AND SUGGESTIONS 

 

This research proposes a competitive machine learning 

system that applies machine learning models to classify the 

traffic situation. There are 29 model configurations that spread 

into six machine learning methods, namely NN, kNN, Logistic 

Regression, Bayesian Networks, Decision Tree, and Random 

Forest. The best model from each method – with accuracy of 

each model 66.2%, 70.5%, 44.4%, 46.1%, 72.2%, and 72.6%, 

respectively – is taken to be used in the voting system stage, 

which consists of two different schemes: non-weighted and 

weighted system. 

Based on the experimental result, the non-weighted system 

delivers the classification result within 0.1679185 seconds 

with an accuracy between 68.6% - 69.3%. Meanwhile, the 

weighted system is able to deliver the result 0.0028007 

seconds faster with an accuracy between 71.9% - 72.5%, 

which is also better than the non-weighted system. Besides, 

the value of MCC in the weighted system is higher by 0.04 

points compared to its counterpart. Thus, based on their 

performance results, the weighted voting system is preferred 

to be used with this proposed learning system over the non-

weighted one.  

For future research, implementing the competitive machine 

learning system on distributed computing devices could 

significantly reduce classification time by distributing the 

computational load across multiple machines. Additionally, 

testing the model in various cities with unique traffic patterns 

would help assess its adaptability and reveal any necessary 

adjustments for different environments. Another possible 

research opportunity in this field is that integrating real-time 

data from various sources, such as anonymized GPS or IoT 

devices, or even from more complex data feed that came from 

the satellites, could further enhance the system’s accuracy and 

responsiveness, making it especially valuable for dynamic 

traffic management. Scaling the model for application in larger 
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cities with complex road networks would also benefit from a 

focus on optimizing processing speed, and computational 

efficiency can be an interesting topic to be studied. 
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