
Traffic Management Enhancement: A Competitive Machine Learning System for Traffic

Condition Classification

Surya Michrandi Nasution* , Reza Rendian Septiawan , Rifqi Muhammad Fikri , Burhanuddin Dirgantoro

Computer Engineering, School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

Corresponding Author Email: michrandi@telkomuniversity.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijtdi.080407 ABSTRACT

Received: 7 September 2024

Revised: 10 November 2024

Accepted: 18 November 2024

Available online: 26 December 2024

In big cities, traffic congestion is a prevalent issue. In order to decide how to manipulate

traffic in order to alleviate congestion, traffic regulators, who supervise traffic flow, must

conduct an analysis of present conditions. Classifying traffic conditions from road

information is a critical step that impacts these decisions. Traffic conditions can be

categorized using a variety of techniques, each with benefits and drawbacks of its own.

Recently, the rapid development of machine learning techniques has accelerated their use

in a variety of sectors, including intelligent transportation systems (ITS). In this study, a

competitive machine learning system is introduced to support the decision-making process

in ITS, specifically in traffic condition classification. The proposed system operates in two

stages: first, identifying the best model configuration from various machine learning

methods, and second, deciding through a voting system based on the selected models. The

proposed system employs six machine learning methods, each with 4-5 variations in model

configurations. The methods tested include Neural Networks, k-Nearest Neighbor,

Logistic Regression, Bayesian Networks, Decision Trees, and Random Forests, with

individual accuracy rates of 66.2%, 70.5%, 44.4%, 46.1%, 72.2%, and 72.6%, respectively.

The models that achieved the highest performance for each method proceed to a voting

system, both non-weighted and weighted. The experimental results indicate that the non-

weighted system achieved an accuracy of 68.6% to 69.3%, while the weighted system

reached 71.9% to 72.5%. The findings show that the proposed competitive machine

learning system offers a viable solution for classifying traffic conditions with promising

results, especially for implementation in Bandung City, Indonesia.

Keywords:

intelligent transportation system, competitive

machine learning system, traffic condition

classification, machine learning, voting

system

1. INTRODUCTION

Recently, the rapid development of machine learning

techniques has accelerated their use in a variety of sectors,

including intelligent transportation systems (ITS) [1]. ITS is

one of the key ways to advance technology in the

transportation sector. It can be applied at both microscopic [2]

and macroscopic [3] levels. In the microscopic view, ITS tends

to measure the in-car situation, including the vehicle’s

headway [4], direction [5], speed [6], traffic sign [7],

pedestrian detection [8], distance calculation [9], etc. In a

simple word, microscopic lets the technology understand the

detailed information of the vehicles that run on the road. On

the other hand, in the macroscopic view, the technology allows

control of the road infrastructure, such as traffic management

system [10], shortest route calculation [11], road closure

information [12], balancing the vehicle’s emission [13], and

any other situation that impacts community needs.

Commonly, ITS implementation in a macroscopic view can

be done by implementing machine learning methods to define

the traffic situation based on historical information [14].

Machine learning is able to classify traffic conditions based on

its knowledge about historical data. The classification itself is

defined as a process of grouping a dataset with similar

conditions into a specific category [11]. By using the training

data, which is collected previously, machine learning is able

to understand the current situation and check the category that

has the most similar situation to the situation in the past.

Machine learning can be implemented as well as a prediction

system to forecast the conditions in the future [15].

The machine learning method itself has not stopped

developing. However, almost all machine learning methods

evolved from basic methods such as Neural Networks (NN)

[16], Decision Trees [17], k-Nearest Neighbor (kNN) [18],

Bayesian Networks [19], Logistic Regression [20], Random

Forest [21], etc. The knowledge-growing system was

developed by Husni et al., who modified the NN, Decision

Trees, and Bayesian Networks to adaptively learn from

previous information [15]. Nasution et al. [22] also developed

a semi-ensemble learning system that is supported by using

several models that use NN as its basic method.

Every machine learning model delivered different results

according to the data that used in the training and testing of the

model. It contradicts any papers that declare their model is

International Journal of Transport Development and
Integration

Vol. 8, No. 4, December, 2024, pp. 553-567

Journal homepage: http://iieta.org/journals/ijtdi

553

https://orcid.org/0000-0002-9332-9328
https://orcid.org/0009-0009-4707-5062
https://orcid.org/0009-0009-9968-5815
https://orcid.org/0009-0003-4865-760X
https://crossmark.crossref.org/dialog/?doi=10.18280/ijtdi.080407&domain=pdf

using the best machine learning method. In fact, the

performances of the model depend on the data that used in the

model [23]. This means the statements of researchers can be

falsified since the quality of the machine learning model is

influenced by the data quality. According to this condition, this

paper proposed a competitive machine learning system that

lets the classification system choose the best methods based on

the performances of the several models that are implemented

in the system.

The competitive learning system will be implemented by

using the traffic condition dataset in Bandung City that was

collected by Nasution et al. in 2023 [24]. The data is gathered

by them using several methods: (1) direct calculation by

implementing object detection method to the public Close

Circuit Television (CCTV) and (2) indirect calculation by

gathering traffic information from TOMTOM, and the traffic

condition will be measured by using several formulations. The

dataset from these collection methods was joined to create a

comprehensive dataset so it will be able to categorize traffic

density in Bandung, which is the second largest metropolitan

area in Indonesia after Jakarta, which suffers from extreme

traffic congestion [25].

Bandung’s unique urban layout and tourism-driven traffic

surges present unique issues that set it apart from other big

cities. The city’s dense layout, which includes narrow streets

and historic districts, limits the opportunity for road

construction and alternate routing. In contrast to cities with

more expansive and flexible road networks, such as Jakarta or

Surabaya, Bandung’s infrastructure is unable to handle

unexpected surges in traffic, particularly during weekends and

holidays when travel is at its highest. Accurate and real-time

traffic classification is crucial for efficient city planning

because of the evolving traffic pattern, which necessitates a

flexible traffic management strategy that can respond to these

periodic, high-intensity congestion situations.

In general, traffic information needs several key parameters,

such as time (days, rush-hour time, etc.) and weather data

(weather, temperature, etc.). By using these parameters, this

research tries to classify the traffic situation by using several

machine learning models and tries to find the best

configuration for each machine learning algorithm that is

implemented. By the time the best model for each machine

learning method is defined, the classification stage will

continue to measure the final result by counting the number of

categories that are classified by each model.

This paper proposed a breakthrough by creating a multi-

level classification system that uses a competitive concept that

is able to (1) compare machine learning models with various

configurations and (2) implement the voting system to define

the final classification result of the category. By proposing this

concept, the learning system’s performance will be better than

the classification system by using a single common machine

learning method. In terms of intelligent transport systems, this

work has significance since it is the only one that addresses

traffic condition classification through the use of the

competitive machine learning approach. More novel traffic

prediction models may also be included in the system to

increase performance. Additionally, some models could be

modified to be integrated into the voting system, thereby

increasing the scalability and adaptability of traffic prediction.

This paper is organized as follows. Section 2 will discuss

the literature review that is related to the research. The

proposed systems will be discussed in Section 3, followed by

the simulation result and discussion in Section 4. Finally,

Section 5 will provide the conclusion of this research.

2. LITERATURE REVIEW

A machine learning model can be used to solve the traffic

condition classification approach by supplying basic input to

the system. Many researchers have generally been using

machine learning to classify traffic conditions [15] or other

traffic-related situations [26, 27] based on historical events.

Classification models that are frequently used include NN,

kNN, Bayesian Networks, Logistic Regression, Decision

Trees, and Random Forests. This chapter covers the literature

review of the machine learning model that was employed in

the course of the research.

2.1 Neural Networks (NN)

The multilayer perceptron (MLP) is an NN algorithm that

includes an input layer, one or more hidden layers, and an

output layer [28]. The neurons in these layers produce outputs

by applying an activation function to the weighted sum of the

inputs. To identify complex patterns and non-linear

relationships in the data, the hidden layers are essential.

Eq. (1) is used to compute the input to the hidden layer Z in

the single hidden layer MLP. Input feature categories are

represented by the value of X, whereas weight matrices

between the input and hidden layers indicate the relevance of

each feature W1. In the following layer, the inputs are

multiplied by a set of weights assigned to each neuron. Biases

b, on the other hand, are the values that cause the input to be

shifted to the activation function.

𝑍1 = 𝑊1𝑋 + 𝑏1 (1)

Next, as Eq. (2) illustrates, Z1 is the input used to activate

the hidden layer (H). Additionally, as shown by Eq. (3), the H

will serve as the input for the following hidden layer, Z2. With

activation functions (σ), the weighted sum of inputs (such as

ReLU, sigmoid, and tanh) is transformed nonlinearly. A NN

would essentially be a linear model without an activation

function. Consequently, its capacity to resolve complex

problems involving highly non-linear data relationships is

limited.

𝐻 = 𝜎(𝑊1𝑋 + 𝑏1) (2)

𝑍2 = 𝑊2𝐻 + 𝑏2 (3)

The network can learn increasingly complex representations

by adding one or more hidden layers. In order to capture non-

linear relationships, the hidden layers perform non-linear

adjustments to the input data. When there are several hidden

layers, the output of the l-th hidden layer can be broadly

expressed in Eq. (4).

𝑦 = 𝜎(𝑊𝑙𝐻𝑙−1 + 𝑏𝑙) (4)

NN models generally vary based on how the number of

layers is configured. Additionally, the use of hyperparameters

such as the activation function, solver, regularization term, and

learning rate represents the variances in configuration.

554

2.2 k-Nearest Neighbor (kNN)

kNN classifies data by combining the results of calculations

from data (recent occurrences) and determining the distance

from the centroid of a grouped class, which is different from

the method used in NN [29, 30]. This method categorizes the

output data according to how similar it is to the previously

computed training data output, taking into account the training

process that was conducted. The new data point (𝑥), which

needs to be classified, and each other data point in the training

set must first be separated by a certain amount of distance. The

literature review indicates that there are several ways to

determine this distance calculation method. The most utilized

distance metric is Euclidean distance [30], which is

represented mathematically in Eq. (5). The Euclidean distance

emphasizes the shortest path along a straight line, as illustrated

in Figure 1. As a result, it works best for continuous data with

the same scale and smooth change in data points.

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (5)

Figure 1. Distance measurement using Euclidean distance

The Manhattan distance [31] is defined as the distance

between two places along right-angled axes. As shown in

Figure 2, the distance between A and B is measured based on

the summation of the difference between two points on each

axis. It is commonly compared to the distance you would walk

in a city with a grid layout. It is the total of the absolute

differences between their locations. Therefore, the Manhattan

distance is useful when dealing with high-dimensional data or

when it is necessary to total the differences between

dimensions separately. The formula for Manhattan distance is

presented in Eq. (6).

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (6)

Figure 2. Distance measurement using Manhattan distance

The Manhattan and Euclidean distances are both

generalized to form the Minkowski distance [32]. It can be

seen in Figure 3 that the distance between information is

measured by using the combination of previous distance

measurement methods. It adds a parameter called p that allows

for fine-tuning and selects the metric to be utilized. The

formula for Minkowski distance is presented in Eq. (7).

𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 (7)

Figure 3. Distance measurement using Minkowski distance

The Chebyshev distance [33], often known as the maximum

distance, takes into account the greatest difference between

any two places’ coordinates. Figure 4 shows the illustration of

calculating the distance between information using

Chebyshev. It calculates the greatest absolute difference in

every dimension by using Eq. (8).

𝑑(𝑥, 𝑦) = max

𝑖
|𝑥𝑖 − 𝑦𝑖| (8)

Figure 4. Distance measurement using Chebyshev distance

The particular dataset and classification problem must be

taken into consideration while selecting the distance metric.

The weights, algorithm, and leaf size are the hyperparameters

that affect its performance. Weights affect whether neighbors

are taken into account uniformly or based on proximity when

making predictions. Meanwhile, the algorithm influences the

speed and efficiency of the search process. Lastly, when

employing tree-based algorithms, the leaf size regulates the

trade-off between search speed and accuracy.

2.3 Logistic Regression

A statistical technique known as Logistic Regression uses a

categorical, typically binary, dependent variable [34]. It

simulates the likelihood that an input falls into a specific

category. To predict the likelihood of the positive class,

Logistic Regression combines the sigmoid function and the

555

linear regression equation. By using Eq. (9), the positive class

is defined in this method.

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒−(𝑊𝑇𝑋+𝑏)
 (9)

The parameters penalty, solver, and regularization strength

(C) in Logistic Regression to determine how the model

responds to overfitting, adjust weights, and strikes a

compromise between prediction accuracy and model

complexity. The penalty parameter (L1, L2, ElasticNet)

defines the type of regularization performed on the model.

The optimization algorithm that finds the best-fitting

weights and bias is determined by the solver parameter. In

terms of the value of parameter C, a simpler model with fewer

large coefficients will be produced by a smaller 𝑐, which may

help avoid overfitting. A greater c makes it possible for the

model to match the training data more closely, which runs the

risk of overfitting but may boost accuracy on the training set.

2.4 Bayesian Network

Bayesian Network is a directed acyclic graph (DAG)-based

probabilistic graphical model that represents variables and

their conditional dependencies. In a Bayesian Network, every

node represents a variable, and direct dependencies between

nodes are indicated by edges. It is helpful for inferring

outcomes, making decisions in complicated systems, and

reasoning under uncertainty since it applies Bayes’s Theorem

to calculate the likelihood of events.

In this literature research, there are five distribution models

used for classifying the traffic situation, namely, (1) Gaussian,

(2) Multinomial, (3) Bernoulli, (4) Complement, and (5)

Categorical Naive Bayes. Gaussian Naive Bayes assumes that

the continuous features follow a Gaussian distribution. The

Gaussian Naive Bayes assumes that the continuous features

follow a Gaussian distribution. It is easy to implement and

works well with small continuous datasets due to its

simplicity. However, if the features are not normally

distributed, the performance may degrade. The Gaussian

distribution likelihood is the value of the features (xi), mean

(μy), and variance (𝜎𝑦
2) given a class (y), modeled as shown in

Eq. (10).

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

exp (−
(𝑥𝑖 − 𝜇𝑦)2

2𝜎𝑦
2)

(10)

Multinomial Naive Bayes is commonly used when the

features represent counts discrete non-negative integers, such

as word frequency in text classification. Since it requires

discrete counts, it is unable to handle continuous variables

directly without the preprocessing stage. The Multinomial

distribution likelihood of the feature (xi) is the count of the i-

th feature and θy,i is the probability of observing feature xi, is

present in class y, modeled as shown in Eq. (11).

𝑃(𝑥𝑖|𝑦) =
𝜃𝑦,𝑖

𝑥𝑖

𝑥𝑖!
 (11)

The Bernoulli Naive Bayes assumes binary features have 0

or 1 for its value. It’s commonly used for text classification,

but it focuses on whether a word that appears in a document

rather than how often it appears. The Bernoulli distribution

likelihood of binary feature value 𝑥𝑖 is modeled, as shown in

Eq. (12).

𝑃(𝑥𝑖|𝑦) = 𝜃𝑦,𝑖
𝑥𝑖 (1 − 𝜃𝑦,𝑖)

(1−𝑥𝑖) (12)

Complement Naive Bayes is designed to handle imbalanced

data in each class. It computes the likelihood based on the

complement of the data for each class. It is slightly more

complicated to implement and computationally heavier than

standard Multinomial Naive Bayes. The probability of a

feature, given the complement of the class y, is modeled as

shown in Eq. (13).

𝑃(𝑥𝑖|�̅�) =
𝜃�̅�,𝑖

𝑥𝑖

𝑥𝑖!
 (13)

Categorical Naive Bayes assumes that features are

categorical, not in the numerical form. It is suited for datasets

where features are discrete categories. The likelihood of each

feature xi, with θy,i,v is the probability of feature xi, taking value

𝑣 in class 𝑦, is calculated by using Eq. (14).

𝑃(𝑥𝑖|𝑦 = 𝑣) = 𝜃𝑦,𝑖,𝑣 (14)

Each variant of Naive Bayes has its specific strengths based

on the type of data, making it versatile for different

classification tasks. The comparison of the 5-distribution

models is displayed in the following Table 1.

2.5 Decision Tree

The Decision Tree algorithm is a popular supervised

machine-learning technique that may be used for both

classification and regression tasks [35]. It functions by

progressively dividing a dataset into smaller and smaller

subsets and creating a Decision Tree to go along with it. A tree

with decision nodes and leaf nodes is in the product. Criterion

is a statistic used in Decision Trees to assess the quality of a

split at each node in the tree. This metric aids in choosing the

optimal feature and value to split the data on to produce

homogeneous groups. The objective is to optimize the split’s

effectiveness, which improves the model’s predictive

capacity. Previous research works have identified two

common criteria: Gini and Entropy.

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)2

𝐶

𝑖=1

 (15)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝐶

𝑖=1

 (16)

The Gini index, which is shown in Eq. (15), measures how

effectively a split divides the classes. The lower the Gini value,

the better the algorithm’s classification performance. Another

method that tries to measure the value of Entropy is by

quantifying the amount of information obtained by splitting

the dataset [35]. Eq. (16) is used to formulate the Entropy of

each feature in the dataset. The higher the entropy index, the

better the algorithm’s classification performance. pi is the

probability of a data point belonging to class i, and C is the

number of classes.

556

Table 1. Bayesian distribution model comparison

Distribution Data Type Use Case Advantages Disadvantages

Gaussian

(GNB)

Continuous

(numerical)

Classification with

continuous features

Works well with

continuous data, simple to

use

Asses normal

distribution

Multinomial

(MNB)

Discrete counts

(integers)

Text or document

classification

Effective for text data,

handles high dimensions

Requires discrete count

data

Bernoulli

(BNB)

Binary

(0 or 1)

Binary text, features

classification

Ideal for binary data,

simple to implement

Limited to binary

features

Complement

(CNB)

Discrete counts,

imbalanced

Text classification with

imbalance class

Works well with

imbalanced datasets

Assumes independence

of features

Categorical

(CatNB)
Categorical (discrete)

Data with finite discrete

categories

Naturally handles

categorical

Cannot handle

continuous data

2.6 Random Forest

Random Forest is categorized as an ensemble learning

algorithm that combines multiple Decision Trees to improve

the performance of a machine learning model. It operates by

building numerous Decision Trees during training and

combining their results (typically by averaging or majority

voting) to produce a final output. For classification, given

𝑁 training sample {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where xi is the real number

feature vector, and yi is the class label. A Random Forest builds

T Decision Trees, each Decision Tree Tj outputs a predicted

class �̂�𝑖
(𝑗)

 for a sample xi. The final predicted class �̂�𝑖 for

Random Forest is the mode (majority vote) of individual tree

predictions is measured by using Eq. (17).

�̂�𝑖 = mode (�̂�𝑖
(1)

, �̂�𝑖
(2)

, . . . , �̂�𝑖
(𝑇)

) (17)

Random Forest works by building multiple Decision Trees,

introducing randomness through bootstrapped sampling and

random feature selection, and then combining the predictions

from individual trees to make the final decision. Its

performance depends on tuning hyperparameters like the

number of trees, maximum depth, and feature selection.

The advancement of machine learning models resulted in

increasingly complicated approaches to traffic prediction.

Although these models increased prediction accuracy, they

were frequently constrained by their great sensitivity to

variations in traffic patterns and dependence on feature

engineering. The weather, time of day, season, special events,

and other factors all have an impact on the extremely variable

traffic conditions in Bandung. As a result, the majority of

traffic prediction models may not be completely adaptable to

be used in Bandung. This study will experiment with several

models and their configurations in competitive machine

learning.

3. PROPOSED METHOD

In order to implement the competitive learning system

concept, several machine learning methods are applied with

various configurations. It addresses finding the best model and

its configuration from each machine-learning method. This

research aims to classify the traffic conditions in Bandung

City, Indonesia, by using the proposed system, as shown in

Figure 5. As seen in the figure, there are at least six common

methods that could be used to classify road traffic. At the first

stage of the proposed system, each method will have several

models with different configurations. Each model will be

trained and built by using the training data. Then, there will be

a model selection based on the performance comparison. By

the time the best model in each method is defined, the system

will enter the final stage of competitive learning system by

gathering the classification results from all selected models

and finding the majority class that has been calculated by using

testing data.

Refers to the literature review that has been conducted in

the previous chapter, the most common classification methods

are NN [16], Decision Trees [17], kNN [18], Bayesian

Networks [19], Logistic Regression [20], Random Forest [21],

etc. The models that will be built are formed from these

methods with various configurations. The configurations

include the training approach, such as the number of hidden

layers in NN, distance metrics in kNN, criterion calculation in

the Decision Tree, etc.

As mentioned earlier, each model will be built based on

various configurations. The model is trained by using a dataset

that is divided into training and testing data. The training data

itself will be divided into two sections, namely, training data

and validation data. The competition of selecting the best

model for each method will be done by comparing the

performances of the model when tested using validation data.

In the latest stage of this system, the chosen models will

classify the testing data. Each result will be stored and counted

by the system. The final classification will be measured by

calculating the maximum number of voters in the categories.

3.1 Dataset

The dataset that used in this research covers 265 road

segments on the main road of Bandung City, Indonesia. The

dataset is spread into 265 files and already categorized for

specific road segments. In order to simplify the process, the

modification of the dataset is conducted by recompiling the

dataset into one dataset and adding the origin and destination

of the road information that appears in the original dataset. The

observation area of the dataset is shown in Figure 6.

According to Nasution et al. [24], the dataset was collected

in 2020. The features of the dataset are days (D), rush hour

(RH), weather information (We), temperature (T), humidity

(H), and traffic situation or density (TD). Additional features

that were added to the latest dataset are the origination point

(Ori) and the destination point (Dest). The modification that

has been done in this study is elaborating the 265 road

segments dataset into one. Table 2 shows the sample dataset

that will be used to classify the traffic situation in Bandung.

557

Figure 5. Proposed system

Figure 6. The observation area

Table 2. Sample dataset

Ori Dest D RH We T H TD

43 55 0.83 0 0.75 0.73 0.23 1

52 51 0.5 0 0.50 0.79 0.04 0

58 12 0.33 0 0.50 0.76 0.55 2

45 64 0 1 0.62 0.76 0.55 0

33 32 0.33 0 0.50 0.76 0.55 2

The pre-processing stage is conducted on the modified

dataset in order to reduce the classification error at the training,

validation, and testing. Whenever the data finishes the pre-

processing stage, the dataset must be shuffled to balance the

population of the class for training, validation, and testing

data. The dataset consists of 575,578 road information that will

be split into 70% and 10% for training and validation,

respectively, and the rest will be used as testing data.

3.2 Machine learning model

3.2.1 Implementation of NN model

In this study, several configurations could be implemented

to the NN, as Gurcan et al. [36] did in 2021 by using one

hidden layer that consists of 100 neurons. The hidden layer

will be activated by using ReLU and optimized by using Adam

Optimizer. In the end, to get better classification results, the

training process is set to 200 times with 0.001 as the learning

rate.

Other researchers implement other configurations in NN

[36]. They used more than one hidden layer with various

numbers of neurons, as He and Chen [28] did in their model,

who used three hidden layers with 50 neurons in each layer.

Gu et al. [37] also used three hidden layers with a greater

number than He and Chen did, as in 200, 100, and 50 neurons

in the first, second, and third layers, respectively. As another

558

configuration, Yu and Zhu [38] use an unusual number of

neurons for the three hidden layers in the NN, with 128, 64,

and 32 neurons, respectively. These models were created by

using more than 300 iterations and have various learning rates,

from 0.001 to 0.01.

Anowar and Sadaoui [39] also developed an NN model that

is slightly similar to Gurcan et al. [36], but it is built with a

greater number of neurons by 50, and it has a 10 times larger

learning rate (0.01). Anowar and Sadaoui [39] use an adaptive

learning rate, so it’s able to adapt the learning rate as needed.

According to the literature review, the common activation

functions used are ReLU, tanh, and sigmoid. Because of its

simplicity and capacity to prevent vanishing gradients, the

ReLU activation function has become the standard option for

NN. Meanwhile, the common optimizers that are used in NN

are Adam (A) and (SGD). In terms of the solver, SGD is

slower but more generalizable than Adam, which converges

quickly. Then, the types of learning rate (LR) are categorized

as Constant(C), Adaptive (Ad), and InvScalling (I). The

configurations utilized in various research applying NN-based

system classification are shown in Table 3. Column ‘LR Init.’

in Table 3 shows the initialization of the learning rate, while

column ‘Iter.’ shows the number of iterations.

Table 3. NN model’s configuration

Study HL AF Solver LR LR Init. Iter.

[36] 100 ReLU A C 0.001 200

[28] 50, 50, 50 tanh SGD Ad 0.01 300

[37] 200, 100, 50 ReLU A I 0.005 500

[38] 128, 64, 32 ReLU A Ad 0.001 300

[39] 150 ReLU SGD Ad 0.01 200

3.2.2 Implementation of kNN model

As explained in the previous section, kNN works based on

the distance between the centroid of each category and the

classification result. The method tries to measure the number

of category member that has the nearest distance to the results.

The category that has the maximum number will be claimed

as the result’s category. It is common to use the nearest

neighbor for each category with odd numbers, such as 3, 5, 7,

9, etc. However, in the configuration that is compared, the

neighbors are set to 1, 5, 7, 10, and 15. Every kNN distance

metric has benefits of its own. Euclidean Distance is

appropriate for geometric or visual data, but Manhattan

Distance is best suited for grid data, such as cities or

transportation lines with block patterns. Minkowski Distance

is adaptable to various forms of multidimensional data since it

can be configured with parameters to test different distance

measurements. For grid-based applications, Chebyshev

Distance is particularly helpful in identifying notable shifts in

a single dimension among multi-dimensional data. The data

structure and analysis objectives determine which metric is

best, which might have an impact on the kNN model’s

accuracy and performance.

Table 4. kNN model’s configuration

Study N_Neighbors Weights Algorithm
Leaf

Size
Metric

[29] 5 Distance Ball_tree 40 Minkowski

[31] 10 Uniform Kd_tree 20 Manhattan

[34] 1 Distance Brute - Euclidean

[32] 7 Distance Auto 30 Euclidean

[40] 15 Distance Auto 30 Chebyshev

Table 4 shows the various kNN configurations that were

used in this research. As seen in the table, the distance metrics

used to classify the data are Minkowski, Manhattan,

Euclidean, and Chebyshev.

3.2.3 Implementation of Logistic Regression model

In this method, the configurations are diverse in their

penalty regularization, which is categorized as L1, L2, and

Elasticnet, as previously explained. L1 regularization (Lasso)

adequately selects features by adding an absolute penalty to

coefficients, driving some to zero and promoting sparsity. This

is effective when only a few variables are predicted to be more

significant, such as traffic situation or density. When several

predictors (weather, temperature, days, humidity, rush hour,

etc.) contribute, L2 regularization (Ridge) distributes the

penalty more evenly and applies a squared penalty, decreasing

coefficients towards zero but usually not to exactly zero.

Elastic Net is especially helpful for datasets with highly

correlated features, as it can improve stability and predictive

performance by choosing groups of correlated features

together. It does this by balancing sparsity and shrinkage by

combining L1 and L2 penalties. Each compared model has 100

to 500 iterations before the model is ready to be used as a

classification system. The common methods for solving the

regression are Limited-memory Broyden–Fletcher–Goldfarb–

Shanno (LBFGS), Coordinate Descent (Liblinear), and

Stochastic Average Gradient Augmented (SAGA). Table 5

shows the comparison between configurations for Logistic

Regression.

Table 5. Logistic Regression model’s configuration

Study Penalty Solver C Iterations

[41] L2 Lbfgs 1.0 100

[42] L1 Liblinear 0.5 100

[43] Elasticnet Saga 1.0 200

[44] L2 Lbfgs 1.0 100

[45] L2 Saga 0.1 500

3.2.4 Implementation of Bayesian Network model

The implementation of Bayesian Networks will follow its

variances as explained in the previous section, namely:

Gaussian (GNB) [46], Multinomial (MNB) [47], Bernoulli

(BNB) [48], Complement (CNB) [49], dan Categorical

(CatNB) [50]. Gaussian Naive Bayes is frequently used when

features have a normal distribution, as in real-valued attributes

like sensor data, and it performs well with continuous data.

Multinomial Naive Bayes is perfect for the classification of

texts (e.g., word frequency counts) because it works well with

count-based data. Bernoulli Naive Bayes is frequently

employed in document classification problems using binary

word presence characteristics because it is built for binary or

Boolean data. Complement Naive Bayes works well with

unbalanced classes and frequently increases text classification

accuracy. Categorical Naive Bayes is used for issues when

features are not numerical, such as demographics or nominal

survey replies, and performs best for categorical features with

numerous classes. Inferencing using Bayesian Networks with

various configurations means the system will conclude the

classification by using different formulas, as explained in the

literature.

3.2.5 Implementation of Decision Tree model

The Decision Tree is the most common method for

classification systems. Commonly, it also delivers great

559

performances when classifying some problems. In order to

build a Decision Tree, the importance (C) of each feature from

the dataset will be calculated either using the Gini Index or

Entropy [35] measurement. Gini Impurity, which ranges from

0 (pure) to 0.5 (maximally impure), determines the probability

of incorrectly classifying a randomly selected element based

on the node’s class distribution. In contrast, entropy measures

the uncertainty within a node and ranges from 0 (pure) to

log(n), where n represents the number of classes. In general,

the outcomes of both criteria are comparable: Entropy may be

marginally more sensitive to shifts in the class distribution,

while Gini is easier to compute and has a tendency to divide

more conservatively. Other important parameters required to

construct the tree are the maximum tree’s depth (DoT),

minimum samples split and the leaf (SpL), maximum feature

per leaf nodes (FLN), minimum value of impurity (ID), and

class weight (Wc).

As an additional parameter, the Decision Tree is allowed to

use the randomization technique (RS), to ensure the

classification result’s consistency. Table 6 shows the

configurations that used to be compared whenever the trained

model was built.

Table 6. Decision Tree model’s configuration

Study C DoT SpL FLN ID Wc RS

[35] Gini - 2,1 - 0.0 - 42
[51] Entropy 10 4,2 Sqrt, 20 0.01 Balanced -

[52] Gini 20 10,5 Log2, 50 0.0 - 42

[53] Entropy 15 5,3 0.5, - 0.005 - -
[54] Gini - 2,1 - 0.01 Balanced -

3.2.6 Implementation of Random Forest model

Theoretically, a Random Forest is generated from multiple

Decision Trees that elaborate their result to conclude the final

result. Indirectly, the parameters used in the Random Forest

are almost similar to the Decision Tree. The maximum depth

(DoT), maximum features (FLN), minimum sample leaf (SpL),

and random state (RS) are similar parameters to the Decision

Tree. In this method, the most important parameter is the

number of estimators (nE), which define the number of

Decision Trees that are used to generate the final result. The

configurations utilized in various research are shown in Table

7.

Table 7. Random Forest model’s configuration

Study nE DoT FLN SpL RS

[55] 500 10 sqrt 5 42

[56] 200 None None 2 42

[46] 300 None log2 None 42

[57] 1000 15 0.3 None 42

3.3 Competitive machine learning system

3.3.1 Performance measurement between methods

The implementation of each classification model that has

been discussed in the previous section will be done in this

stage. The performance of each model is measured in order to

conclude which model shows the best performance among

others. It is measured based on the validation data that is split

from the training data. Thus, the performance (accuracy or

another metric) will be compared to each other, and the model

with the best performance will be selected as the

representation of the method.

The implementation and testing are conducted in a

computer using M3Pro Processor with 18 GB DDR5 Memory.

The competitive machine learning system is built under

python3 and supported by the sckit-learn library. Figure 7

shows the illustration of the first stage of the proposed system

that proposed in this research. As seen in the picture above,

each classification model has been compared to each other.

Later, in the final stage of the system, the voting schemes are

implemented to decide the final classification.

The performance metric measured in this research covers

the accuracy, precision, recall, F1-Score, Matthew Correlation

Coefficient (MCC), training time (first stage), and testing time

(final stage). Eqs. (18)-(22) show the formulation to calculate

the accuracy, precision, recall, F1-Score, and MCC

respectively. These formulas need the values of true positive

(TP), true negative (TN), false positive (FP), and false

negative (FN).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (20)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (21)

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑁)
 (22)

Figure 7. Competitive machine learning system

3.3.2 Majority voting system

According to the result from the first stage of the

competitive machine learning system, the chosen models from

each method are prepared to classify the brand-new data test.

Every model must deliver the classification result and report it

to the voting system, which is the final stage of the competitive

machine learning system. In the implementation of the voting

system, there are two concepts to decide the final result from

the system, namely: (1) non-weighted and (2) weighted voting

system. Overall, the final stage of the system is illustrated in

Figure 8.

In the non-weighted system, each classification model (N)

has similar impacts in delivering the final classification result

(Y) based on the category of traffic condition (j) as stated in

the dataset. By the time the classification from each chosen

model (ci) equals to the specific category (vj), the system

records the vote by using Kronecker Delta function δ(ci, vj),

and it continuously adds whenever the results are similar to a

category. The number of voters is calculated by using Eq. (23),

where the value equals to 1 when ci=vj, otherwise it is zero.

560

𝑌(𝑣𝑗) = ∑ 𝛿(𝑐𝑖 , 𝑣𝑗)

𝑁

𝑖=1

 (23)

Figure 8. Voting scheme in competitive machine learning

system

On the other hand, each model has a different impact when

calculating the final result using a weighted voting system. In

this method, all models have their weight (wi), which is taken

from the accuracy of the validation. This situation delivers an

impact when concluding the result based on the voters in each

category. Eq. (24) is used to measure the weighted voters. The

result in this equation is not defined based on the number of

voters but by calculating the total weight from similar

classification results.

𝑌(𝑣𝑗) = ∑ 𝑤𝑖 × 𝛿(𝑐𝑖 , 𝑣𝑗)

𝑁

𝑖=1

 (24)

Whenever all data is already tested, the system decides its

conclusion (cfin) by finding the maximum number of voters

from each category using Eq. (25).

𝑐𝑓𝑖𝑛 = arg max

𝑗
𝑌(𝑣𝑗) (25)

Based on these measurements, this learning system is able

to decide the final classification result from various machine

learning methods.

4. RESULTS AND DISCUSSION

In this chapter, the implementation results of competitive

learning for all stages are discussed. At the beginning, there

was a discussion about the selection of the best model for each

method. Later, there was also a discussion about the final

decision of the classification using a voting system.

4.1 Machine learning performance

4.1.1 Performance of Neural Networks

In this section, the performance measurement for NN is

conducted. The models are implemented based on the

configuration that was previously explained. In general, NN

needs longer training time than other methods. It is proven

through the experiment that shown in Table 8, the training time

for NN models is 85.35 s to 866.714 s. The training time itself

is influenced by the configuration. Even though it needs a

longer time to build the model, it still delivers 61% - 66% for

accuracy, precision, recall, and F1-Score, respectively.

Table 8. Performance of NN models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 61.127 61.247 61.127 60.89 0.483 85.35

2 66.134 66.606 66.134 66.232 0.549 673

3 64.911 65.094 64.911 64.804 0.533 866.714

4 65.034 65.148 65.034 64.996 0.534 321.552

5 62.048 62.014 62.048 61.901 0.494 156.302

The average MCC value from the models is around 0.5

points, and it means the model is categorized as a good

condition method but not in a perfect condition since there is

still has a probability of yielding a misclassification. Figure 9

shows an illustration of the NN performance measurements.

The major shortcoming of this method is the training time that

it takes to build a model compared with other methods.

Figure 9. Performance measurements for NN

4.1.2 Performance of k-Nearest Neighbor

This method delivers slightly better performance results

than the NN in classifying using the traffic condition dataset.

It has a performance range of 64% to 70% for accuracy,

precision, recall, and F1-Score. Table 9 shows the detailed

testing result for the kNN with various configurations.

Based on the training time, this method only takes 1 to 18

seconds to build various kNN models. Figure 10 illustrates the

performance comparison of kNN that was developed using

various configurations. Meanwhile, the average value of MCC

is around 0.53 to 0.607 points. These values have similar

meanings to the previous method that was discussed since it

has a slightly better performance than the NN.

Figure 10. Performance measurements for kNN

561

Table 9. Performance of kNN models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 69.446 69.673 69.446 69.41 0.593 18.029

2 69.003 69.345 69.003 69.014 0.588 4.319

3 64.775 64.818 64.775 64.792 0.53 10.675

4 69.993 70.206 69.993 69.968 0.601 3.326

5 70.509 70.726 70.509 70.502 0.607 1.54

4.1.3 Performance of Logistic Regression

This method appears to exert significant effort in classifying

the test data. Unfortunately, the performance is under the

previous methods. It only reaches 44% for the accuracy and

recall, around 43%-44% for the precision’s value, and only

43% for its harmonic means. Table 10 provides detailed

experimental results for the model built using Logistic

Regression, while Figure 11 illustrates the primary

performance outcomes in graphical form.

Table 10. Performance of Logistic Regression models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 44.248 43.813 44.248 43.336 0.258 2.334

2 44.384 44.036 44.384 43.432 0.26 8.957

3 44.303 43.892 44.303 43.432 0.258 3.412

4 44.076 43.785 44.076 43.515 0.255 2.557

5 44.294 43.883 44.294 43.424 0.258 2.313

Figure 11. Performance measurements for Logistic

Regression

The main advantage of using this method is the time that is

needed to train the data and build the model takes less than 10

seconds. However, the faster processing time does not imply

greater performance since this method’s limitations are the

linearity assumptions, sensitivity to outliers, and poor

handling of complex or high-dimensional data, making it less

effective than advanced models for non-linear or large-scale

problems. The measurement of MCC only reached 0.25 points,

which categorizes this method as a low-performance method

since there were lots of mistakes in deciding the classification

results. Overall, this method is still feasible to use in the

system.

4.1.4 Performance of Bayesian Networks

The Bayesian Networks are able to build a model in less

than a second. It is even faster than generating the Logistic

Regression model. Commonly, this method can classify better

when the training data has a balanced distribution and less

variation, which became the main limitation of this method.

The value of MCC in Bayesian Networks is similar to the

previous method; it’s around 0.22 to 0.29 points. Table 11

shows the detailed training and validation results of various

Bayesian Network configurations. Figure 12 shows the

comparison of the accuracy, precision, recall, and F1-Score for

each configuration. As seen in the figure, the first model

dominated others, especially in the precision and F1-Score.

Table 11. Performance of Bayesian Networks models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 46.085 45.911 46.085 43.143 0.29 0.137

2 39.735 30.255 39.735 27.267 0.233 0.149

3 39.713 33.8 39.713 26.83 0.234 0.173

4 39.919 31.697 39.919 28.238 0.234 0.167

5 41.672 42.233 41.672 39.792 0.228 0.227

Figure 12. Performance measurements for Bayesian

Networks

4.1.5 Performance of Decision Tree

Decision Tree is famous for its performance, which often

appears beyond the average. In addition, the high performance

is also supported by short-time processing to build the tree.

The disadvantage of this method is that it tends to deliver

overfitting results. According to the model configurations in

this research, the performances do not show any overfitting

results. The accuracy, precision, recall, F1-Score, and MCC

are around 42%-72%, 37%-72%, 42%-72%, 36%-72% and

0.24-0.632, respectively.

Figure 13. Performance measurements for DT

As for the value of MCC, several configurations put the

model in bad condition since it has 0.24 points, but on the other

hand, there is a model that has 0.632 as its MCC value. It

shows that the highest performance of the model is categorized

562

as good. Table 12 and Figure 13 show the experimental result

and its illustration from the Decision Tree. According to the

results, it can be that the first model is the best model that will

represent the Decision Tree in the final stage of the

competitive machine learning system.

Table 12. Performance of Decision Tree models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 72.28 72.687 72.28 72.287 0.632 0.574

2 42.564 45.009 42.564 42.105 0.24 0.218

3 54.674 54.84 54.674 53.558 0.402 0.175

4 50.468 51.629 50.468 44.879 0.359 0.214

5 44.804 37.369 44.804 36.597 0.292 0.255

4.1.6 Performance of Random Forest

At a glance, this method delivers better results compared to

other methods when classifying the traffic condition. On

average, the accuracy, precision, recall, and F1-Score are

higher than 65% for each model configuration. Table 13 shows

the Random Forest performance for four different

configurations. The training time that Random Forest takes is

categorized as acceptable. Figure 14 shows the comparison of

the main parameters of Random Forest’s models.

The MCC values in the Random Forest spread from 0.538

to 0.636 points. This value is the best MCC’s value among

other methods. Unfortunately, this method takes slightly

longer to be built. The training time is around 35 to 145

seconds. This happened since Random Forest is the

modification of Decision Tree, so it needs to make several

trees first before it decides the configuration results.

Table 13. Performance of Random Forest models

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

1 65.255 65.447 65.255 65.067 0.538 56.549

2 72.601 72.997 72.601 72.595 0.636 35.023

3 72.527 72.856 72.527 72.507 0.635 54.944

4 71.008 71.177 71.008 70.981 0.614 145.444

Figure 14. Performance measurements for RF

4.2 Model’s configuration selection

Based on the model that was already built in the previous

chapter, the model that has the best performance (accuracy) is

used as a representation of the method. According to the

method’s accuracy that already acquired, the machine learning

methods that will be used in the voting system are (1) NN

model-2; (2) K-NN model-5; (3) Logistic Regression model-

2; (4) Bayesian Networks model-1; (5) Decision Tree model-

1; and (6) Random Forest model-2. Table 14 shows the

compiled model that represents the machine learning method.

Table 14. Performance of methods for competitive machine

learning system

Model
Acc.

(%)

Prec.

(%)

Rec.

(%)

F1-Score

(%)
MCC

TTrain

(s)

NN-2 66.2 66.6 66.2 66.3 0.55 673

KNN-5 70.5 70.7 70.5 70.5 0.607 1.54

LR-2 44.4 44 44.4 43.4 0.26 8.957

BN-1 46.1 45.9 46.1 43.1 0.29 0.137

DT-1 72.2 72.6 72.2 72.2 0.632 0.574

RF-2 72.6 73 72.6 72.6 0.636 35.023

4.3 Majority voting system performance results

In this section, the voting system is implemented, analyzed,

and discussed. As aforementioned, two voting systems tried to

decide the final classification result. In the experiment, the

testing data used is 1000, 2000, 5000, and 10000 data.

4.3.1 Non-weighted voting system

At first, the non-weighted voting system was implemented

to improve the classification system’s performance. As shown

in Table 15, the accuracy, precision, recall, and F1-Score are

68.6%-69.3%, 68.9%-69.6%, 68.6%-69.3%, and 68%-69.3%

respectively. These values enhance the performances of NN,

Logistic Regression, and Bayesian Networks. Even though its

performances are slightly lower than kNN, Decision Tree, and

Random Forest. Figure 15 shows the performance

comparisons of the non-weighted voting system on various

numbers of data tests.

The MCC value of the voting result is around 0.58-0.59

points. This value is two times better than the Logistic

Regression’s and Bayesian’s MCC. It’s concluded that the

non-weighted voting system is able to be used as a

classification method since it has good performance.

Figure 15. Classification results based on non-weighted

voting system

From the point of view of time processing, the voting

system needs 165.619 seconds to classify 1000 data. It means

a datum will be classified in 0.165619 seconds. The other

testing numbers take 0.16131 s, 0.1708618 s, and 0.173875 s

for 2000, 5000, and 10000 data tests. The average time

processing for the non-weighted voting system is 0.1679185 s.

563

Table 15. Performance of competitive machine learning

system using non-weighted voting

Testing
Acc

(%)

Prec

(%)

Rec

(%)

F1-Score

(%)
MCC

TTesting

(s)

1000 68.6 68.9 68.6 68.6 0.582 165.619

2000 68.9 69 68.8 68 0.585 322.636

5000 68.7 69 68.7 68.7 0.583 854.309

10000 69.3 69.6 69.3 69.3 0.591 1738.75

4.3.2 Weighted voting system

Based on each method’s performance, it seems unfair if

each method has a similar impact on the voting system. In this

section, the weighted voting system is implemented. The

weight used in this system is collected from the value of

accuracy in each method. Later, the weight will be

summarized when several methods vote for similar categories

for each test.

Table 16 shows the weighted voting system results from the

data test. As seen from the table, when the system tries to

classify 1000 data from the dataset, the accuracy, precision,

recall, and F1-Score reach more than 71.9%, with an MCC

value of 0.627 points. These results show that this method

delivers 3.1 and 0.04 points better for accuracy and MCC

compared to the non-weighted version. Overall, the

performance of this method is better than other methods that

have been discussed in the paper. Figure 16 shows the

performances based on the various number of data tests.

Table 16. Performance of competitive machine learning

system using weighted voting

Testing
Acc

(%)

Prec

(%)

Rec

(%)

F1-Score

(%)
MCC

TTesting

(s)

1000 71.9 72.5 71.9 71.9 0.627 166.27

2000 72.5 72.8 72.4 72.4 0.634 330.056

5000 72 72.5 72 72 0.628 831.303

10000 72.3 72.7 72.3 72.4 0.632 1629.126

Figure 16. Classification results based on weighted voting

system

The classification results came after 166.27, 330.056,

831.303, and 1629.126 seconds for 1000, 2000, 5000, and

10000 data tests. It means that in processing a datum, it takes

0.16627, 0.165028, 0.1662606, and 0.1629126 seconds. On

average, it takes 0.1651178 seconds to classify a traffic

situation.

Based on the implementation, testing, and discussion that

have been conducted, the competitive machine learning

system is able to classify the traffic situation in good condition.

It may be categorized as a non-perfect system since there are

still classification mistakes. The methods used in the voting

system have an accuracy of only around 60%-72%, and some

of them only reach around 40%. These voting methods are able

to define the class from data tests, even though there are

several methods categorized as low-performance methods.

Non-weighted voting systems can enhance the method’s

performance, but the weighted voting system can do it better.

In the final stage of a competitive machine learning system,

the weighted voting system is preferred to be used with this

proposed learning system over the non-weighted one.

The findings in the proposed system must be validated by

traffic regulators before it can be applied in the real world.

According to the performance testing, the system’s accuracy

is acceptable since it is neither categorized as overfitting nor

underfitting. For broader applications, this traffic

classification system could be adapted as a predictive tool

capable of forecasting traffic conditions several minutes in

advance. This feature could support traffic management

systems, suggest tourist itineraries based on departure time, or

benefit other traffic-related applications.

This research was conducted in Bandung City, Indonesia,

where the challenge lies in the relatively limited variety of

road types compared to larger cities with numerous alleyways.

Despite this, the proposed system can be effectively applied to

predict traffic congestion in cities with similar characteristics,

provided that an appropriate dataset is available for analysis.

5. CONCLUSION AND SUGGESTIONS

This research proposes a competitive machine learning

system that applies machine learning models to classify the

traffic situation. There are 29 model configurations that spread

into six machine learning methods, namely NN, kNN, Logistic

Regression, Bayesian Networks, Decision Tree, and Random

Forest. The best model from each method – with accuracy of

each model 66.2%, 70.5%, 44.4%, 46.1%, 72.2%, and 72.6%,

respectively – is taken to be used in the voting system stage,

which consists of two different schemes: non-weighted and

weighted system.

Based on the experimental result, the non-weighted system

delivers the classification result within 0.1679185 seconds

with an accuracy between 68.6% - 69.3%. Meanwhile, the

weighted system is able to deliver the result 0.0028007

seconds faster with an accuracy between 71.9% - 72.5%,

which is also better than the non-weighted system. Besides,

the value of MCC in the weighted system is higher by 0.04

points compared to its counterpart. Thus, based on their

performance results, the weighted voting system is preferred

to be used with this proposed learning system over the non-

weighted one.

For future research, implementing the competitive machine

learning system on distributed computing devices could

significantly reduce classification time by distributing the

computational load across multiple machines. Additionally,

testing the model in various cities with unique traffic patterns

would help assess its adaptability and reveal any necessary

adjustments for different environments. Another possible

research opportunity in this field is that integrating real-time

data from various sources, such as anonymized GPS or IoT

devices, or even from more complex data feed that came from

the satellites, could further enhance the system’s accuracy and

responsiveness, making it especially valuable for dynamic

traffic management. Scaling the model for application in larger

564

cities with complex road networks would also benefit from a

focus on optimizing processing speed, and computational

efficiency can be an interesting topic to be studied.

FUNDING

This paper was supported by The Ministry of Education,

Culture, Research, and Technology, Republic of Indonesia

(Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi;

Kemdikbudristek) via DRTPM 2024 (Decision Letter No.:

0459/E5/PG.02.00/2024), with main Contract No.:

106/E5/PG.02.00.PL/2024 and derivative Contract No.:

43/SP2H/RT-MONO/LL4/2024; 060/LIT07/PPM-LIT/2024.

REFERENCES

[1] Stodola, J., Stodola, P., Furch, J. (2022). Intelligent

transport systems. In Proceedings of 3rd International

Conference CNDGS’2022, pp. 41-49.

https://doi.org/10.47459/cndcgs.2022.5

[2] Grumert, E., Ma, X.L., Tapani, A. (2015). Analysis of a

cooperative variable speed limit system using

microscopic traffic simulation. Transportation Research

Part C: Emerging Technologies, 52: 173-186.

https://doi.org/10.1016/j.trc.2014.11.004

[3] Bose, A., Ioannou, P. (2003). Mixed manual/semi-

automated traffic: A macroscopic analysis.

Transportation Research Part C: Emerging

Technologies, 11(6): 439-462.

https://doi.org/10.1016/j.trc.2002.04.001

[4] Lu, M. (2019). Cooperative intelligent transport systems.

Institution of Engineering and Technology.

https://doi.org/10.1049/PBTR025E

[5] Dimitrakopoulos, G., Uden, L., Varlamis, I. (2020). The

Future of Intelligent Transport Systems. Elsevier.

https://doi.org/10.1016/C2018-0-02715-2

[6] Hina, M.D., Soukane, A., Ramdane-Cherif, A. (2022).

Computational intelligence in intelligent transportation

systems: An overview. In: Tomar, R., Hina, M.D.,

Zitouni, R., Ramdane-Cherif, A. (eds) Innovative Trends

in Computational Intelligence. EAI/Springer Innovations

in Communication and Computing. Springer, Cham, pp.

27-43. https://doi.org/10.1007/978-3-030-78284-9_2

[7] Sabirov, A.I., Katasev, A.S., Dagaeva, M.V. (2021). A

neural network model for traffic signs recognition in

intelligent transport systems. Computer Research and

Modeling, 13(2): 429-435.

https://doi.org/10.20537/2076-7633-2021-13-2-429-435

[8] Khalifa, A.B., Alouani, I., Mahjoub, M.A., Rivenq, A.

(2020). A novel multi-view pedestrian detection database

for collaborative intelligent transportation systems.

Future Generation Computer Systems, 113: 506-527.

https://doi.org/10.1016/j.future.2020.07.025

[9] Lilhore, U.K., Imoize, A.L., Li, C.T., Simaiya, S., Pani,

S.K., Goyal, N., Kumar, A., Lee, C.C. (2022). Design

and implementation of an ML and IoT based adaptive

traffic-management system for smart cities. Sensors,

22(8): 2908. https://doi.org/10.3390/s22082908

[10] Huang, K., Jiang, C., Li, P., Shan, A., Wan, J., Qin, W.H.

(2022). A systematic framework for urban smart

transportation towards traffic management and parking.

Electronic Research Archive, 30(11): 4191-4208.

https://doi.org/10.3934/era.2022212

[11] Gholamhosseinian, A., Seitz, J. (2021). Vehicle

classification in intelligent transport systems: An

overview, methods and software perspective. IEEE Open

Journal of Intelligent Transportation Systems, 2: 173-

194. https://doi.org/10.1109/OJITS.2021.3096756

[12] Sujatha, A., Suguna, R., Jothilakshmi, R., Rani, K.P.,

Mujawar, R.Y., Prabagaran, S. (2023). Traffic

congestion detection and alternative route provision

using machine learning and IoT-based surveillance.

Journal of Machine and Computing, 3(4): 475-485.

https://doi.org/10.53759/7669/jmc202303039

[13] Rauniyar, A., Berge, T., Kuijpers, A., Litzinger, P.,

Peeters, B., Gils, E.V., Kirchhoff, N., Hakegard, J.E.

(2023). NEMO: Real-time noise and exhaust emissions

monitoring for sustainable and intelligent transportation

systems. IEEE Sensor Journal, 23(20): 25497-25517.

https://doi.org/10.1109/JSEN.2023.3312861

[14] Poole, A., Kotsialos, A. (2016). Swarm intelligence

algorithms for macroscopic traffic flow model validation

with automatic assignment of fundamental diagrams.

Applied Soft Computing Journal, 38: 134-150.

https://doi.org/10.1016/j.asoc.2015.09.011

[15] Husni, E., Nasution, S.M., Kuspriyanto, Yusuf, R.

(2020). Predicting traffic conditions using knowledge-

growing Bayes classifier. IEEE Access, 8: 191510-

191518.

https://doi.org/10.1109/ACCESS.2020.3032230

[16] Marquina-Araujo, J.J., Cotrina-Teatino, M.A., Cruz-

Galvez, J.A., Noriega-Vidal, E.M., Vega-Gonzalez, J.A.

(2024). Application of Autoencoders Neural Network

and K-Means clustering for the definition of

geostatistical estimation domains. Mathematical

Modelling of Engineering Problems, 11(5): 1207-1218.

https://doi.org/10.18280/mmep.110509

[17] Sarkar, D., Bali, R., Sharma, T. (2018) Practical Machine

Learning with Python. Apress Berkeley, CA.

https://doi.org/10.1007/978-1-4842-3207-1

[18] Mante, J., Kolhe, K. (2024). Ensemble of tree classifiers

for improved DDoS attack detection in the Internet of

Things. Mathematical Modelling of Engineering

Problems, 11(9): 2355-2367.

https://doi.org/10.18280/mmep.110909

[19] Ng, A. (2018). Machine Learning Yearning: Technical

Strategy for AI Engineers, in the Era of Deep Learning.

https://www.dbooks.org/machine-learning-yearning-

1501/.

[20] James, G., Witten, D., Hastie, T., Tibshirani, R. (2017).

An Introduction to Statistical Learning with Aplication

in R. Springer New York, NY.

https://doi.org/10.1007/978-1-0716-1418-1

[21] Trevor, H., Robert, T., Jerome Friedman. (2001). The

element of statistical learning - data mining, interference

and prediction. Springer New York, NY.

https://doi.org/10.1007/978-0-387-84858-7

[22] Nasution, S.M., Husni, E., Yusuf, R., Kuspriyanto.

(2020). Semi-ensemble learning using neural network for

classifying traffic condition. In 2020 International

Conference on Information Technology Systems and

Innovation (ICITSI), Bandung, Indonesia, pp. 443-448.

https://doi.org/10.1109/ICITSI50517.2020.9264956

[23] Olugbade, S., Ojo, S., Imoize, A. L., Isabona, J., Alaba,

M.O. (2022) A review of artificial intelligence and

machine learning for incident detectors in road transport

565

systems. Mathematical and Computational Applications,

27(5): 77. https://doi.org/10.3390/mca27050077

[24] Nasution, S.M., Husni, E., Kuspriyanto, K., Yusuf, R.

(2023). Heterogeneous traffic condition dataset

collection for creating road capacity value. Big Data and

Cognitive Computing, 7(1): 40.

https://doi.org/10.3390/bdcc7010040

[25] Farda M., Balijepalli, C. (2018). Exploring the

effectiveness of demand management policy in reducing

traffic congestion and environmental pollution: Car-free

day and odd-even plate measures for Bandung city in

Indonesia. Case Study Transportation Policy, 6(4): 577-

590. http://doi.org/10.1016/J.CSTP.2018.07.008

[26] Gururaj, H.L., Janhavi, V., Tanuja, U., Flamini, F.,

Soundarya, B.C., Ravi, V. (2022). Predicting traffic

accidents and their injury severities using machine

learning techniques. International Journal of Transport

Development and Integration, 6(4): 363-377.

https://doi.org/10.2495/TDI-V6-N4-363-377

[27] Ibrahim, N.A., Subramaniam, A., Walker, P., Jabar, S.N.,

Rahman, S.A. (2023). Development and prediction of

Kuala Terengganu driving cycle via long short-term

memory recurrent neural network. International Journal

of Transport Development and Integration, 7(2): 105-

111. https://doi.org/10.18280/ijtdi.070205

[28] He, X., Chen, Y.S. (2021). Modifications of the multi-

layer perceptron for hyperspectral image classification.

Remote Sensing, 13(17): 3547.

https://doi.org/10.3390/rs13173547

[29] Mullick, S.S., Datta, S., Das, S. (2018) Adaptive

learning-based k-nearest neighbor classifiers with

resilience to class imbalance. IEEE Transactions on

Neural Networks and Learning Systems, 29(11): 5713-

5725. https://doi.org/10.1109/TNNLS.2018.2812279

[30] Nasution, I.S., Delima, D.P., Zaidiyah, Z., Fadhil, R.

(2022). A low cost electronic nose system for

classification of Gayo arabica coffee roasting levels

using stepwise linear discriminant and K-nearest

neighbor. Mathematical Modelling of Engineering

Problems, 9(5): 1271-1276.

https://doi.org/10.18280/mmep.090514

[31] Nurwanto, F., Ardiyanto, I., Wibirama, S. (2016). Light

sport exercise detection based on smartwatch and

smartphone using k-nearest neighbor and dynamic time

warping algorithm. In 2016 8th International Conference

on Information Technology and Electrical Engineering

(ICITEE), Yogyakarta, Indonesia, pp. 1-5

https://doi.org/10.1109/ICITEED.2016.7863299

[32] Gallego, A.J., Calvo-Zaragoza, J., Valero-Mas, J.J.,

Rico-Juan, J.R. (2018). Clustering-based k-nearest

neighbor classification for large-scale data with neural

codes representation. Pattern Recognition, 74: 531-543.

https://doi.org/10.1016/j.patcog.2017.09.038

[33] Iwasaki, M., Miyazaki, D. (2018). Optimization of

indexing based on k-nearest neighbor graph for

proximity search in high-dimensional data. arXiv

preprint arXiv:1810.07355.

https://doi.org/10.48550/arXiv.1810.07355

[34] Nababan, A.A., Sutarman, Zarlis, M., Nababan, E.B.

(2024). Multiclass logistic regression classification with

PCA for imbalanced medical datasets. Mathematical

Modelling of Engineering Problems, 11(9): 2377-2387.

https://doi.org/10.18280/mmep.110911

[35] Priyanka, Kumar, D. (2020). Decision tree classifier: A

detailed survey. International Journal of Information and

Decision Sciences, 12(3): 246-269.

https://doi.org/10.1504/ijids.2020.108141

[36] Gurcan, O.F., Beyca, O.F., Dogan, O. (2021). A

comprehensive study of machine learning methods on

diabetic retinopathy classification. International Journal

of Computational Intelligence Systems, 14(1): 1132-

1141. https://doi.org/10.2991/IJCIS.D.210316.001

[37] Gu, B., Liu, G.D., Zhang, Y.F., Geng, X., Huang, H.

(2021). Optimizing large-scale hyperparameters via

automated learning algorithm. arXiv preprint

arXiv:2102.09026.

https://doi.org/10.48550/arXiv.2102.09026

[38] Yu, T., Zhu, H. (2020). Hyper-parameter optimization: A

review of algorithms and applications. arXiv preprint

arXiv:2003.05689.

https://doi.org/10.48550/arXiv.2003.05689

[39] Anowar, F., Sadaoui, S. (2021). Incremental learning

framework for real-world fraud detection environment.

Computational Intelligent, 37(1): 635-656.

https://doi.org/10.1111/coin.12434

[40] Liu, W., Chawla, S. (2011). Class confidence weighted

KNN algorithms for imbalanced data sets. In Advances

in Knowledge Discovery and Data Mining: 15th Pacific-

Asia Conference, PAKDD 2011, Proceedings, Part II 15,

Shenzhen, China, pp. 345-356.

https://doi.org/10.1007/978-3-642-20847-8_29

[41] Behunkou, U.I., Kovalyov, M.Y. (2023). Loan

classification using logistic regression. Informatics,

20(1): 55-74. https://doi.org/10.37661/1816-0301-2023-

20-1-55-74

[42] Kayabol, K. (2020). Approximate sparse multinomial

logistic regression for classification. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 42(2):

490-493. https://doi.org/10.1109/TPAMI.2019.2904062

[43] Solimun, Fernandes, A.A.R. (2024). Ensemble bagging

Discriminant and logistic regression in classification

analysis. New Mathematics and Natural Computation, 1-

21. https://doi.org/10.1142/S1793005725500061

[44] Mutis, M., Beyaztas, U., Simsek, G.G., Shang, H.L.

(2023). A robust scalar-on-function logistic regression

for classification. Communications in Statistics - Theory

and Methods, 52(23): 8538-8554.

https://doi.org/10.1080/03610926.2022.2065018

[45] Kirasich, K., Smith, T., Sadler, B. (2018). Random forest

vs logistic regression: Binary classification for

heterogeneous datasets. SMU Data Science Review,

1(3): 9.

[46] Dani, Y., Ginting, M.A. (2024). Comparison of iris

dataset classification with Gaussian naïve Bayes and

decision tree algorithms. International Journal of

Electrical and Computer Engineering, 14(2): 1959-1968.

https://doi.org/10.11591/ijece.v14i2.pp1959-1968

[47] Chebil, W., Wedyan, M., Alazab, M., Alturki, R.,

Elshaweesh, O. (2023). Improving semantic information

retrieval using multinomial naive Bayes classifier and

Bayesian networks. Information, 14(5): 272.

https://doi.org/10.3390/info14050272

[48] Singh, G., Kumar, B., Gaur, L., Tyagi, A. (2019).

Comparison between multinomial and Bernoulli naïve

Bayes for text classification. In 2019 International

Conference on Automation, Computational and

Technology Management (ICACTM), London, UK, pp.

566

593-596.

https://doi.org/10.1109/ICACTM.2019.8776800

[49] Subarkah, P., Damayanti, W.R., Permana, R.A. (2022).

Comparison of correlated algorithm accuracy naive

bayes classifier and naive bayes classifier for

classification of heart failure. ILKOM Jurnal Ilmiah,

14(2): 120-125.

https://doi.org/10.33096/ilkom.v14i2.1148.120-125

[50] Abbas, A., Jaiswal, M., Agarwal, S., Jha, P., Siddiqui,

T.J. (2024). Performance based comparative analysis of

naïve Bayes variants for text classification. In Data

Science and Communication. Springer Nature,

Singapore, pp. 295-310. https://doi.org/10.1007/978-

981-99-5435-3_20

[51] Chaabane, I., Guermazi, R., Hammami, M. (2020).

Enhancing techniques for learning decision trees from

imbalanced data. Advances in Data Analysis and

Classification, 14: 677-745.

https://doi.org/10.1007/s11634-019-00354-x

[52] Abdulqader, H.A., Abdulazeez, A.M. (2024). A review

on decision tree algorithm in healthcare applications. The

Indonesian Journal of Computer Science, 13(3): 3863-

3881. https://doi.org/10.33022/ijcs.v13i3.4026

[53] Gepp, A., Kumar, K. (2015). Predicting financial

distress: A comparison of survival analysis and decision

tree techniques. Procedia Computer Science, 54: 396-

404. https://doi.org/10.1016/j.procs.2015.06.046

[54] Jena, M., Dehuri, S. (2020). Decision tree for

classification and regression: A state-of-the art review.

Informatica, 44: 405-420.

https://doi.org/10.31449/INF.V44I4.3023

[55] Biau, G., Scornet, E. (2016). A random forest guided

tour. Test, 25: 197-227. https://doi.org/10.1007/s11749-

016-0481-7

[56] Schonlau, M., Zou, R.Y. (2020). The random forest

algorithm for statistical learning. The Stata Journal,

20(1): 3-29. https://doi.org/10.1177/1536867X20909688

[57] Speiser, J.L., Miller, M.E., Tooze, J., Ip, E. (2019). A

comparison of random forest variable selection methods

for classification prediction modeling. Expert Systems

with Applications, 134: 93-101.

https://doi.org/10.1016/j.eswa.2019.05.028

567

