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In modern surveillance systems intended for surveilled areas, Unmanned Aerial Vehicles 

(UAVs) equipped with computer vision capabilities fulfill an essential role in tracking 

objects within dynamic and high-risk monitored regions. This paper presents a novel 

approach SP-TSA to estimate the areas where objects are likely to be present by analyzing 

their trajectories, which are estimated through UAV-based computer vision. Each 

trajectory is represented by a series of points in 3D space, with each point acting as the 

center of a sphere. The spatial uncertainty of the object’s position is captured by the 

sphere’s radius, providing a comprehensive probabilistic model of potential object 

locations. To model the area where an object could be present, the intersections of these 

spheres are analyzed, and the regions where the spheres overlap are used to form a 

continuous tubular surface along the trajectory. We introduce a Non-Linear Objective 

Function to optimize the estimation of these areas and minimize uncertainties in object 

location. This innovative approach ensures computational efficiency and adaptability to 

complex trajectories, making it suitable for real-time applications. The method offers a 

precise and robust way to predict the object’s presence within a given space, providing 

valuable insights for decision-making in dynamic surveillance environments. Simulation 

results validate the SP-TSA method, demonstrating its superior accuracy in estimating 

object presence compared to traditional methods, particularly in scenarios involving non-

linear and erratic object trajectories. 
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1. INTRODUCTION

The rapid advancement and proliferation of Unmanned 

Aerial Vehicles (UAVs) have dramatically transformed 

various sectors, including surveillance, navigation, disaster 

management, and logistics. UAVs offer unparalleled agility, 

adaptability, and remote operational capabilities, making them 

essential tools in modern autonomous systems. However, 

these advancements bring significant challenges, particularly 

in ensuring real-time security and optimizing object trajectory 

estimation in high-risk environments. Traditional methods of 

object detection and tracking often struggle with issues such 

as occlusion, cluttered backgrounds, and the high speeds 

involved in aerial operations. Recent studies have proposed 

various innovative methodologies to address these challenges, 

leveraging techniques ranging from deep learning to advanced 

filtering algorithms. One notable approach is the use of pixel 

labeling and particle filter algorithms to enhance vehicle 

detection and tracking in UAV imagery. The method proposed 

by Yusuf et al. [1] segments the image using geo-referencing 

and image segmentation to retrieve foreground objects, 

followed by vehicle detection via template matching and 

tracking through a particle filter. The system outperforms 

traditional methods in terms of detection and tracking 

accuracy, demonstrating its potential for applications such as 

traffic management and security surveillance. This approach 

aligns with our research by emphasizing the importance of 

efficient object detection and tracking, which is integral to 

accurately estimating the presence of objects in a surveillance 

area, especially in dynamic environments. In the context of 

UAV trajectory planning, Muzammul et al. [2] introduced the 

Instructed Reinforcement Q-Learning Algorithm (IR-QLA) to 

optimize UAV flight paths in unknown environments. By 

integrating received signal strength (RSS) as a reward metric, 

the IR-QLA method accelerates the learning process, ensuring 

faster and more precise trajectory optimization. This is 

particularly relevant to our approach, where non-linear 

optimization techniques are employed to estimate object 

trajectories in a dynamic surveillance environment. The 

application of reinforcement learning methods could further 
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enhance the adaptability of UAVs, allowing them to respond 

in real-time to unexpected changes in object positions, a key 

component of our proposed optimization system. For tracking 

fast-moving objects in environments such as alpine skiing, a 

deep learning and correlation filter-based approach was 

proposed in the study [3]. This method overcomes challenges 

such as jitter, blur, and occlusion by combining neural network 

tracking with correlation filters to improve detection and 

tracking accuracy. Our research similarly addresses the 

difficulty of tracking objects across different altitudes and 

distances, where rapid movement and occlusions are common. 

The multi-sensor fusion approach discussed in the study [3] 

offers a valuable reference for enhancing the robustness of our 

trajectory estimation, particularly in scenarios where visual 

information may be intermittently available due to 

environmental factors. In swarm-based UAV operations, 

conflict detection and resolution (CDR) are crucial for 

maintaining safe and efficient flight paths. The distributed 

CDR algorithm proposed in the study [4] utilizes a consensus 

approach and strategy coordination to resolve conflicts in 

UAV formations. This methodology, which ensures that 

UAVs in a swarm can communicate and adjust their 

trajectories in real-time to avoid collisions, shares similarities 

with our non-linear optimization approach. Both methods rely 

on real-time decision-making processes, with the key 

difference being the focus on object area estimation in our 

research, which can be further improved by adopting strategies 

for dynamic conflict resolution. Finally, the challenge of 

tracking multiple objects in drone aerial videos, especially in 

complex environments, has been addressed by Yuan et al. [5] 

through the development of the Box-MeMBer and MB-OSNet 

frameworks. These frameworks enable robust multi-object 

tracking by leveraging a hierarchical connection structure in 

the OSNet network to capture rich semantic information. Our 

research similarly deals with the complexities of tracking 

multiple objects in a surveillance area, where object 

interactions and environmental dynamics need to be 

considered for accurate trajectory estimation. In air-ground 

collaborative systems, the integration of UAVs and Unmanned 

Ground Vehicles (UGVs) is crucial for enhancing efficiency 

in multi-target detection and path planning. The study [6] 

presents a Mixed Integer Linear Programming (MILP)-based 

model that optimizes task assignment and path planning in 

such systems, incorporating kinematic constraints, dynamic 

collision avoidance, and energy consumption considerations. 

This approach aligns with our research objectives, especially 

in optimizing UAV operations for surveillance tasks, as it 

demonstrates how to efficiently allocate resources and reduce 

energy consumption while ensuring safe and effective mission 

execution. By integrating these advancements into our 

proposed approach, we aim to push the boundaries of UAV-

based surveillance systems, focusing on optimizing energy 

consumption and accuracy in estimating object presence in 

dynamic environments. The methods described above, 

particularly those related to object detection, tracking, 

trajectory optimization, and collaborative systems, provide a 

solid foundation for further enhancing the capabilities of 

UAVs in industrial and security surveillance. Another area 

gaining traction is the detection and tracking of UAVs using 

radio-frequency (RF) and WiFi-based technologies. While 

RF-based solutions currently dominate the field, recent 

reviews have highlighted the untapped potential of WiFi-based 

systems, calling for further research into these technologies to 

develop more efficient UAV surveillance methods [7]. UAV 

technology is also evolving in terms of collaborative multi-

UAV operations. The GPR-MADDPG model, for example, 

combines machine learning techniques to optimize the 

coverage of moving convoys, significantly enhancing the 

coordination and effectiveness of multiple UAVs in tracking 

operations [8]. Moreover, advanced multi-target tracking 

algorithms, such as SLM-IPDA, offer solutions for navigating 

cluttered environments and tracking UAVs without prior 

knowledge of their positions improving the overall accuracy 

and reliability of UAV tracking systems [9]. The SP-TSA 

framework is positioned within this advanced operational 

context using spherical projections and tubular 

approximations to create a precise nonlinear model for 

accurate area estimation around tracked objects. The 

integration of emerging technologies like 6G networks and 

edge computing further enhances UAV capabilities 

particularly in terms of knowledge fusion and energy 

efficiency. Federated Learning (FL) frameworks like DECKS 

enable decentralized communication among UAVs allowing 

them to collaboratively train models while reducing energy 

consumption making them highly suitable for urban 

autonomous operations [10]. Advances in UAV surveillance 

have demonstrated the effectiveness of lightweight hardware 

and optimized algorithms for real-time monitoring and energy 

efficiency, such as the Raspberry Pi 4B with Intel VPU for 

industrial surveillance [11]. Similarly, combining YOLOv4 

object detection with ArUco Markers has achieved high 

accuracy in agricultural area measurement [12]. 

Complementing these technological advances, the application 

of deep learning-based object detection algorithms to low-

altitude UAV datasets has shown promise in improving 

detection accuracy in aerial surveillance. However, the unique 

challenges posed by low-altitude datasets, such as small object 

sizes and high object density, underscore the need for 

continued research to enhance the performance of detectors 

like Faster R-CNN, YOLO, and RetinaNet in this context [13]. 

This paper advances current UAV-based surveillance by 

introducing a new method of nonlinear optimization in the SP-

TSA model, which improves trajectory estimation and spatial 

object prediction in complex surveilled areas. Through this 

approach, we provide robust surveillance capabilities tailored 

for unpredictable and adversarial environments, with 

implications for real-time UAV surveillance and safety-

critical applications. 

The remainder of this paper is organized as follows: Section 

2 provides a comprehensive review of the related work, 

exploring existing methodologies in object detection and area 

estimation within UAV surveillance systems. Section 3 

introduces the theoretical framework of Object Area 

Estimation, detailing the proposed approach for accurately 

defining the regions where objects are likely to be present, 

based on their trajectories in the surveillance area. Finally, 

Section 4 presents the simulation and experimental setups, 

highlighting the scenarios used to validate the proposed 

method, emphasizing the effectiveness of our approach in 

estimating object positions and optimizing UAV performance 

for real-time surveillance. 

 

 

2. RELATED WORK 
 

Unmanned Aerial Vehicles (UAVs) have garnered 

significant attention in recent years for their applications in 

surveillance, object detection, and area estimation. Numerous 
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methods have been proposed to enhance the accuracy and 

efficiency of UAVs in these tasks, particularly in the 

surveillance of dynamic environments. Ma et al. [14] present 

a novel correlation filter algorithm for real-time UAV 

tracking, termed SOCF, which addresses challenges like 

background disturbances and lack of attention to the tracked 

object. The algorithm integrates a spatial disturbance 

suppression strategy using historical response maps to detect 

and suppress background interference. However, the 

scalability and computational efficiency of their method 

become limited when dealing with multiple objects, a 

challenge addressed by later works. Building on this, Boulares 

and Barnawi [15] introduced a deep learning framework for 

object detection in urban environments, employing a 

convolutional neural network (CNN) to process video data 

from UAVs. This allowed real-time classification and 

localization of objects. Despite its effectiveness in structured 

environments, the method struggled with occlusions and rapid 

changes in object trajectories. SP-TSA framework enhances 

these efforts by incorporating nonlinear optimization to predict 

object trajectories in cluttered and unstructured environments, 

addressing the issues of occlusions and trajectory variability. 

Further advancing the field, Pierpaoli and Rahmani [16] 

explored a probabilistic approach to object presence 

estimation, incorporating Bayesian networks to model 

uncertainties in object movements. While this method 

improved robustness in unpredictable environments, it was 

computationally intensive and unsuitable for real-time 

applications with limited UAV resources, such as battery life 

or processing power. Similarly, the study [17] tackled object 

detection and trajectory prediction using support vector 

machines (SVMs). Although this approach utilized hand-

crafted features and provided moderate accuracy, newer 

methods like deep learning have significantly improved 

detection accuracy, especially in unstructured environments. 

The contribution of the research [18] is a hybrid system 

combining deep learning with edge computing to reduce UAV 

energy consumption during object detection tasks. Their 

system dynamically switches between local and cloud-based 

processing based on the UAV’s altitude and energy levels, 

closely related to our approach of optimizing UAV energy 

during surveillance missions. While Mandal et al. [18] focused 

on energy efficiency during object detection, while SP-TSA 

framework complements these efforts by efficiently 

estimating the spatial presence of objects, ensuring that UAVs 

operate effectively in energy-constrained conditions. 

Meanwhile, Azid et al. [19] proposed a swarm-based UAV 

network for distributed computation, where multiple drones 

collaborate to cover larger areas. Although this increases 

coverage, it also adds complexity in terms of communication 

and synchronization, a challenge we aim to avoid by focusing 

on single UAV solutions. In the study [20], reinforcement 

learning was applied to optimize UAV path planning, 

improving coverage and reducing energy consumption. 

Trajectory prediction methods like those in the research [21], 

which utilize recurrent neural networks (RNNs), demonstrate 

strong sequential data-handling capabilities. However, these 

approaches are resource-intensive and unsuitable for real-time 

UAV applications. In contrast, SP-TSA method relies on 

computationally efficient spherical projections and tubular 

approximations, making it better suited for resource-

constrained UAV systems. Another approach, described in the 

study [22], introduced a geometric algorithm for estimating the 

area where an object is likely to be present based on the UAV’s 

camera view and the objects’ speeds. Although this geometric 

model provides a useful foundation, it does not account for 

multiple objects or non-linear trajectories, both of which our 

method addresses. The SP-TSA model overcomes these 

limitations by using a Non-Linear Objective Function to 

estimate the intersection of spherical projections along object 

trajectories, thus accommodating complex motion patterns 

and multiple targets. Banerjee and Corbetta [23] took a 

different approach by fusing data from both UAV cameras and 

ground sensors, improving object detection accuracy but 

introducing delays due to the need to synchronize multiple 

data sources. In the study [24], a particle filter was introduced 

for tracking objects, employing probabilistic modeling to 

estimate object positions. This method performed well in noisy 

environments but struggled with fast-moving objects. 

Traditional image processing methods like background 

subtraction and edge detection were explored in studies [25, 

26], but these lightweight methods lack the sophistication 

required for modern surveillance challenges such as complex 

object movements and trajectory intersections. The SP-TSA 

framework addresses these gaps by integrating advanced 

computer vision with a robust optimization process, enabling 

precise area estimation and trajectory tracking in dynamic 

environments. Our proposed approach integrates Non-Linear 

Objective Functions to define areas of object presence, 

improving upon these previous methods by using a dynamic 

system that adapts to object trajectories and efficiently 

estimates positions in real-time. By leveraging the intersection 

of spheres around each trajectory point, our method addresses 

the limitations of earlier models and enhances object presence 

estimation in complex surveillance scenarios. 

 

 

3. OBJECT AREA ESTIMATION 
 

The SP-TSA (Spherical Projections and Tubular Surface 

Approximation) methodology is designed to estimate the area 

of object presence in UAV surveillance systems, leveraging 

computer vision and advanced mathematical modeling. This 

section provides a detailed explanation of the key components 

of the proposed framework. 

 

 
 

Figure 1. UAV surveillance of multiple object trajectories in 

the monitored area 
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In the “object area estimation” problem, we aim to estimate 

the potential areas where moving objects are located within a 

surveilled zone, as detected by a UAV. The UAV captures 

real-time frames data of the environment, including multiple 

dynamic objects whose positions and movements are 

continuously tracked. Figure 1 depicts the scenario where the 

drone follows its own trajectory TD, while observing distinct 

objects with their respective trajectories T1, T2, T3. The 

objective of this work is to estimate the area around each 

object’s trajectory to define a spatial region where the objects 

may be present at any given time. 

 

3.1 Trajectory representation and sphere approximation 

 

To address this, we propose modeling each object’s 

trajectory as a series of points, with each point serving as the 

center of a sphere. These spheres, centered along the 

trajectory, collectively form the potential space where the 

object may be located. By applying a Non-Linear Objective 

Function (NLOF), we dynamically adjust the size of each 

sphere based on the object’s motion and proximity to other 

objects. We also account for the intersection areas between the 

spheres to refine the estimate, ensuring that overlapping 

regions are minimized in our overall estimation of object 

presence. This approach provides a robust and flexible 

framework for accurately determining object positions, even 

in complex and dynamic environments. 

We define the trajectory of an object in a surveilled area as 

a parametric curve in three-dimensional space. The trajectory 

Ti(t) is described by three spatial coordinates as functions of 

time t in Eq. (1). 

 

𝑇𝑖(𝑡) = (𝑋𝑖𝑔(𝑡), 𝑌𝑖𝑔(𝑡), 𝑍𝑖𝑔(𝑡)) (1) 

 

At each point Ti(t) on the trajectory, a sphere is centered 

with a radius Γ(t), which represents the uncertainty or possible 

region of the presence of the object in Figure 2. The equation 

of the sphere is defined by Eq. (2). 

 

(𝑋 − 𝑋𝑖𝑔(𝑡))
2

 +  (𝑌 − 𝑌𝑖𝑔(𝑡))
2

+ (𝑍 − 𝑍𝑖𝑔(𝑡))
2

= 𝛤𝑖(𝑡)
2 

(2) 

 

 
 

Figure 2. Spherical representation of object uncertainty 

along its trajectory 

 

The spherical approximation is utilized to model spatial 

uncertainty surrounding object trajectories, wherein each 

trajectory point serves as the center of a sphere delineating the 

probable region of object presence. This representation is 

particularly advantageous due to its isotropic nature, which 

facilitates simplified mathematical operations for intersections 

and projections, while ensuring computational efficiency. 

Compared to alternative geometrical constructs, such as 

ellipsoids or bounding boxes that necessitate directional 

variance estimation and entail higher computational demands, 

spheres offer uniformity across all dimensions. This property 

renders them particularly well-suited for this application 

where prior information regarding object dynamics is sparse, 

providing a robust and computationally efficient framework 

for spatial uncertainty modeling. 

To account for the uncertainty or probability of the object’s 

presence within a certain radius, we define a Non-Linear 

Objective Function ℑ(Ti(t), Γi (t)) in Eq. (3) that increases non-

linearly with the radius. 

 

ℑ(𝑇𝑖(𝑡), 𝛤𝑖(𝑡))  =  𝛼 ·  ℑ(𝑇𝑖(𝑡)
𝑛  (3) 

 

The core of the SP-TSA methodology involves a Non-

Linear Objective Function that estimates the intersection area 

of spheres along object trajectories. The objective function 

minimizes the overlap of spheres, defining a Tubular Region 

around each trajectory. 

When the object moves along the trajectory, the spheres 

centered at successive points Ti(t) and Ti+1(t+δt) might 

overlap. The distance ε between the centers of two spheres at 

times t and t+δt is given by Eq. (4). 

 

𝜖 =  ||𝑇𝑖(𝑡) −  𝑇𝑖+1(𝑡 + 𝛿𝑡)|| 

𝜖 =  

√
  
  
  
  
  
 
(𝑋(𝑖+1)𝑔(𝑡 +  𝛿𝑡) − 𝑋𝑖𝑔(𝑡))

2

 + 

(𝑌(𝑖+1)𝑔(𝑡 +  𝛿𝑡) −  𝑌𝑖𝑔(𝑡))
2

 + 

(𝑍(𝑖+1)𝑔(𝑡 +  𝛿𝑡) −  𝑍𝑖𝑔(𝑡))
2

 
(4) 

 

If ϵ ≤ Γi(t)+Γi+1(t+δt), the spheres overlap. The area of 

intersection between two spheres can be approximated by Eq. 

(5). 

 

𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ≈
𝜋(𝛤𝑖(𝑡) + 𝛤𝑖+1(𝑡 +  𝛿𝑡) −  𝜖)2

𝜖
 (5) 

 

To compute the region where the object could potentially be 

located, we need to subtract the intersection areas from the 

total volume of all spheres. 

The total area of presence (i.e., the complement of the 

intersection) can be expressed as shown in Eq. (6). 

 

𝐴𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒  =  𝑉𝑡𝑜𝑡𝑎𝑙𝑠𝑝ℎ𝑒𝑟𝑒𝑠  

−  ∑ 𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑡, 𝑡 + 𝛿𝑡)

𝑁−1

𝑖=1

 
(6) 

 

where, the volume of a single sphere at any trajectory point is 

defined by Eq. (7). 

 

𝑉𝑠𝑝ℎ𝑒𝑟𝑒(𝑡) =
4

3
𝜋𝛤𝑖(𝑡)

3 (7) 

 

We now formulate an optimization problem to minimize the 

uncertainty regarding the object’s location. The objective is to 

reduce the sum of uncertainties across all points on the 

trajectory while ensuring the object stays within the allowed 

radius at each point in Eq. (8). 
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min
𝑇𝑖(𝑡)

∑ℑ(𝑇𝑖(𝑡), 𝛤𝑖(𝑡) =  min
𝑇𝑖(𝑡)

𝛼 ·  𝛤𝑖(𝑡)
𝑛

𝑁

𝑖=1

 (8) 

 

The parameters  and 𝑛 in the Non-Linear Objective 

Function are crucial for shaping how the radius Γi(t) influences 

the optimization process, ultimately impacting the precision of 

object presence estimation. The parameter  acts as a scaling 

factor, controlling the overall impact of changes in the radius 

on the objective function’s value. A larger  implies that even 

small variations in Γi(t) will significantly affect the system’s 

performance, highlighting the need for careful tuning through 

empirical data and simulations to determine its optimal value. 

On the other hand, the parameter n dictates the degree of non-

linearity in the relationship between Γi(t) and the function. As 

n increases, the function’s growth concerning the radius 

becomes more pronounced, which is ideal for scenarios where 

higher precision is required, penalizing larger radii that 

indicate greater uncertainty. A balanced choice of  and n, 

guided by practical guidelines and real-world data analysis, 

ensures that the function accurately reflects the dynamics of 

the object’s position while optimizing computational 

efficiency for different surveillance scenarios. 

The subject to the constraint is given by Eq. (9). 

 

(𝑋 − 𝑋𝑖𝑔(𝑡))
2

+ (𝑌 − 𝑌𝑖𝑔(𝑡))
2

+ (𝑍 −  𝑍𝑖𝑔(𝑡))
2

 ≤  𝛤𝑖(𝑡)
2 

(9) 

 

which ensures that the object stays within the sphere at time t. 

This optimization process helps to define the most likely 

regions of object presence while taking into account 

uncertainty and spatial constraints. 

For two consecutive points Ti(t)=(Xig(t), Yig(t), Zig(t)) and 

Ti+1(t+δt)=(X(i+1)g(t+δt), Y(i+1)g(t+δt), Z(i+1)g(t+δt)) on the 

trajectory, we can define their proximity using the Euclidean 

distance between the points. The condition for the points being 

“close” is based on this distance ϵ in Eq. (4). We define a 

threshold ϵthreshold, such that the points are considered close in 

Eq. (10) verified. 

 

𝜖 ≤  𝜖𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   (10) 

 

Given two spheres centered at Ti(t) and Ti+1(t+δt) with Γi(t) 

and Γi+1(t+δt), the condition for sphere overlap is that the 

distance between their centers ϵ d is less than or equal to the 

sum of their radis in Eq. (11). 

 

𝜖 ≤  𝛤𝑖(𝑡)  + 𝛤𝑖+1(𝑡 +  𝛿𝑡)  (11) 

 

If the condition for sphere overlap is satisfied, the spheres 

intersect, creating a shared region that signifies the possible 

area of object presence. The extent of this intersection is 

crucial as it directly correlates with the degree of overlap 

between the spheres. In cases where the overlap is significant, 

the spheres merge to form a continuous tubular surface along 

the object’s trajectory. This tubular structure is particularly 

advantageous, as it enables a more precise determination of the 

object’s spatial extent, enhancing the accuracy of the area 

estimation. 

 

3.2 Tubular surface approximation  

 

Once the sphere approximation has been established, we 

move into a more refined representation: The Tubular Surface 

Approximation. As the points on each object’s trajectory are 

often densely packed or close to one another, the series of 

spheres can be approximated as a continuous tube that 

envelopes the object’s trajectory. This approximation provides 

a smoother and more efficient way to calculate the object’s 

possible location by reducing computational complexity, 

especially in environments where objects move along 

predictable paths. 

For closely spaced points, the intersection of spheres will 

generate a cylindrical or tubular surface. To approximate this, 

we can treat the overlapping spheres as generating a tube along 

the trajectory. The radius of the tube will be approximately the 

average of the radii of the two spheres in Eq. (12). 

 

𝛤𝑡𝑢𝑏𝑒 ≈
𝛤𝑖(𝑡)  + 𝛤𝑖+1(𝑡 +  𝛿𝑡)

2
 (12) 

 

Thus, Eq. (13) can approximate the equation of the tube’s 

surface in a local frame around the trajectory. 

 

(𝑋 − 𝑋𝑖𝑔(𝑡))
2

 +  (𝑌 −  𝑌𝑖𝑔(𝑡))
2

 

+  (𝑍 −  𝑍𝑖𝑔(𝑡))
2

 =  𝛤𝑡𝑢𝑏𝑒
2  

(13) 

 

where, Ti(t) is the parametric trajectory function. 

To express the surface of the tube in parametric form, we 

use a cylindrical coordinate system around the trajectory. Let 

ψ be the angle around the axis of the tube (the trajectory), and 

let τ be the distance along the trajectory in Eq. (14). 

 

𝛤𝑡𝑢𝑏𝑒(𝜏, 𝜓) = 𝑇(𝜏) + 𝛤𝑡𝑢𝑏𝑒(𝑐𝑜𝑠(𝜓)𝜂(𝜏)
+ 𝑠𝑖𝑛(𝜓)𝜈(𝜏)) 

(14) 

 

The surface area of the tube can be computed by integrating 

over the length of the trajectory and around the circumference 

in Eq. (15). 

 

𝐴𝑡𝑢𝑏𝑒  =  ∫ ∫ 𝛤𝑡𝑢𝑏𝑒𝑑𝜓𝑑𝜏 =  2𝜋𝛤𝑡𝑢𝑏𝑒𝐿

2𝜋

0

𝐿

0

 (15) 

 

The tubular surfaces are formed by connecting the 

intersected spherical regions along the trajectory, 

approximating the 3D space around the object’s motion path. 

This tubular model provides a continuous representation of 

object presence, which is critical for tracking dynamic objects. 

Tubular surfaces provide a robust and adaptive framework for 

representing non-linear trajectories, demonstrating distinct 

advantages over conventional constructs such as convex hulls 

or bounding boxes. By intuitively modeling regions of interest, 

they maintain computational efficiency. Moreover, the tubular 

approximation effectively captures the spatial dynamics of 

objects exhibiting irregular or curved paths, thereby 

preserving high accuracy and reliability in trajectory 

estimation within complex and dynamic environments. 

Since the trajectory is represented by discrete points 

corresponding to the object’s coordinates at each time t, we 

substitute L with a summation that accounts for these discrete 

points along the trajectory, as defined by Eq. (16). This 

approach ensures that the calculation accurately captures the 

object’s movement by considering its position at each specific 

moment in time. 

This formula sums the distances between all consecutive 
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points along the trajectory, providing the total length. The 

shorter the distances between the points, the more accurate this 

piecewise approximation becomes in reflecting the actual 

trajectory length. 

 

𝐿 =  ∑

 

√
  
  
  
  
  
 
(𝑋(𝑖+1)𝑔(𝑡 +  𝛿𝑡) − 𝑋𝑖𝑔(𝑡))

2

 + 

(𝑌(𝑖+1)𝑔(𝑡 +  𝛿𝑡) −  𝑌𝑖𝑔(𝑡))
2

 + 

(𝑍(𝑖+1)𝑔(𝑡 +  𝛿𝑡) −  𝑍𝑖𝑔(𝑡))
2

𝑛−1

𝑖=1

 (16) 

 

 

4. SIMULATION RESULTS  

 

We study the performance of the proposed method via 

computer simulations using different trajectory patterns and 

object positions. This simulation is designed to replicate real-

world UAV surveillance conditions, focusing on dynamic and 

complex trajectories. In this section, we demonstrate the 

effectiveness of the proposed method under many trajectories, 

to assess its capability for area estimation. Then, we 

investigate the impacts of several important factors on the 

proposed method’s accuracy, including the target position and 

the distance between points corresponding to the object 

position.  

In this phase of our study, parameters  and n for the Non-

Linear Objective Function were chosen to optimize the radii 

of spheres representing the object’s position along the 

trajectory. We set the scaling factor  = 0.5 based onan 

empirical analysis that balanced computational efficiency with 

sensitivity, where we aimed to moderate the influence of the 

sphere’s radius Γi(t) on the optimization function. This choice 

of  ensured that our model-maintained sensitivity to changes 

in the radius without causing disproportionate amplification of 

minor variations. The degree of non-linearity, denoted as n, 

was set n = 2. This quadratic relationship between Γi(t) and the 

objective function was selected to emphasize moderate 

penalization for larger radii, which aligns with the physical 

interpretation of growing uncertainty in the object’s position 

as the radius increases. To validate the model, the simulation 

parameters were carefully chosen to replicate diverse real-

world conditions. During the simulation, we computed the 

total trajectory length using a piecewise approximation, where 

the cumulative sum of distances between consecutive points 

was calculated to capture the object’s motion path. We 

observed that the precision of this approximation improved 

significantly when the distances between points were 

minimized, accurately reflecting the trajectory’s real-world 

characteristics. Next, we applied the tubular surface 

approximation to regions with closely positioned points, 

setting the tube’s radius to the average of overlapping spheres, 

thereby providing a continuous representation of the object’s 

motion. This tubular model highlighted areas of dense object 

movement. This approach emphasizes areas of dense object 

presence and frequent movements, critical for UAV 

surveillance applications requiring high spatial accuracy. 

Following the generated paths, targets move in their 

respective trajectories, as shown in Figure 3, where each 

trajectory is distinctly visualized to highlight its specific 

movement pattern. 

We demonstrate in Figure 4 the representation of individual 

points along these trajectories as separated spheres, which 

correspond to the object’s exact position at discrete moments 

in time. 

When considering close points on these trajectories, the 

overlapping regions of spheres become more pronounced, as 

illustrated in Figure 5, highlighting areas where objects are in 

proximity, which is crucial for identifying zones of interaction. 

As shown in Figure 6, the tube approximation for the 

trajectory of these close points provides a continuous 

representation of the object’s motion path. This tubular 

structure accentuates regions with dense object presence or 

frequent movement, emphasizing the most significant areas of 

surveillance. This method ensures accurate area estimation 

while minimizing computational overhead. 

 

 
 

Figure 3. Distinct object trajectories for area estimation 

analysis 

 

 
 

Figure 4. Regions of spheres for separated points on 

trajectories 

 

As the distance between trajectory points decreases, the 

tube approximation becomes more defined, illustrating the 

higher density of object movement in those zones. These 
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observations validate the SP-TSA method’s efficiency in 

accurately estimating object presence and optimizing UAV 

surveilled strategies in real-time surveillance. 

 

 
 

Figure 5. Regions of spheres for close points on trajectories 

 

 
 

Figure 6. Tube approximation depicting continuous object 

motion path for close points 

 

The results underscore the method’s potential to outperform 

traditional approaches, in terms of accuracy and computational 

efficiency, particularly in dynamic and unpredictable 

environments. The NTLLCM algorithm [15] effectively 

detects UAV cluster targets in infrared images, focusing on 

multiscale detection and computational efficiency but lacks 

trajectory estimation capabilities. The deep learning-based 

method [22] employs YOLO and SAP for UAV pursuit-

evasion, achieving real-time detection and control but relies on 

bounding boxes, limiting precision in modelling trajectory 

uncertainty. In contrast, SP-TSA provides more accurate 

trajectory estimation using spherical projections and tubular 

surface approximations, outperforming these methods in 

dynamic and complex UAV surveillance scenarios. 

 

 

5. CONCLUSIONS 

 

This paper introduced the SP-TSA method for estimating 

object presence in a surveillance area using UAVs by 

modeling the object’s trajectory as a parametric curve with 

spheres representing position uncertainty. The proposed 

method offers an innovative framework that combines non-

linear optimization and geometric modeling to address 

challenges in UAV-based surveillance. We optimized the 

detection of these regions through a Non-Linear Objective 

Function, minimizing uncertainty by analyzing sphere 

intersections. The integration of a tubular surface model 

provided a robust solution for continuous trajectory 

representation, particularly in dynamic and complex 

conditions, ensuring high localization accuracy. Simulation 

results confirmed the method’s adaptability, precision, and 

potential for enhancing UAV-based surveillance in dynamic 

environments. Key findings demonstrate that the SP-TSA 

method significantly outperforms traditional techniques in 

accurately estimating object positions, even under erratic 

trajectories, while maintaining computational efficiency. This 

validates its suitability for real-world applications, particularly 

in scenarios requiring rapid and precise area surveillance. The 

broader implications of this work extend to improving UAV 

operational efficiency and enabling integration with advanced 

computer vision techniques for real-time object tracking. 

These advancements could revolutionize UAV applications in 

security, disaster management, and resource monitoring. 

Future research directions include extending the SP-TSA 

framework to handle multi-agent systems and incorporating 

adaptive mechanisms to dynamically adjust parameters based 

on environmental conditions. Additionally, investigating the 

integration of this method with machine learning-based 

predictive models could further enhance its effectiveness in 

highly complex and unpredictable scenarios. 
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NOMENCLATURE 

 

Xig(t),Yig(t), and 

Zig(t) 

Respective coordinates and Spheres 

Centers at time t 

n Non-linearity Degree 

Vtotalspheres Volumes of all individual spheres 

Aintersection Area of intersection between neighboring 

spheres 

Apresence Area where object present 

Atube Tube area 

L Total length of the trajectory 

 

Greek symbols 

 

 

Γi(t) Radius at time t 

ℑ(Ti(t), t) Non-Linear Objective Function 

 Scaling factor 

ϵ Solid volume fraction 
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ϵthreshold The threshold at which points are 

considered close 

ψ Angle around the tube axis 

τ Distance along object trajectory 

η(τ) and ν(τ) Orthonormal vectors perpendicular to the 

trajectory at each point τ 

Γtube Tube radius 
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