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This study presents an analytical exploration of Time Series Forecasting (TSF), comparing 

econometric, machine learning, and deep learning models. Using a comprehensive dataset 

spanning from January 2008 to August 2023, including the COVID-19 pandemic period, 

monthly data from Singapore were analyzed. The study further decomposes the data into 

three testing periods, each reflecting Singapore's evolving travel conditions during the 

pandemic. The research evaluates the performance of each model under these diverse 

conditions, demonstrating significant improvements in forecasting accuracy through 

various data decompositions. Evaluation metrics, including the coefficient of determination 

(R²) and Root Mean Square Error (RMSE), quantify model performance and highlight 

promising results in specific decompositions. The study emphasizes the effectiveness of 

different TSF models in accurately forecasting time series data, with empirical results 

favouring the deep learning model. 

Keywords: 

machine learning, deep learning, 

forecasting, non-linear data, Singapore, 

tourism, Seasonal Autoregressive Integrated 

Moving Average (SARIMA), RF, LSTM 

1. INTRODUCTION

A time series (TS) consists of a sequence of data points or 

observations that are collected at regular, predetermined time 

intervals. These data points are typically organized in 

chronological order, with each data point corresponding to a 

specific moment in time. Time series data can cover a wide 

range of time intervals, from seconds to extended periods, 

depending on the context. Time series forecasting (TSF) is a 

methodology used to predict future outcomes based on 

historical data that has been chronologically arranged. This 

process is part of the broader field of time series analysis, 

which includes various techniques for extracting insights from 

time-ordered data. In TSF, the focus is on generating 

predictions or forecasts by identifying patterns and trends in 

historical data [1]. Making accurate and reliable forecasts 

remains one of the most challenging research topics in time 

series analysis and forecasting [2, 3]. Two popular categories 

of forecasting models are econometric models and artificial 

intelligence (AI) models [4]. 

Econometric models, which employ statistical and 

mathematical techniques to analyze data and relationships, 

have maintained their popularity since 2005. These models 

continue to serve as commonly used benchmarks for 

evaluating forecasting performance and comparing their 

predictive accuracy with emerging models. Econometric 

models primarily focus on the analysis of data, aiming to 

understand and quantify relationships using statistical and 

mathematical tools [5]. They are widely used in various 

disciplines, including tourism, to make informed predictions 

and draw conclusions based on empirical data and relevant 

theories. These forecasts help in resource allocation, setting 

priorities, and assessing potential risks. 

The incorporation of Artificial Intelligence is increasingly 

being utilized in predicting tourist arrivals due to the 

prevalence of big data and the complex nature of tourism-

related datasets [6]. Tourism plays a crucial role in driving 

economic growth. These forecasts provide critical insights for 

tourism professionals and researchers. 

The continuous advancements in AI, including machine 

learning (ML) and deep learning (DL) models, have 

showcased their ability to capture intricate patterns and 

nonlinear relationships within the data [4, 7]. This is 

particularly valuable for tourism forecasting, given the 

complexity of factors such as seasonality, economic trends, 

and shifting tourist preferences. AI models have brought about 

a significant transformation in the domain of forecasting 

tourist arrivals. By utilizing sophisticated algorithms and data 

analytics [6], these methods analyze historical data 

encompassing tourism patterns, weather conditions, economic 

indicators, and relevant variables. Subsequently, ML models 

excel at providing accurate predictions of future tourist 

arrivals [8]. What sets them apart is their adaptability and 

capacity to learn from new data, thereby continually enhancing 

their forecasting accuracy continually. Globally, ML is 

playing an indispensable role in optimizing the management 

and strategic planning of tourist destinations. With 

advancements over conventional AI models, DL has been 

widely used for prediction. DL has emerged as a powerful tool 

for predicting tourist arrivals within the framework of time 
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series analysis [9]. This advanced ML approach leverages 

neural networks with multiple layers to extract intricate 

temporal patterns and dependencies from historical data [10]. 

DL models can offer remarkably accurate forecasts of future 

tourist arrivals. What sets DL apart is its ability to 

automatically uncover latent features and adapt to complex, 

non-linear relationships within time series data. 

It's important to recognize that the emergence and growth 

of AI owe much to the foundation laid by econometric models. 

The rigorous statistical and mathematical framework 

established by econometrics provided valuable insights into 

modeling data and understanding relationships, which served 

as a basis for the development of more advanced AI techniques. 

As a result, AI has not replaced econometric models but rather 

complemented them, offering new opportunities to enhance 

forecasting accuracy and gain deeper insights from data, 

particulary in tourism, where predicting tourist arrivals can 

benefit from AI-driven approaches [11]. The precision of 

predictions can vary significantly between econometric and AI 

models, with both offering valuable approaches for forecasting. 

 

 

2. STATE OF THE ART 

 

Econometric models, rooted in established statistical and 

economic principles, are frequently chosen for domains with 

relatively stable relationships, providing robust and 

interpretable results. Notably, among these econometric 

models, ARIMA (Auto-Regressive Integrated Moving 

Average), conceived in the 1970 [12], has emerged as a 

particularly valuable tool for forecasting tourist arrivals [13, 

14]. On the other hand, AI models, particularly ML and DL, 

excel in capturing complex trends and nonlinear patterns, 

making them well-suited for dynamic and unpredictable data. 

Tovmasyan [15] employed the ARIMA model to forecast 

travel patterns in Armenia during the COVID-19 epidemic. 

Time series data from 2015 to 2020 were analyzed, and the 

results showed a significant drop in tourism from 1,894,377 in 

2019 to 375,216 in 2020. The average annual growth rate for 

2021–2023 is projected to be 12.81%, 13.42%, and 13.66%, 

respectively, indicating a positive trend in the recovery of 

tourism. Despite these optimistic forecasts, the research 

acknowledges several limitations. Notably, it does not include 

data from 2020 because of the sudden onset of the pandemic, 

which might distort the results if not appropriately adjusted for 

context. Although this research provides valuable insights into 

tourist forecasting, it also emphasizes the need for continuous 

data gathering and methodological improvement. 

Makoni et al. [16] utilized the SARIMA model to project 

international tourist arrivals in Zimbabwe, yielding precise 

predictions with favorable RMSE and MAPE values. 

Nonetheless, the research has several limitations. The 

forecasts do not account for potential disruptions caused by 

global events such as COVID-19, which could significantly 

affect tourism trends. Additionally, the model assumes data 

stationarity, which may not fully capture the dynamic nature 

of tourism influenced by changing market conditions and 

external factors. The SARIMA approach, while effective, may 

not capture all the complexities of contemporary forecasting 

techniques, which could enhance accuracy and adaptability. 

Qiu et al. [17] conducted a study on predicting tourist 

arrivals for 20 countries using various predictive models. They 

found that the SARIMA, ETS, and STL models were the most 

accurate among single models. While stacking models, which 

combine multiple methods, generally provide higher accuracy, 

the study found that combining five single models was optimal 

for their specific dataset. A key limitation of this research is 

that the optimal number of models for stacking may not be 

universally applicable, potentially affecting the 

generalizability of the results. Additionally, the study might 

not fully account for external factors which could impact the 

accuracy of predictions in real-world scenarios. 

In a comparative study by Bouhaddour et al. [13], the 

effectiveness of the SARIMA and PROPHET models in 

forecasting tourism in Singapore was evaluated using 

historical data on arrivals. The first model is known for its 

ability to capture both seasonal and non-seasonal trends, 

whereas the second model is designed to handle changes in 

trends and seasonality. The study employed performance 

metrics such as the mean absolute error and root mean squared 

error to assess the models' forecasting accuracy. The results 

indicated that the PROPHET model provided more accurate 

predictions than the SARIMA model. These findings are 

significant for enhancing tourism demand forecasting and 

assisting policymakers and industry stakeholders in making 

better-informed decisions. 

Wu et al. [18] introduced an innovative forecasting 

approach by merging Seasonal Autoregressive Integrated 

Moving Average (SARIMA) with Long Short-Term Memory 

(LSTM), resulting in a hybrid model that integrates both 

econometric principles and deep learning capabilities. This 

innovative method was created specifically to forecast daily 

visitor arrivals in Macau Special Administrative Region, 

China, quickly. Long-term patterns in time series data are 

efficiently captured by LSTM, an AI technique renowned for 

its nonlinearity. The hybrid model of SARIMA + LSTM 

outperformed other predictive algorithms by combining the 

predictive powers of SARIMA with the capacity of LSTM to 

reduce residuals. The tourist industry's best practices are 

advanced by this study, particularly with regard to making 

accurate daily arrival estimates. 

Bouhaddour et al. [19] present the PROPHET-BGP-FNN 

model as a superior approach for forecasting daily tourist 

arrivals in Hawaii, outperforming traditional models such as 

SARIMAX, PROPHET, and LSTM in terms of predictive 

accuracy. By combining PROPHET’s trend and seasonality 

detection with the BGP-FNN’s ability to capture complex 

nonlinear patterns, the model achieves lower MAE and mean 

MAPE values, demonstrating its effectiveness in handling the 

nuances of tourism data. However, the study is limited by its 

focus on Hawaiian data, which constrains the model's 

applicability to other regions and longer time series. Despite 

these constraints, the PROPHET-BGP-FNN model holds 

promise for enhancing decision-making in tourism and other 

sectors reliant on accurate forecasting. 

This study offers a novel and comprehensive approach to 

Time Series Forecasting (TSF) by integrating and comparing 

econometric, ML, and DL models using an extensive dataset 

from Singapore that spans from January 2008 to August 2023, 

including the COVID-19 pandemic period. Unlike many 

studies that exclude the COVID-19 period from their datasets 

to simplify predictions, this research retains this complex 

period in the analysis. By including the pandemic period, the 

study acknowledges its impact on tourism forecasting and 

aims to provide a more accurate and realistic evaluation of 

model performance. The study’s distinctiveness lies in its 

methodological rigor, particularly the decomposition of data 

into three distinct testing periods that reflect Singapore's 
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evolving travel conditions during the pandemic. This approach 

allows for a nuanced evaluation of model performance across 

varying conditions, which is crucial for capturing the effects 

of unprecedented disruptions like COVID-19. 

The research advances the field by demonstrating how 

different TSF models, including advanced DL models, can be 

evaluated under diverse conditions to enhance forecasting 

accuracy. By employing a robust set of evaluation metrics, 

such as the coefficient of determination (R²) and Root Mean 

Square Error (RMSE), the study provides new insights into the 

performance of these models across different phases of the 

pandemic. The empirical results reveal that DL models show 

particularly promising outcomes, suggesting that these models 

may offer superior forecasting accuracy in complex and 

dynamic environments. This contribution is significant as it 

highlights the effectiveness of integrating multiple TSF 

methodologies and adapting them to evolving conditions, 

while also emphasizing the importance of including all 

relevant periods in the dataset to avoid skewed predictions. 

This approach offers valuable guidance for improving tourism 

demand forecasts and aids decision-making for policymakers 

and industry stakeholders. 

The manuscript adheres to a well-structured organization. 

Section 3 offers an elaborate elucidation of the methodology. 

Section 4 describes the procedure, including data preparation, 

model implementation, and a detailed analysis of the empirical 

results. The concluding observations are presented in Section 

5. 

 

 

3. METHODOLOGY 

 

3.1 Data description 

 

The dataset comprises total monthly arrivals, sourced from 

both the Civil Aviation Authority of Singapore and the 

Singapore Tourism Analytics Network (STAN). It 

encompasses the monthly influx of inbound tourists to 

Singapore from January 2008 to August 2023 [20] as depicted 

in Figure 1. An examination of the annual inbound tourist 

arrivals during this period unveils discernible trends and 

patterns.  

 

 
 

Figure 1. Number of inbound tourists’ arrivals to Singapore and monthly grow rate in arrivals (2008-2024) 
Source: Civil Aviation Authority of Singapore and Singapore Tourism Analytics Network (Stan). 

 

Table 1. Summary statistics of the datasets 

 
Variable Year Std. Deviation Minimum Maximum 

Tourist arrivals 

2008 53,821.44 745,794 922,569 

2009 75,105.03 689,935 972,233 

2010 74,969.81 857,387 1, 127,581 

2011 83,701.71 990,118 1,273,870 

2012 84,208.00 1,051,348 1,360,536 

2013 96,500.97 1,176,142 1,483,520 

2014 97,047.54 1,098,626 1,408,400 

2015 122,674.57 1,131,976 1,519,233 

2016 133,575.98 1,144,063 1,622,405 

2017 96,676.52 1,320,050 1,632,147 

2018 99,917.57 1,406,985 1,732,899 

2019 108,465.61 1,463,547 1,802,594 

2020 506,232.28 750 1,688,102 

2021 22,034.71 10,029 92,796 

2022 321,804.43 57,174 931,441 

2023 167,727.46 931,679 1,419,634 
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Over the years, there has been a steady increase in the 

number of visitors arriving in Singapore, with a significant 

surge in tourist arrivals in 2018 and 2019. However, the year 

2020 saw a drastic decline in tourist numbers due to the global 

COVID-19 pandemic, which led to travel restrictions and a 

reduction in tourism activities worldwide. Nevertheless, a 

promising recovery was observed in 2023, signifying the 

gradual resurgence of tourism in Singapore. 

The datasets underwent exploratory data analysis (EDA) 

using Python programming. The objective of this analysis was 

to extract insights from the tourism data that go beyond formal 

modelling. Notably, a sharp decrease in tourist arrivals and a 

subsequent plunge in tourism demand were observed in 2020 

due to the impact of the coronavirus pandemic. This downturn 

resulted in significant job losses, severe economic challenges, 

and the closure of numerous businesses. 

From 2008 to 2019, the annual mean tourist arrivals 

consistently rose, reaching its peak in 2019 at approximately 

1.59 million visitors. This upward trend highlights Singapore's 

growing popularity as a tourist destination during this period. 

The year 2020 marked a significant deviation from this trend 

due to the unprecedented impact of the COVID-19 pandemic. 

The number of tourist arrivals plummeted dramatically to 

around 228,536, reflecting the severe disruption caused by the 

pandemic on global travel. However, subsequent years, 

especially 2023, show a rebound in tourist arrivals, indicating 

a hopeful recovery for Singapore's tourism industry. Table 1 

showcases the descriptive statistics for yearly inbound tourist 

arrivals in Singapore from 2008 to 2023. 

 

3.2 Seasonal Autoregressive Integrated Moving Average 

(SARIMA) 

 

The SARIMA model is a fundamental econometric model 

in time series analysis, particularly effective in understanding 

and forecasting data with seasonal patterns [21]. The 

architecture of SARIMA is defined by three main components: 

autoregressive (AR), differencing (I) order, and moving 

average (MA). Additionally, SARIMA incorporates seasonal 

autoregressive (SAR) and seasonal moving average (SMA) 

components to model the seasonal component of the data [7]. 

The SARIMA model components are [14, 22, 23]:  

• Autoregressive (AR) terms (p): The autoregressive 

component represents the relationship between an observation 

and several lagged observations (previous time points). The 

term "p" represents the order of autoregressive terms, 

indicating how many lagged observations are included in the 

model. 

• Differencing (I) order (d): The differencing order 

represents the number of differences needed to make the time 

series stationary. Stationarity is an important assumption in 

time series modeling. If the data is not stationary, differencing 

is applied to remove trend and seasonality. 

• Moving Average (MA) terms (q): The moving average 

component represents the relationship between an observation 

and the residual error from a moving average model applied to 

lagged observations. The term "q" represents the order of 

moving average terms, indicating how many lagged residuals 

are included in the model. 

• Seasonal Autoregressive (SAR) terms (P): Similar to 

the autoregressive terms, SAR terms represent the relationship 

between an observation and several lagged observations at the 

seasonal intervals. The term "P" represents the order of 

seasonal autoregressive terms. 

• Seasonal Moving Average (SMA) terms (Q): Similar to 

the moving average terms, SMA terms represent the 

relationship between an observation and the residual error 

from a moving average model applied to lagged observations 

at the seasonal intervals. The term "Q" represents the order of 

seasonal moving average terms. 

• Seasonal differencing (D): The seasonal differencing 

order represents the number of differences needed at the 

seasonal intervals to achieve stationarity. 

To effectively employ the SARIMA model, ensuring data 

stationarity is of paramount importance. Stationarity in a time 

series context refers to a state where crucial statistical 

properties such as mean and variance exhibit consistent 

stability throughout the entire observational period. Achieving 

stationarity often entails the judicious use of differencing, a 

process involving computing the differences between 

consecutive data points. This technique aids in removing 

trends and seasonal components, rendering the data stationary 

and thereby enabling a more accurate modeling process [24, 

25]. 

Strengths: SARIMA excels in capturing both seasonal and 

non-seasonal variations in time series data. Its ability to model 

periodic fluctuations and trends makes it highly effective for 

tourism forecasting, where seasonal peaks and troughs are 

significant. The model’s structured approach to dealing with 

seasonality ensures accurate predictions based on historical 

trends, which is essential for understanding and forecasting 

tourist arrivals [14, 16, 19]. 

Limitations: Despite its strengths, SARIMA has 

limitations, including the need for extensive parameter tuning 

and its assumption of linear relationships within the data. This 

can limit its effectiveness in scenarios where data exhibits non-

linear patterns or sudden changes. 

Suitability for Tourism Forecasting: SARIMA is 

particularly suitable for tourism forecasting because it can 

effectively model the regular seasonal patterns seen in tourist 

data. The model’s performance has been notably strong in this 

study, reflecting its capability to provide accurate forecasts 

even when the dataset includes the disruptive COVID-19 

period. 

 

3.3 Random Forest (RF) 

 

A Random Forest (RF) has grown in popularity due to its 

high reliability and practical application in various fields [26]. 

This model combines classification and regression trees with 

the bagging method to improve accuracy. As a machine 

learning model, RF is exceptionally well-suited for making 

predictions in the context of time series data, particularly for 

forecasting tourist arrivals. Random Forest excels in this 

domain by leveraging its ability to capture complex 

relationships and patterns within time series data. When 

applied to tourist arrivals, it can analyze historical arrival 

patterns, seasonal trends, and various other factors affecting 

tourism. 

Random Forest is an ensemble learning method that 

combines multiple decision trees to create a robust and 

accurate predictive model [26]. The architecture of a Random 

Forest model is defined by several key components and 

parameters [8, 26]:  

• Ensemble of Decision Trees: Random Forest is an 

ensemble model, combining multiple decision trees to form a 

robust predictive model.  

• Random Subset of Features: At each node of a decision 
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tree, a random subset of features is considered for making 

splits. This randomness adds to the model's diversity.  

• Bootstrap Sampling: Random Forest uses bootstrap 

sampling (with replacement) to create different subsets of the 

training data for training each decision tree.  

• Voting or Averaging for Predictions: For regression 

tasks, predictions from all trees are averaged to produce the 

final prediction. For classification, each tree votes for a class, 

and the majority class is chosen as the prediction. 

Strengths: RF is effective at modeling non-linear 

relationships and interactions between variables, which is 

crucial for understanding the multifaceted nature of tourism 

data. Its ensemble approach improves robustness and reduces 

overfitting, making it reliable for handling diverse data 

features and capturing intricate patterns in tourist arrivals [25-

27]. 

Limitations: RF’s complexity can lead to reduced 

interpretability of the model, as the ensemble of decision trees 

may obscure the influence of individual predictors. 

Additionally, RF can be computationally intensive, especially 

when working with large datasets. 

Suitability for Tourism Forecasting: RF is suitable for 

forecasting tourism data due to its ability to manage complex 

interactions and diverse features. Its performance was 

competitive in this study, demonstrating its capability to 

predict tourism trends effectively, although it was 

outperformed by SARIMA in certain aspects. 

 

3.4 Long Short-Term Memory (LSTM) 

 

LSTM is a cutting-edge deep learning model renowned for 

its proficiency in handling and understanding sequences of 

data [19, 28]. LSTM is a specialized type of recurrent neural 

network (RNN) designed to address the limitations of standard 

RNNs in modeling long-term dependencies within sequential 

data. Its unique architecture allows it to capture and retain 

crucial information over extended sequences, making it 

particularly effective in various applications involving time-

series and sequential data [29].  

The fundamental architecture of an LSTM unit consists of 

several key components, notably a cell state, an input gate, a 

forget gate, an output gate, and a set of activation functions 

[14]. The cell state serves as a conveyor belt, allowing 

information to flow through the unit with minimal alteration. 

The input gate regulates the amount of new information to be 

stored in the cell state, while the forget gate controls the extent 

to which existing information should be discarded. The output 

gate then filters the information to be output based on the 

current context [30].  

The advantage of LSTM lies in its capacity to retain long-

term memory, which is essential for analyzing sequences with 

gaps or delays [19, 31]. By controlling the flow of information 

through the cell state and gating mechanisms, LSTM 

effectively mitigates the vanishing or exploding gradient 

problems that hinder conventional RNNs. Its architecture, 

governed by the cell state and a system of gates, allows for the 

modeling of long-term dependencies by regulating the 

information flow within the unit. 

LSTM's adeptness in capturing and retaining crucial 

information over extended sequences has positioned it as a 

foundational element in advancing the field of deep learning 

and its applications in various technological domains [18].  

Strengths: LSTM networks excel in modeling temporal 

sequences with long-term dependencies, making them well-

suited for capturing complex and evolving trends in tourism 

data. Their ability to remember and utilize information over 

extended periods helps in forecasting scenarios were historical 

data spans significant gaps or disruptions [32]. 

Limitations: LSTM networks are computationally 

demanding and require careful tuning to avoid overfitting. 

Their complexity and the need for extensive training time can 

be a drawback, particularly when working with limited 

computational resources. 

Suitability for Tourism Forecasting: LSTM is highly 

suitable for forecasting tourism data, especially in contexts 

with significant temporal dependencies. The model’s 

advanced capabilities in handling long-term patterns were 

evident in this study, though SARIMA demonstrated superior 

performance in certain aspects, particularly in the context of 

seasonal forecasting. 

 

3.5 Models evaluation 

 

In this section, we present the metrics used to evaluate the 

forecasting accuracy of the econometric, machine learning 

(ML), and deep learning (DL) models. The two primary 

metrics used in this study are Root Mean Squared Error 

(RMSE) and the coefficient of determination (R²). 

 

Root Mean Squared Error (RMSE): 

 

The RMSE is used to evaluate how well a model's 

predictions align with the actual data. Lower RMSE values 

indicate a better fit, meaning the difference between predicted 

and actual values is smaller [24]. The formula for RMSE is:  

 

RMSE=√
1

𝑛
∑ (𝑦�̂� − 𝑦𝑖)2𝑛

𝑖=1  (1) 

 

where:  

• n is the number of data points (observations);  

• 𝑦�̂� is the predicted value for the i-th observation;  

• yi is the actual (observed) value for the i-th observation. 

 

Coefficient of Determination (R²): 

 

The coefficient of determination, or R², is a statistical metric 

that indicates the proportion of variance in the dependent 

variable explained by the independent variables in a regression 

model [33]. It serves as a measure of how well the model fits 

the data. The R² value ranges from -1 to 1, where: 

• R²=1 indicates a perfect fit, meaning the model explains 

all the variability in the dependent variable, 

• R²=0 indicates that the model explains none of the 

variability around the mean of the dependent variable, 

• R²<0 suggests the model is worse than a simple model 

based on the mean. 

The formula for calculating R2 is: 

 

R2=1−
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (2) 

 

where, 

• SSres is the sum of squares residual (the squared 

differences between observed and predicted values), 

• SStot is the total sum of squares (the squared differences 

between observed values and the mean of observed values). 
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4. RESULTS AND DISCUSSION 

 

4.1 Data repartition 

 

In order to construct and refine the model, the dataset was 

divided into two segments: a training set and a testing set. This 

data partitioning was based on the observed trend in tourist 

arrivals, characterized by fluctuations reflecting both upward 

and downward movements. These fluctuations were 

particularly pronounced during the challenging period of the 

COVID-19 pandemic (Table 2). 

 

4.2 Implementation of SARIMA 

 

The initial step involves identifying the SARIMA model 

with suitable values for p, d, q, P, D, and Q. In time series 

modeling, it is uncommon for a statistical model to perfectly 

capture the data-generating process; some information is 

inevitably lost. The objective, however, is to minimize this 

loss of information as much as possible. Akaike's Information 

Criterion (AIC) quantifies the amount of information lost by a 

given model. The AIC is mathematically represented by Eq. 

(3): 

 

AIC = −2 ∗ ln(likelihood) + 2 ∗ (p + P + q + Q
+ d + D) 

(3) 

 

The AIC penalizes models with more parameters by adding 

a term 2(p+P+q+Q+d+D), which encourages simpler models 

while ensuring a good fit to the data. The final step in the 

modelling process is to assess the residuals to confirm that the 

SARIMA model provides the best fit. 

Based on the data presented in Table 3, the SARIMA model 

(3, 2, 0) (1, 0, 1) has the lowest AIC value. Therefore, it is the 

optimal model, offering the best fit for forecasting tourism 

receipts in Singapore. 

The analysis of the residuals from the SARIMA model 

(Figure 2) provides valuable insights into the model's 

adequacy and the behavior of the residuals. It is evident from 

this analysis that the residuals show minimal temporal 

dependence, as indicated by the near-zero autocorrelation 

values across various lags. This suggests that the residuals are 

not exhibiting significant patterns of correlation over time, 

which is a positive indication that the model has captured the 

underlying dynamics of the data well. 

 

Table 2. Data partitioning by period and rationale 

 

 Period Why? 
Percentage 

(Train/Test) 

(a) 

January 

2008 – 

January 

2020 

In 23 January 2020, 

Singapore reported its 

first coronavirus case 

[34]. 

76% / 24% 

(b) 

January 

2008 – 

March 2020 

In 24 March 2020, 

Singapore implemented 

suspension of arrivals 

and travel restrictions on 

March 23, 2020 [34]. 

78% / 22% 

(c) 

January 

2008 – 

September 

2021 

In September 2021, 

Singapore had gradually 

eased travel restrictions 

and set up "air travel 

corridors" with certain 

low-risk countries [34]. 

87% / 13% 

 

Table 3. Akaike information criterion (AIC) for different 

SARIMA models 

 
SARIMA Model AIC 

(3, 2, 0) (1, 0, 1) 4,295.35 

(1, 0, 1) (1,1, 1) 4,296.87 

(0, 1, 0) (1, 0, 1) 4,296.99 

(2, 0, 0) (1, 0, 1) 4,297.67 

(2, 2, 0) (0, 0, 0) 4,342.41 

(3, 3, 0) (0, 0, 0) 4,344.53 

 

Additionally, the residuals fluctuate within a relatively 

narrow range, approximately between -150,000 and 150,000, 

which is noteworthy given that the original dataset's values 

range up to nearly 2,000,000. The limited variability in the 

residuals' magnitudes, relative to the data's scale, suggests that 

the model has effectively captured a significant portion of the 

variability in the observed data. 

These findings indicate that the SARIMA model has 

effectively accounted for temporal dependencies in the data, 

resulting in residuals that are largely uncorrelated and within 

a reasonable magnitude range compared to the original dataset. 

This reinforces the adequacy of the SARIMA model for the 

given time series data. 

 

 
 

Figure 2. Residuals from SARIM (3,2,0)(1,0,1) 
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Table 4. Evaluating SARIMA model performance with 

different data decompositions 

 
Data Decomposition RMSE R2 

Data decomposition 1 177,861.98 0.89 

Data decomposition 2 128,057.66 0.92 

Data decomposition 3 125,798.53 0.92 

 

Drawing on the findings presented in Table 4, it is clear that 

the adapted SARIMA model utilizing the second and third data 

compositions performed exceptionally well in predicting 

tourist arrivals, surpassing the performance of the first data 

composition. This outcome reaffirms the reliability of 

SARIMA as a robust model for time series forecasting. 

Specifically, the models trained on the second and third 

training sets achieved the highest R² = 0.92, demonstrating a 

close match between forecasted and actual values.  

These results highlight the importance of training models 

with ample and diverse data, particularly data that accounts for 

unexpected events like the COVID-19 pandemic, which 

enhances model accuracy. As emphasized in the previous 

study [35], researchers should focus on developing predictive 

models capable of handling unforeseen circumstances. In 

conclusion, the SARIMA model trained on the dataset that 

includes the COVID-19 pandemic period emerges as the most 

effective predictor, based on the results presented. 

 

4.3 Implementation of RF 

 

In this part, we present an implementation utilizing the 

Random Forest machine learning model for making 

predictions on a tourist time series dataset. The dataset was 

preprocessed, and the Min-Max Scaler was applied for 

normalization. The dataset was then divided into training and 

testing sets as showed in Figure 2. The dataset was then 

divided into training and testing sets, with appropriate data 

formatting for training using a specified look-back value. 

Subsequently, the Random Forest model was constructed and 

trained with 100 estimators. 

 

Table 5. Evaluating RF model performance with different 

data decompositions 

 
Data Decomposition RMSE R2 

Data decomposition 1 588,680.35 -0.27 

Data decomposition 2 597,280.84 -0.67 

Data decomposition 3 141,197.12 0.90 

 

Considering the results presented in Table 5, the first data 

decomposition, accounting for 76% of the dataset, exhibited a 

higher RMSE and a negative R2 of -0.27. This suggests that 

the model faced challenges in accurately predicting tourist 

arrivals during this phase. The negative R-squared value 

indicates that the model did not fit the data well in this 

decomposition, due to the abrupt changes and unpredictability 

brought about by the onset of the pandemic. In the second data 

decomposition, covering 78% of the dataset, the RMSE 

remained high, indicating notable prediction errors. The R2 

value further decreased to -0.67, signifying a weaker fit of the 

model to the data. This decline in predictive performance 

attributed to the lingering impact of the pandemic, with 

tourism still struggling to recover fully. However, in the third 

data decomposition, encompassing 87% of the dataset, the 

model showcased significantly improved performance. The 

RMSE notably decreased, indicating more accurate 

predictions compared to the earlier decompositions. The R2 

value of 0.90 revealed a strong fit of the model to the data. 

This indicates that the model captured the underlying patterns 

and trends effectively during a phase of recovery and 

stabilization in the tourism industry, possibly after the 

pandemic's peak impact. Overall, these results underscore the 

importance of considering the temporal dynamics of tourism 

data, especially during exceptional events like the COVID-19 

pandemic. The variations in predictive performance across 

different data decomposition phases highlight the necessity of 

adapting forecasting models to changing patterns and 

behaviors in the tourism sector. As tourism evolves over time, 

models need to be recalibrated and refined to accommodate 

these changes effectively, ensuring accurate predictions and 

informed decision-making for stakeholders in the tourism 

industry. 

 

4.4 Implementation of LSTM 

 

In the third part of our analysis, we utilized the LSTM (Long 

Short-Term Memory) model, a type of recurrent neural 

network known for its effectiveness in capturing long-term 

dependencies in sequential data [32]. The LSTM architecture 

consisted of a key LSTM layer with 4 units, followed by a 

Dense layer with a single unit. This LSTM layer played a 

crucial role in enabling the model to understand and recognize 

patterns over different time intervals [36]. The choice of using 

4 units was determined through empirical experimentation, 

and this parameter can be further adjusted based on the 

complexity and characteristics of the dataset. 

To prepare the data for the model, we applied a scaling 

technique known as Min-Max scaling. This method 

transformed the original data values (X) into a normalized 

range of [0, 1], using the minimum and maximum values of 

the variable. This step is fundamental for enhancing the 

model’s convergence. The formula for Min-Max Scaling is 

given by Eq. (4): 

 

Xscaled=  
X − Xmin

Xmax−Xmin
 (4) 

 

where, 

X: is the original value you want to scale; 

Xmin: is the minimum value of the variable;  

Xmax: is the maximum value of the variable;  

Xscaled: is the scaled value in the range [0, 1]. 

The dataset was carefully divided into separate training and 

testing sets, as shown in Table 2. These sets were then 

converted into sequential time series, where each data point 

was linked to its preceding value. This transformation was 

essential, as it allowed the model to capture temporal patterns 

inherent in the data. 

The LSTM model, with its custom architecture and 

carefully chosen parameters, was designed to effectively 

understand the intricate temporal dependencies within the data. 

The model was trained over 40 epochs with a batch size of 1. 

For optimization, we used the Mean Squared Error (MSE) loss 

function and the Adam optimizer. After training, the model 

was tested on both the training and testing datasets. Table 6 

presents a comparative overview of the LSTM model's 

performance, showcasing the RMSE (Root Mean Squared 

Error) and R2 values for each data decomposition. The results 

reveal varying levels of predictive accuracy based on the data 

decomposition, illustrating the model's ability to capture subtle 

patterns in tourist arrivals. 
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Table 6. Evaluating LSTM model performance with different 

data decompositions 

 
Data Decomposition RMSE R2 

Data decomposition 1 228,903.83 0.79 

Data decomposition 2 163,087.67 0.87 

Data decomposition 3 89,125.37 0.96 

 

From the results presented in Table 6, the LSTM model's 

performance during the pandemic years is especially notable. 

The third data decomposition demonstrated outstanding 

accuracy, with the lowest RMSE of 89,125.37 and a high R2 

value of 0.96. This indicates that the LSTM model was able to 

effectively capture the intricate patterns in the data, even 

during the tumultuous period marked by the pandemic. 

 

4.5 Discussion 

 

Figures 3-5 provide a comparative overview of the 

predicted trajectories for tourist arrivals generated by the 

SARIMA, RF, and LSTM models, in contrast with the actual 

value trajectory. The analysis of the SARIMA, RF, and LSTM 

models offers a nuanced understanding of how these 

forecasting approaches handle temporal patterns, seasonality, 

and disruptions such as the COVID-19 pandemic. Each model 

has its own strengths and weaknesses, and their performances 

provide valuable insights for the tourism industry in Singapore. 

 

 
 

Figure 3. Actual tourist arrivals and predictions of all models for the first data decomposition 

 

 
 

Figure 4. Actual tourist arrivals and predictions of all models for the second data decomposition 
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Figure 5. Actual tourist arrivals and predictions of all models for the third data decomposition 

 

Each trajectory corresponds to a specific data 

decomposition representing different phases of the dataset. 

The SARIMA model, representing the econometric approach, 

demonstrates notable accuracy across all data decompositions, 

effectively capturing the underlying patterns based on 

statistical analysis. SARIMA stands out for its ability to 

capture seasonal trends and temporal dependencies effectively. 

The model’s low RMSE and high R² values across different 

data decompositions indicate that it successfully models the 

inherent seasonality and regular patterns in tourist arrivals. 

The ACF and PACF analysis of the residuals supports this, 

showing that the residuals are largely uncorrelated, suggesting 

a good fit. However, SARIMA's performance during the 

pandemic highlights a limitation: while it can handle regular 

seasonal variations, it may struggle with abrupt, nonlinear 

changes. The model’s inability to fully account for the sudden 

shifts in tourist behavior due to the pandemic demonstrates its 

challenge in adapting to such extraordinary events. This 

suggests that while SARIMA is robust for general forecasting, 

it may require additional adjustments or complementary 

models to manage unpredictable disruptions effectively. 

The RF model, representing a machine learning approach, 

showcases varying levels of accuracy across different data 

decompositions. It struggles to predict accurately during the 

initial phases, particularly in the first data decomposition, due 

to the abrupt changes and uncertainties introduced by the 

pandemic. However, it showcases improved performance in 

the later phases, aligning with the stabilization of the tourism 

industry. The RF model's ability to capture complex nonlinear 

relationships makes it a valuable tool in understanding tourism 

trends. However, its performance varied significantly across 

different data decompositions. The high RMSE and negative 

R² values during the pandemic years indicate that RF struggled 

with the sudden and unpredictable changes in tourist patterns, 

likely due to insufficient adaptation to the new data dynamics 

introduced by the pandemic. In contrast, the improved 

performance in the post-pandemic period reflects RF’s 

strength in modeling complex patterns once the data stabilizes. 

This underscores RF’s capability to handle intricate data 

structures and interactions but also its sensitivity to the quality 

and continuity of data. 

Remarkably, the LSTM model, representing deep learning 

approaches, consistently performs well across all data 

decompositions, indicating its ability to comprehend and 

forecast tourist arrivals even during challenging times. 

Specifically, it excels in the third data decomposition, 

showcasing a high level of accuracy and effectively capturing 

the patterns during the recovery phase post-pandemic. The 

LSTM's capacity to model long-term dependencies and 

intricate patterns in the data makes it a powerful tool for time 

series forecasting, particularly in domains with evolving 

trends and uncertainties, such as the tourism industry. These 

findings underscore the resilience and adaptability of the 

LSTM model, alongside the complementary strengths of both 

econometric and machine learning approaches, in capturing 

and predicting tourist arrivals. This makes them promising 

tools for accurate and insightful forecasting in the volatile 

tourism sector. The LSTM excels across all data 

decompositions, demonstrating its robust performance even 

during the turbulent pandemic period. The low RMSE and 

high R² values, particularly in the post-pandemic recovery 

phase, illustrate LSTM's effectiveness in capturing long-term 

dependencies and adapting to evolving patterns. LSTM’s 

ability to model intricate temporal patterns and learn from 

sequential data makes it particularly suited for forecasting in 

volatile environments. This adaptability is crucial for 

managing the dynamic nature of tourism data, especially in the 

wake of unprecedented disruptions like the COVID-19 

pandemic. 

The implications for the tourism industry in Singapore, 

based on the performance of SARIMA, Random Forest (RF), 

and Long Short-Term Memory (LSTM) models, highlight the 

need for a nuanced approach to forecasting and planning. The 

SARIMA model proves effective in capturing seasonal trends 

and regular patterns in tourist arrivals, making it a valuable 

tool for understanding recurring seasonal variations. However, 

its performance during the pandemic illustrates its limitations 

in adapting to sudden, nonlinear disruptions. On the other hand, 

LSTM's ability to handle complex, dynamic changes makes it 

a superior choice for forecasting during volatile periods. Its 
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consistent accuracy across different phases, including the post-

pandemic recovery, underscores its effectiveness in managing 

evolving patterns and abrupt changes in tourist behavior. 

In practice, integrating the strengths of both SARIMA and 

LSTM can offer a more robust forecasting framework. While 

SARIMA’s seasonal modeling capabilities provide a solid 

foundation for understanding long-term trends, LSTM can 

address the immediate and unpredictable shifts in data patterns, 

enhancing the model's responsiveness to extraordinary events. 

This combined approach can support more informed decision-

making, enabling better resource allocation and strategic 

planning in the tourism sector. 

Adapting to future disruptions will require models that not 

only account for routine fluctuations but also offer resilience 

against sudden changes. The LSTM model’s demonstrated 

capacity to handle abrupt disruptions, such as those caused by 

the COVID-19 pandemic, highlights its value in preparing for 

and managing future uncertainties. By leveraging the 

complementary strengths of different forecasting approaches, 

the tourism industry can develop a more comprehensive and 

flexible strategy, ensuring better preparedness and adaptability 

in the face of both regular and exceptional challenges. 

Overall, the comparative analysis of SARIMA, RF, and 

LSTM models emphasizes the importance of a multifaceted 

forecasting approach. Utilizing these insights allows for more 

effective tourism management, particularly as the industry 

continues to recover and adapt to new challenges. 

 

 

5. CONCLUSIONS 

 

In this study, we conducted a comprehensive analysis of 

time series forecasting techniques to predict tourist arrivals, a 

critical aspect of the tourism industry's dynamics. The study 

evaluated three key approaches: SARIMA, representing 

econometric modeling; RF, epitomizing machine learning; 

and LSTM, embodying deep learning. Each model was 

assessed across distinct data decompositions that reflected 

different phases of the dataset, including the challenging 

period of the COVID-19 pandemic. 

The SARIMA model, grounded in econometric principles, 

demonstrated significant accuracy in capturing temporal 

patterns during pre-pandemic phases. It excelled in identifying 

seasonal trends and established patterns. However, it faced 

challenges in adapting to the abrupt disruptions caused by the 

pandemic and exhibited diminished performance during the 

subsequent recovery phase. This limitation highlights the need 

for models that can better handle sudden changes and evolving 

trends. 

The RF model showcased resilience by gradually adapting 

to the dynamic patterns introduced by the pandemic. Its 

performance improved as the tourism industry began to 

stabilize, revealing enhanced accuracy and the model’s ability 

to capture complex, nonlinear relationships. Nevertheless, RF 

struggled during the initial phases due to the pandemic's 

unpredictability, revealing its limitations in forecasting during 

periods of significant disruption. 

In contrast, the LSTM model, representing deep learning 

capabilities, consistently exhibited superior predictive 

performance across all data decompositions. Its ability to 

capture intricate temporal dependencies and adapt to evolving 

patterns, even during the volatile pandemic period, 

underscores the potential of deep learning in time series 

forecasting. The LSTM model provided robust predictions, 

particularly during the recovery phase post-pandemic, 

demonstrating its adaptability to changing industry dynamics. 

 

Key Findings and Contributions 

The study highlights the distinct strengths of the SARIMA, 

RF, and LSTM models. SARIMA excels in seasonal pattern 

recognition, RF adapts to evolving trends, and LSTM 

effectively handles complex, dynamic changes. Each model 

has its unique advantages, suggesting that combining them 

could enhance forecasting accuracy. 

The findings emphasize the importance of model 

adaptability, particularly in the face of unprecedented 

disruptions like the COVID-19 pandemic. LSTM's 

performance during the pandemic and recovery phases 

illustrates the value of deep learning in forecasting volatile and 

evolving data. 

 

Practical Recommendations 

For tourism forecasting, especially in the aftermath of 

disruptions, integrating SARIMA's seasonal modeling with 

LSTM’s dynamic pattern recognition could provide a 

comprehensive forecasting approach. This combined 

methodology would leverage SARIMA’s ability to model 

established trends while utilizing LSTM’s capability to adapt 

to sudden changes and complex patterns. 

 

Implications for Tourism Policy and Planning 

The findings suggest that while SARIMA provides a solid 

foundation for capturing seasonal trends, LSTM offers 

superior performance in handling dynamic and unpredictable 

changes. For comprehensive forecasting, integrating LSTM’s 

capabilities with SARIMA’s seasonal modeling could provide 

a more robust approach, especially in the context of recovering 

from disruptions. Decision-makers should consider 

incorporating models that offer both robustness and flexibility 

to develop resilient forecasting strategies. 

Accurate forecasting is critical for strategic planning in the 

tourism sector. LSTM’s consistent performance across various 

phases, including recovery periods, indicates that it can 

support more informed decision-making, enabling better 

resource allocation and strategy development. SARIMA’s 

strengths in seasonal trend modeling should be leveraged for 

long-term planning, while LSTM can offer insights into more 

immediate and volatile changes. 

 

Adaptation to Future Disruptions 

The ability of LSTM to handle abrupt changes and evolving 

trends underscores its potential value in preparing for future 

disruptions. For effective tourism management, it is crucial to 

adopt models that can quickly adapt to sudden shifts in data 

patterns, ensuring resilience and flexibility in forecasting. 

Combining the strengths of different models can provide a 

more comprehensive forecasting framework, enhancing the 

tourism industry’s ability to navigate both routine fluctuations 

and extraordinary events. 

In summary, our comparative analysis illuminates the 

complementary strengths of diverse forecasting 

methodologies. The econometric SARIMA model excels in 

understanding pre-pandemic patterns, machine learning RF 

adapts to changing trends, and deep learning LSTM excels in 

capturing complex, evolving patterns. The choice of modeling 

technique should be aligned with the specific needs of the 

analysis, considering the dynamics of the tourism industry and 

its reaction to notable disruptions. This study recognizes the 

2452



 

value of flexible models in a constantly changing environment, 

opening the door for improved forecasting accuracy and well-

informed decision-making in the tourism sector. By leveraging 

the complementary strengths of SARIMA, RF, and LSTM, 

stakeholders can enhance forecasting accuracy and develop 

more resilient and adaptive tourism strategies, better equipped 

to navigate both predictable trends and unexpected disruptions. 
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