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Soybean is a vital agricultural crop, but its yield is often threatened by diseases affecting 

soybean leaves, including septoria, frogeye, bacterial blight, brown spots, and others. 

Previous detection of the diseases is essential to boost outcome and minimize agricultural 

losses. A major challenge in leaf image classification is misclassification due to the similar 

disease patterns. Effective feature extraction is critical for building high-performance image 

classifiers. Convolutional neural networks (CNNs) are best at extracting image features, 

significantly enhancing classifier accuracy. This study proposes an efficient method for 

soybean leaf image classification, utilizing transfer learning and CNNs to identify diseases 

in soybean leaves. The ResNet-50 convolution model is employed for feature extraction, 

and the extracted features are fed into a fully connected neural network classifier. The 

proposed model is trained on approximately 6804 images of diseased soybean leaves from 

Kaggle and Plant Village. The effectiveness of the recommended techniques in comparison 

to previous approaches in similar experimental setups. F1 score, precision, recall for each 

class, and overall model accuracy are calculated to evaluate the proposed model's 

performance. 
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1. INTRODUCTION

Major ecological and financial losses in the agriculture 

sector are being caused by diseases of plant and pests. Diseases 

of plant, weeds, and insects cause 14% of the world's crop 

yields to be lost, which reduces agricultural industry profits 

and increases crop treatment costs [1-4]. Moreover, effective 

regulations must be created to improve crop yield in order to 

satisfy the growing demands of the world's rapidly expanding 

populace [5]. By 2050, it is predicted that the world's crop 

output would need to double, making loss reduction even more 

crucial. In addition to its financial cost, plant infestation 

treatment has an environmental consequence. Chemical, 

biological, and cultural methods are used to control plant 

infestation [6, 7].Cultural activities include soil solarisation 

and crop rotation, for example. But frequently, this is 

inadequate, therefore chemical and biological techniques are 

utilised along with. Jeon Gwanggil was the associate editor in 

charge of organising the manuscript's assessment and granting 

publication approval. Consequently, the employment of 

chemicals remains crucial. Overuse of pesticides may lead to 

contamination of the soil, water, and air. Furthermore, the 

poisons in pesticides affect healthy plants, animals, and 

microorganisms [8]. The health of people is also affected by 

this, since pesticides can enter the body through contaminated 

air [9]. 

In central India, soybean is a major crop whose cultivation 

has increased recently. One of the main causes of crop output 

losses is the susceptibility of soybean leaves to various 

diseases. In order to minimize crop losses, early disease 

detection is crucial. Based on their respective climates, India's 

five main zones for soybean growth are separated. The distinct 

growing environment and climate of each zone can have an 

impact on the occurrence of particular diseases. Andhra 

Pradesh, Maharashtra, Karnataka, Rajasthan, Chhattisgarh, 

and Madhya Pradesh are among the major states that produce 

soybeans. According to the agroclimatic conditions of each 

zone, particular cultivars are produced for it.   

Figure 1. Production of soybean and decade wise changes in 

India 

Soybean production has expanded dramatically over the 

years, from 0.03 million hectares of land assigned to this crop 

in 1970 to an incredible 9.30 million hectares in 2010. 

Furthermore, as shown in Figure 1, the average yield of 

Ingénierie des Systèmes d’Information 
Vol. 29, No. 6, December, 2024, pp. 2283-2292 

Journal homepage: http://iieta.org/journals/isi 

2283

https://orcid.org/0000-0002-4167-8390
https://orcid.org/0000-0002-4092-8298
https://orcid.org/0000-0002-4337-4198
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290618&domain=pdf


 

soybeans across the country increased dramatically from 0.43 

tons per hectare in 1969 to 1.37 tons per hectare in 2010 [10, 

11]. 

Modern technologies play a critical role in early detection 

of soybean disease, which reduces crop losses and ensures 

food security. Farmers are able to swiftly and precisely 

identify crop diseases and take preventive action to minimise 

damage by utilising deep learning, picture identification, and 

remote sensing technology. It can also help decrease the usage 

of dangerous pesticides, which will benefit the country's 

farmers and economy in addition to enhancing the quality of 

soybean harvests and overall production quality.  

Among these methods, CNNs have been extensively used 

for image recognition applications. CNN automatically 

extracts features from photos, and then uses these elements to 

make accurate classifications of new images. Recently, a large 

number of researchers used deep learning and machine 

learning to classify plant leaves. All earlier techniques were 

trained on a smaller set of photos and had misclassification 

problems. A plant leaf categorisation model with reasonable 

accuracy was proposed by numerous researchers; however, it 

is not a memory-efficient solution. 

The aim of this paper was to offer an accurate and efficient 

approach for classifying soybean leaf diseases. This technique 

uses two fully connected layers in a convolutional neural 

network that has been already trained using the ResNet-50 

model. Using the pre-trained ImageNet weights, this work 

applied transfer learning to the model in question and extracted 

the features. In order to assess the effectiveness of the 

suggested model, these extracted features are used as input to 

a fully connected layer, from which the F1 score, Precision, 

and Recall for each class are derived. 

The rest of the essay is structured as follows: the literature 

review is covered in Section 2, the suggested methodology in 

Section 3, and the experimental setup in Section 4. Model 

training is covered in Section 5, and outcome analysis and 

discussions are presented in Section 6. Concussion is covered 

in Section 7, along with the most pertinent references. 

 

 

2. LITERATURE REVIEW 

 

One significant field of agricultural research is the use of 

Artificial Intelligence (AI) to detect plant diseases. Numerous 

methods have been developed for identifying and detecting 

leaf diseases, including neural networks, clustering 

algorithms, and leaf colour and disease pattern analysis. 

Researches employed various deep learning models to 

identify soybean leaf diseases, obtaining impressive accuracy 

rates of 99.04% (Inceptionv3), 99.02% (Resnet-50), 99.02% 

(VGG19), and 98.56% (Xception) [12]. This study examined 

five deep learning models - Inception-v3, Resnet-50, VGG16, 

VGG19, and Xception - for classification of soybean pest 

images, yielding accuracies of 91.873%, 93.82%, 91.80%, 

91.33%, and 90.52%, respectively [13]. 

The methodology outlined in the paper demonstrates a 

systematic approach to using deep learning for pest detection 

in soybean crops. The VGG19 model achieved a notable 

accuracy of 93.71%, setting a new benchmark for the detection 

of soybean leaf infestations [14]. 

A total of 38 deep transfer learning models were evaluated, 

including popular architectures such as EfficientNet, 

Inception, VGG, ResNet, and MobileNet. The models were 

pre-trained on the ImageNet dataset, which contains a wide 

variety of images, allowing them to leverage learned features 

for the new task of plant disease detection. The accuracies of 

some of them were 78.87%, 72.62%, 84.43%, 92.43% for 

MobileNetV2 ResNet50, DenseNet121, EfficientNetB2V3 

respectively [15]. 

The performance of various models was evaluated for 

recognizing leaf diseases of different crops. Notably, state-of-

the-art models achieved impressive testing accuracies 

exceeding 90% for maize leaf disease identification. Similarly, 

all models except ResNet 50 and ResNet 101 demonstrated 

superior performance with testing accuracies above 90% for 

rice leaf disease recognition. For wheat leaf disease 

classification, MobileNet, MobileNetV2, Inception V3, and 

InceptionResNetV2 consistently delivered testing accuracies 

above 90%. Furthermore, our proposed model, trained from 

scratch on the developed datasets, yielded remarkable testing 

accuracies surpassing 95% [16]. 

The work demonstrates the growing interest in applying 

deep learning algorithms to identify leaf diseases in 

agriculture. The author provides an in-depth examination of 

the most current advancements and issues with models 

focused on deep learning for the diagnosis of plant diseases. 

It's also suggested that deep learning systems like CNN can 

accurately identify plant illnesses if they have access to 

enough training data. All things considered, the study provides 

a useful review of recent research on plant disease 

identification using computer vision techniques and provides 

a solid foundation for deep learning concepts [17].  

This research has made it possible to precisely and 

successfully identify and classify plant diseases. The 

application of deep learning techniques has greatly increased 

the accuracy of disease detection [18]. Several CNNs are 

employed by researchers to improve and get high accuracy in 

the classification model [19]. Nevertheless, a variety of factors 

influence the effectiveness of various CNNs, such as 

inadequate annotated data, the quality of the training data, 

kernel size, activation function, optimizer, and loss function 

[20]. This work used MFL-DCNN-RSF model which 

combined multi-dimensional feature learning with CNN for 

pesticide recommendation for different leaf disease with 

accuracy of 98.93% [21]. In this work different pre-trained 

deep learning models (GoogleNet, AlexNet, and ResNet-50) 

used with SVM classifier on tomato leaf disease dataset. 

ResNet-50 with SVM achieved the highest accuracy of 

95.96% among all other models [22]. Summary of the studied 

literature are given in Table 1. 

 

Table 1. Literature summary 

 
Sr. No. Title of Work Done Image Acquisition Methodology Applied Accuracy 

1 
Automatic identification of 

illnesses in soybean leaves [12] 
Acquisition images with natural conditions. 

Inception-v3 

Resnet-50 

VGG-19 

Xception 

99.04% 

99.02% 

99.02% 

98.56% 

2 
Identification and categorization 

of different pests of soybeans [13]   

Data collection using a UAV under natural 

conditions. 

Inception-v3 

Resnet-50 

91.87% 

93.82% 
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Sr. No. Title of Work Done Image Acquisition Methodology Applied Accuracy 

VGG-16 

VGG-19 

Xception 

91.80% 

91.33% 

90.52% 

3 
Automatic identification of 

infested soybean leaves [14] 

Collection using two smartphones featuring 

48MP AI triple cameras and a UAV in 

natural weather and field conditions. 

VGG-19 

Between 

93.71% and 

94.16% 

4 
Identifying plant diseases based 

on the type of pathogen [15] 

Images captured in different settings, under 

varying lighting conditions, and using 

various cameras. 

MobileNetV2 

ResNet50 

DenseNet121 

EfficientNetB2V3 

78.87% 

72.62% 

84.43% 

92.43% 

5 

Creation and development of a 

real-time dataset and detection 

system for automatic 

identification of plant diseases 

[16] 

The dataset comprises manually curated 

images from online sources (Google, 

Ecosia, Bing, Flickr) and supplements from 

Plant Village and Kaggle for healthy maize, 

rice, and wheat classes. 

Xception 

MobileNet 

MobileNetV2 

InceptionV3 

95.80% 

94.64% 

96.32% 

96.20% 

6 

Detection and assessment of 

soybean leaf disease using 

multiclass SVM and KNN 

classifiers [23] 

Images captured in Conditional 

environment. 
CNN 87% 

7 
Identification based on inception 

V3 [24] 
Images of tobacco dataset are used. InceptionV3 90.80% 

8 

A classification method for 

soybean leaf diseases based on an 

improved ConvNeXt model [25] 

Images captured from Grapevine leaf 

dataset. 

ResNet50  

MobileNetV3  

ConvNeXt  

CBAM-ConvNeXt  

72.22% 

67.27% 

66.41% 

85.42% 

 

 

3. PROPOSED METHOD 

 

In this age of AI-based technologies, everything has been 

influenced by all the attention paid to better identification and 

control of the diseases in the farm sector Computer vision and 

machine learning are recently applied majorly for the 

automation of crop disease detection. The popular option 

regarding the object detection is CNNs, showing superior 

performance in the detection of illness. In order to help farmers 

find and treat the diseases in an early period, the proposed 

work represents a CNN-oriented method for locating soybean 

leaf diseases. 

The flow chart shows that the process kicks off with a pre-

trained ResNet-50 model, which has already been trained on a 

large dataset like ImageNet, serving as the foundation because 

it understands a wide variety of features from images. The 

soybean dataset consists of images categorized into nine 

different disease types, aiding the model in learning to 

differentiate between various diseases effectively. The dataset 

undergoes several pre-processing steps, including rescaling to 

match the input size expected by ResNet-50, augmentation 

through transformations like rotation, flipping, generalize 

better, converting images to grayscale or HSI format to 

emphasize specific features relevant enhancement techniques. 

 

 
 

Figure 2. Transfer learning flow chart 
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like noise reduction or contrast adjustment to make key 

features more distinguishable. The original output layer of the 

ResNet-50 model is replaced to tailor it for classifying soybean 

leaf diseases. The modified model then extracts important 

features from the pre-processed images, identifying patterns 

crucial for distinguishing the different diseases. Fine-tuning 

involves adjusting the network's weights on the specific 

soybean leaf dataset to ensure the pre-trained features adapt to 

the new dataset's nuances. The fine-tuned model incorporates 

two fully connected (FC) layers to process the extracted 

features and make the final classification. The first FC layer 

reduces the dimensionality of features, while the second one 

outputs the probabilities for each disease class using a 

SoftMax activation function. The end result is a robust model 

capable of accurately classifying soybean leaves into one of 

the nine disease categories, providing valuable insights to 

farmers for timely and effective disease management. The 

work depicted in Figure 2 employs a disease detection system 

of soyabean leave based on CNN model. In order to help 

farmers manage soybean leaf diseases in a timely manner, the 

algorithm seeks to properly categorise using CNN. and 

diagnosis of these diseases [26, 27]. Large datasets are 

necessary to improve model performance, which presents a big 

problem for agricultural applications. Transfer learning is used 

to solve this, leveraging pre-trained models and fine-tuning 

them on soybean datasets for improved accuracy and 

reliability. This method achieves higher accuracy with less 

training data and time. For feature extraction, the pre-trained 

ResNet-50 model is employed, known for its effective feature 

extraction and classification capabilities through its 50 deep 

layers and multiple convolutional and identity blocks, 

supported by skip connections to maintain performance. 

Since, ResNet-50 is a deep neural network, it may face the 

Problem of vanishing gradient decent. To combat this, 

ResNet50 incorporates skip connections (also known as 

residual connections). These skip connections allow gradients 

to flow more directly through the network, bypassing certain 

layers. By doing so, they maintain stronger gradients 

throughout the network, thereby reducing the impact of the 

vanishing gradient problem. The only foundation for these 

relationships is identity mapping. Thus, Eq. (1) provides the 

mapping function. 

 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (1) 

 

where, H(x) represents the output of the residual block. F(x) is 

the residual mapping learned by the network's layers and x is 

the identity mapping passed directly to the next layer. This 

structure helps preserve the gradient's strength, ensuring that 

even deeper layers can learn effectively. 

The proposed model is build using the following steps: 

Data Collection and preprocessing: 

Step 1: Dataset contains infected soybean leaves along with 

healthy leaves. 

Step 2: Normalize the pixel values to be in the range [0, 1] 

by preprocessing the images by resizing them to the required 

input size of the ResNet50 model, 224×224 pixels.  

Transfer Learning: 

Step 3: Initialized the ResNet50 model with pre-trained 

weights on ImageNet. 

Step 4: Freeze the weights of the convolutional layers to 

prevent them from being updated during training. 

Step 5: Two dense layers are added after ResNet50 

networks with ReLU and SoftMax activation functions. 

Training: 

Step 6: Split the dataset into training, validation, and test 

sets. 

Step 7: Train the modified ResNet50 model on the training 

set. 

Step 8: To fine-tune the model for its particular goal of 

classifying soybean leaf diseases, release a few of the top 

layers of ResNet50 and carry on training at a lower learning 

rate. 

Evaluation: 

Step 9: Accuracy, precision, recall, and F1-score are used to 

measure the performance of proposed model. 

 

 

4. EXPERIMENTAL SETUP  

 

An analysis of soybean leaf disease utilising the suggested 

model was reported in this paper. This work outlines the 

several stages of our experiment, which begin with gathering 

the high-quality dataset and conclude with evaluating the 

performance of the model as depicted below.  

 

4.1 Dataset acquisition 

 

The soybean leaf dataset utilized in this study is employed 

to train the model. Images of soybean leaves were gathered 

from the Plant Village collection [28] and some actual images 

were recorded under various environmental conditions in 

Figure 3. 

 

 
 

Figure 3. Soybean diseased leaf images dataset 

 

Table 2. Images distribution 

 
Disease Type Number of Images 

Crestamento 750 

Bacterial Blight 850 

Brown Spot 900 

Diabrotica Speciosa 700 

Frogeye 800 

Septoria 750 

Powdery Mildew 900 

Caterpillar 654 

Healthy Leaves 500 
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In addition to one healthy set of soybean leaves, it includes 

6804 pre-processed and labelled images of soybean leaves that 

show eight different types of diseases, including Brown Spot, 

Diabrotica Speciosa, Frogeye, Septoria, Powdery Mildew, and 

Caterpillar. Table 2 shows the distribution of images across the 

different types of diseases. 

 

4.2 Pre-processing and augmentation 

 

Building an efficient CNN model for image classification 

requires both picture pre-processing and augmentation [29, 

30]. So, to improve the excellence of the dataset, we performed 

a number of pre-processing procedures in this research study. 

Next, we processed the images by augmentation. Augmenting 

data is crucial to expanding the dataset.  

To ensure uniformity in the input size, we scaled each image 

to a constant size ratio of 224 by 224 pixels. This procedure 

also lowers the computational complexity of the model in 

order to eliminate variations in brightness and contrast, we 

first normalized the photos by scaling down each pixel's value 

to the same value. Normalization not only lowers overfitting 

but also model error. Following that, the collected data was 

split into three parts: testing, validation, and training sets, each 

containing 10%, 10%, and 80% of the photos [23]. 

Consequently, the model can be assessed on fresh, untested 

data in addition to being trained on a suitable volume of data. 

Next, we added to our training set to make it larger. 

Preprocessing used different techniques, including scaling, 

flipping horizontally and vertically, zooming, and height 

shifting to a specific position. 

 

 

5. MODEL TRAINING 

 

This work utilised a transfer learning strategy for our 

research article since it is well known for working well on a 

variety of tasks, such as computer vision. We integrated our 

transfer learning methodology with a convolutional neural 

network. We were able to identify our soybean dataset 

effectively because to this combination.  

 

5.1 Model architecture of Restnet50 

 

The ResNet V2-50 feature vector model from TensorFlow 

Hub, which was trained on the ImageNet dataset, is the pre-

trained model utilised in this paper [31]. The suggested 

approach is frequently utilised as a foundation model for 

transfer learning in computer vision problems and is intended 

to extract high-level [32] features from images. More than a 

million photos [33] of diverse things from 1000 distinct types 

can be found in the ImageNet dataset. The network can gain 

the learned feature of the previously trained model by 

employing transfer learning and reusing the ResNet-v2-50 

model's pre-trained weights. This can increase training 

accuracy and improve the model's performance for the 

particular task of detecting soybean leaf disease, as shown in 

Table 1. 

The ResNet-v2 design, which was first presented in 2015 by 

[34], is an enhanced version of the original ResNet 

architecture, as Table 2 shows. Using residual blocks with skip 

connections, the ResNet-v2 is an effective image recognition 

model that tackles the vanishing gradient issue in neural 

networks. The design is comprised of phases featuring layers 

for down-sampling and an altered identity mapping function 

that adds a residual connection to boost speed. In addition, a 

bottleneck structure is employed to save computational costs 

while increasing accuracy, and batch normalisation is used to 

prevent internal covariate shifts. The ResNet-v2 is a suitable 

option for semantic segmentation and object recognition 

applications since it can train longer networks (up to 152 

layers) without running into the vanishing gradient issue. A 

fully linked layer in the last stage outputs the class 

probabilities. ResNet-50-v2 is a very successful image 

recognition model that has demonstrated strong performance 

over a wide range of image datasets. 

The model architecture utilized in this paper, which 

includes several trainable parameters, an output structure, and 

different types of layers, is summarized in Table 3. The 

224×224×3 input images are accepted by the input layer, 

which is the first layer. With pre-trained ResNet50 model 

weights, all layers are Keras Layers and produce a 2048 

feature vector. A Dropout layer to stop overfitting and a Dense 

layer with 128 neurons make up the subsequent layers. The 

output gives the probability for each of the nine types of 

soybean leaf diseases and is a dense layer with nine neurons. 

Including the pre-trained ResNet50 model parameters, the 

model comprises a total of 23,828,233 parameters. 

Overall, for the particular objective of soybean leaf disease 

detection, the combination of transfer learning with the pre-

trained ResNet50 model enables enhanced precision and 

accelerated training timeframes. 

 

Table 3. RestNet-v2 architecture [34] 

 
Layer Name Input Size 18 Layers 34 Layers 50 Layers 101 Layers 152 Layers 

Conv 112112 77, 64, stride 2 

Conv2_x 5656 

33 max pool, 64, stride 2 

[
33    64
33    64

 
]2 [

33    64
33    64

 
]3 [

11    64
33    64

11    256
]3 

[
11    64
33    64

11    256
]3 

 

[
11    64
33    64

11    256
]3 

 

Conv3_x 2828 [
33    128
33    128

 
]2 [

33    128 
33    128

 
]3 [

11    128
33    128
11    512

]4 
[
11    128
33    128
11    512

]4 

 

[
11    128
33    128
11    512

]8 

 

Conv4_x 1414 [
33    256
33    256

 
]2 [

33    256
33    256

 
]6 [

11    256
33    256

11    1024
]6 [

11    256
33    256

11    1024
]23 [

11    256
33    256

11    1024
]36 

Conv5_x 77 [
33    512
33    512

 
]2 [

33    512
33    512

 
]3 

[
11    512
33    512

11    2028
]3 

 

[
11    512
33    512

11    2028
]3 

 

[
11    512
33    512

11    2028
]3 
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Table 4. Soybean diseased leaf detection model summary 

 
Layer Output Shape Parameter Activation Function Optimizer 

Input I (None, 224, 224,3) 0 -- -- 

Resnet50v2 (None, 2048) 23564800 -- -- 

Dense Layer1 (None, 128) 262272 Adam ReLU 

Dropout Layer (None, 128) 0 -- -- 

Dense Layer1 (None, 9) 1152 Adam Softmax 

Total Params 23,849,224 -- -- -- 

 

5.2 Fine-tuning process 

 

Additional layers of classification, consisting of already 

processed soybean sick leaves with 9 categories, were 

introduced to the ResNet50v2 model after it was frozen. Two 

thick layers make up the model. ReLU activation was utilised 

in the first dense layer, and SoftMax activation was utilised in 

the second dense to avoid overfitting, regularisation in the 

form of L2 weight decay was performed to the first Dense 

layer. 

 

5.3 Hyperparameter tuning 

 

To maximise the performance of our classification model, 

we adjusted some hyperparameters which is mentioned below. 

To get the most out of our model, it's important to select the 

right hyperparameters from Table 4. Hyperparameters are the 

set of parameters that control how a model learns and have a 

big impact on how accurate the model is. Even with the best 

model architecture, poor results are possible. Initially, the 

learning rate was set to 0.001, and the Adam optimiser was 

chosen for the suggested task. In order to prevent overfitting, 

this work added implemented L2 weight decay to the first 

dense layer with a coefficient of 0.0001. 

In selecting the hyperparameters, we aimed to achieve a 

harmonious balance between performance, computational 

efficiency, and model stability. The batch size of 36 ensures 

that the model can process a reasonable number of samples in 

each training step, optimizing memory usage and maintaining 

stable gradient estimates. 

Training the model for 80 epochs provides sufficient 

iterations for the network to learn the underlying patterns 

without falling into overfitting, where the model performs well 

on training data but poorly on new data. Setting the initial 

learning rate at 0.001 is a common practice to ensure that 

weight updates during training are neither too drastic, risking 

instability, nor too small, hindering convergence. The dropout 

rate of 0.5 helps keep the model from depending too much on 

a few particular neurones, thereby improving its capacity for 

generalisation to unseen data. Incorporating a weight decay of 

0.0002 serves as a regularization technique, discouraging 

excessively large weights and promoting a simpler model 

structure. The patience value of 5 allows the training process 

to continue for several epochs without improvement, avoiding 

premature termination and ensuring thorough learning. 

Finally, reducing the learning rate by a factor of 0.6 when the 

model's performance plateaus help fine-tune the model's 

parameters, facilitating convergence to a more optimal 

solution. These decisions are grounded in empirical evidence 

and best practices, aimed at developing a robust and effective 

model for detecting diseases in soybean leaves. 

 

5.4 Training 

 

The model trains on 80 epochs with a batch size of 36 during 

the training phase. Two callbacks were used to keep an eye on 

the training process and avoid overfitting. The initial one 

involved Early Stopping, wherein the 'patience' parameter was 

set at 5. This meant that after five consecutive epochs, if the 

error did not reduce, the training process would end. In 

addition, the weights from the epoch with the best validation 

loss were retrieved by activating the 'restore best weights' 

parameter.  

Additionally, we used the 'ReduceLROnPlateau' callback 

with a 'factor' argument set to 0.6 to cut the learning rate in 

half in the event that the validation loss does not improve after 

the 'patience' number of epochs. Ultimately, a sparse 

categorical cross-entropy loss function was initiated during the 

modelling process, and accuracy served as the assessment 

metric. 

 

 

6. RESULT ANALYSIS AND DISCUSSION 

 

Promising results were obtained using the proposed model 

for the identification of sick leaves using CNN and transfer 

learning ResNet50. The model, which was trained using the 

ImageNet dataset, demonstrated efficacy in feature extraction 

and pattern recognition—two critical processes in the 

identification of damaged leaves in soybean plants. For the 

suggested work experiment, a Jupyter Notebook is utilised 

since it offers a better interface for executing Python code and 

evaluating the outcomes. The AMD Ryzen 5 CPU-3350h @ 

2.5GHz and Windows 10 operating system combined to 

provide a strong and capable hardware arrangement for the 

research. We used the Nvidia Cuda 10.1 version, which has 

1024 cores for GPU acceleration, to greatly improve the 

training procedure. 

It performed quite well during training on both the training 

and validation sets. Figure 4 illustrates that the test set reaches 

89 percent and the training set achieves 91 percent, indicating 

the approach was successful in generalising using validation 

data that had unseen. It indicates model made progress towards 

developing a useful method for agricultural disease diagnosis 

and treatment by correctly classifying damaged soybean 

leaves into the appropriate group. 

The application of ResNet-50 and transfer learning for 

diagnosing soybean leaf diseases is very much prevalent in 

recent studies; however, its prominence emerges from some 

significant perspectives. Due to its applications to the 

description of latent features underpinning totally different 

spots, the nearly flawless fine-tuning of the ResNet-50 model 

with thorough preprocessing and augmentation, involving 

rescaling, normalisation, and transformations, improves 

modelling robustness and accuracy. 

In contrast to previous research, the suggested approach 

contains a comparative assessment based on multiple 

additional measures, such as precision, recall, and F1-score, 

hence removing performance bias about the model's 

continuous development across various illness classes. 

2288



 

 
(1) 

 

 
(2) 

 

Figure 4. Performance analysis of training and validation 

datasets 

 

Moreover, the current focus addresses a huge agricultural 

problem, in which the solution has dire practical implications 

for maximally benefiting crop health and yield to farmers. 

Also, detailed selection and justification of hyperparameters 

like batch size, learning rate, dropout rate, weight decay, and 

patience do show profound understanding of optimization 

models, hence a reliable detection system of a highly 

performing detection system. All these unique aspects as a 

collective make this research a significant contribution to the 

agricultural disease-detection field. 

 

6.1 Significance of the study 

 

The worth of this study relates to its outcome for farmers 

and agricultural workers. The research helps to improve the 

management of crops through its reliable gadget for quick and 

precise detection of diseases thereby helping avoid incurrences 

of losses and improving production. Careful metrics and 

analysis of misclassifications and others are guaranteed to 

ensure that the model performs accurately and consistently 

over many diseases. This has added value to the model in its 

application in practice, where the model may have to be used 

in different and quite changing conditions. 

 

6.2 Future research directions 

 

Though this research presents a useful method of 

identifying soybean leaf diseases, here are some avenues to 

explore which will improve the impact: 

 

6.2.1 Novel structures 

Investigate newer and increasingly advanced deep learning 

architectures to enhance both feature extraction and 

classification. One could efficiently try EfficientNet or Vision 

Transformers. 

 

6.2.2 Increased amount and variety of datasets 

Also, incorporate more images taken in several 

environmental conditions into the dataset in order to achieve 

better model generalization and possible robustness. 

 

6.2.3 Real-time monitoring and IoT 

Other IoT devices can be incorporated alongside this model 

so as to provide a real time monitoring and detecting of the 

diseases hence providing farmers with instant help and 

strategies. 

 

6.2.4 Identifying cross-crop diseases 

Further extend the study to many more crops and diseases 

so that a multi-crop disease detection system can be designed 

to help as many farmers as possible. 

 

6.2.5 Multidisciplinary collaboration 

Work with plant pathologists and agriculture specialists to 

obtain more diverse datasets and inform the model for higher 

accuracy and practicality. 
 

 

7. EVALUATION AND CLASSIFICATION 
 

In addition to its excellent accuracy, our suggested model 

demonstrated encouraging outcomes on particular classes of 

soybean leaf diseases. Figure 5 illustrates the model's ability 

to correctly identify and categorize photos of soybean leaves 

infested with caterpillar leaf, a widespread and damaging 

disease that affects soybean harvests. In order to prevent the 

model from incorrectly classifying healthy leaves as diseased, 

it is also crucial that the model show accurate predictions for 

the healthy class. 

Overall, our suggested model's high accuracy across a wide 

spectrum of soybean leaf illnesses emphasises its potential as 

a useful tool for crop disease early detection and monitoring. 

This may result in more productive and environmentally 

friendly farming methods that aid in lowering crop losses and 

raising yields. 
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Figure 5. Estimates of the submitted model for identifying soybean leaf disease on the test dataset 

 

Table 5. Hyperparameter matrix 

 
Hyperparameter Value 

Batch Size 36 

Epochs 80 

Initial Learning Rate 0.001 

Dropout Rate 0.6 

Weight Decay 0.0002 

Patience 5 

Factor 0.6 

 

Table 6. Performance matrix 

 
Class Precision% Recall% F1-Score% 

Caterpillar 71 70 78 

Diabrotica Speciosa 82.5 62 67.5 

Healthy 63.3 81.1 72 

Bacterial Blight 78 90 83.3 

Brown Spot 95 96 96 

Crestamento 70 94 78 

Frogeye 97.7 84 94 

Powdery Mildew 74 83 76 

Septoria 98 95 97 

 

Confusion matrix based on model predictions on testing 

dataset was developed to evaluate the performance of the 

proposed model. In order to assess how well the ResNet50 

model can identify soybean leaf diseases, the recall and 

precision metrics are computed for each disease class. Recall 

measures the percentage of accurate outcomes in the test set 

relative to the actual accurate results, which are shown in 

Table 5, whereas precision measures the percentage of 

relevant outcomes in the test set among all the retrieved 

outputs. The F1 score was also utilised in this work to assess 

the model's overall performance. Eqs. (2)-(4) [35] of the 

established formulas were used to calculate these measures 

which is given in Table 6. 

 

Precision =
TP

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Recall =
TP

𝑇𝑃 + 𝐹𝑁
 (3) 

 

F1 Score = 2 ×
Precision ∗ Recall

Precision + Recall
 (4) 

However, there may be misclassification of disease type. 

Including an analysis of which disease types are most prone to 

misclassification and the possible reasons for these errors is 

crucial for enhancing the scientific value of your paper. 

Crestamento might be mistaken for other fungal diseases like 

Brown Spot due to subtle visual similarities. Bacterial Blight 

could be confused with Frogeye because both exhibit water-

soaked spots that turn brown. Brown Spot and Septoria both 

cause dark spots, leading to frequent misclassifications. 

Differentiating between Diabrotica Speciosa and Caterpillar 

damage is challenging as both result in physical leaf damage. 

Frogeye might be misidentified as Bacterial Blight due to their 

shared symptom of dark spots with lighter halos. Septoria and 

Brown Spot have similar dark lesions, complicating their 

distinction. Powdery Mildew, characterized by white, 

powdery spots, could be confused with the early stages of 

other fungal diseases. Finally, Caterpillar damage and 

Diabrotica Speciosa both leave visible damage, making them 

hard to distinguish. This detailed analysis of misclassifications 

enhances transparency regarding the model's performance and 

highlights areas for further improvement, thereby significantly 

contributing to the reliability of the disease detection model. 

The proposed work and the previous work are evaluated is 

shown in Table 7.  

 

Table 7. Comparison of proposed work with existing work 

 
Pre-Trained Network Model Accuracy No. of Images 

InceptionV3 [24] 90.80 800 

ResNet50 [25] 72.22 

1296 
MobileNetV3[25] 67.27 

ConvNeXt [25] 66.41 

CBAM-ConvNeXt [25] 85.42 

Proposed ResNet 50 Model 91.00 6804 

 

InceptionV3 achieved an accuracy of 90.80% using 800 

images [24], while ResNet50 had a lower accuracy of 72.22% 

with the same number of images presents MobileNetV3 with 

an accuracy of 67.27% and ConvNeXt with 66.41%, both 

trained on 1296 images [25]. However, CBAM-ConvNeXt, 

also from [25], performed significantly better with an accuracy 

of 85.42% using 1296 images. In contrast, the proposed model 

utilizing ResNet 50 stands out, achieving the highest accuracy 

of 91.00% with a substantially larger dataset of 6804 images. 

This comparison underscores the effectiveness of the proposed 
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model in utilizing a larger dataset to achieve enhanced 

performance in soybean leaf disease detection, highlighting its 

potential for real-world agricultural applications. 

 

 

8. CONCLUSION 

 

In conclusion, applying transfer learning and CNN for 

diagnosing soybean leaf disease proves to be an effective and 

efficient technique that demonstrates the application of 

contemporary technology. Beforehand diagnosis of the illness 

is essential since soybeans are important crop and a major 

source of reliance for a large number of countries. Making sure 

food security and keeping agricultural losses at bay are vital. 

Modern technological developments like computer vision and 

deep learning methods have improved the outcomes 

throughout the previous ten years. Convolutional neural 

networks (CNNs) and transfer learning have been shown to 

function well together to diagnose diseases with high 

accuracy. This lessens the need for physical labour while also 

enabling faster and more accurate diagnosis. The proposed 

model demonstrated the potential of technology to 

revolutionize agriculture and boost productivity, achieving an 

overall accuracy of 91% on the training dataset and 89% on 

the testing dataset. 
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