
Data Deduplication and Integrity Check Scheme Based on Unique Tags in Edge Cloud

Computing

Sevuga Pandian Asirvatham1* , Gomathi Muthusamy2

1 Department of Computer Science, Periyar University, Salem 636 011, Tamil Nadu, India
2 Government Arts and Science College, Affiliated to Periyar University, Salem 636 011, Tamil Nadu, India

Corresponding Author Email: pandianasir@yahoo.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290610 ABSTRACT

Received: 2 March 2024

Revised: 29 September 2024

Accepted: 27 November 2024

Available online: 25 December 2024

Edge computing is an extension of cloud computing that uses additional middleware, or

edge nodes, located closer to clients to speed up request processing for the central cloud. It

offers benefits such as reduced latency and bandwidth savings at the edge. Extensive

research has focused on decryption technologies for encrypted data to enhance the security

and functionality of traditional cloud systems while maintaining privacy. Secure encryption

techniques on the server side protect data privacy but can hinder network performance and

allow for multiple uploads. On the other hand, a client-side approach improves network

performance but is vulnerable to data leakage. To overcome the problem, we proposed a

new method based on Checksum Selective Indexing Chunking (CSIC) for improving cloud

storage for deduplication files and an error checking that verifies the integrity of the deleted

data. Initially, preprocessing can reduce the similarity of text and duplicates between files

based on the Threshold Similarity Measures (TSM) and calculate the similarity scores. The

second stage is segmentation, based on a Cluster Index-Based Sliding Window Hashing

(CISWH) for segmenting the index content using the set. Each data set uses a Hash identifier

for chunk contents. Then, the content integrity should be ranked based on the weightage of

the file and reduced the empty storage in the cloud by processing a large number of edge

data copies and finding multiple degraded edge data files using Prefetching Local Index

Caching (PLIC). Then, the Unique Tag Deduplication Integrity Check (UTDIC) is used to

download private information in the cloud. A protection analysis demonstrates the accuracy

and robustness of the scheme. This method allows you to identify data redundancies at the

block level and reduce data redundancies more effectively. The simulation results show that

the proposed method is superior in terms of computational efficiency and security level.

Thus, the proposed attains high results in terms of precision at 97.9%, recall at 98.8%, and

storage optimization performance at 43.2%.

Keywords:

cloud computing, edge computing, chunk,

index, threshold, similarity measures, data

de-duplication, integrity check, security

1. INTRODUCTION

Multi-user cloud storage solutions with shared networks are

gaining popularity due to the constant increase in data creation

on a global scale. However, many users still need to be more

hesitant to move data to remote storage due to concerns about

data security. Encrypting data before it leaves the owner's

property is a standard procedure. While this method is

beneficial for safety, it hinders storage efficiency features such

as compression and Deduplication. These features allow

storage providers to utilize their back-ends more effectively

and serve more customers with the same infrastructure.

However, because they no longer own this data locally,

service providers find it challenging to maintain complete

control over their data housed on dispersed edge servers. In the

highly distributed edge computing environment, edge servers

should not be taken for granted since hardware and software

exceptions might occur accidentally or maliciously. When it

comes to edge computing, the issue intensifies considerably.

The unique characteristics of edge computing allow us to

maintain traditional methods of maintaining data integrity

with edge data from cloud service providers.

First, edge servers typically have low processing power,

whereas most cloud data integrity techniques assume and

leverage the near-limitless computing power of cloud servers.

Then, to serve regional customers, service providers typically

cache their viral data on edge servers in specific locations. The

service provider cannot look at each edge data point separately

to find the problematic ones because of excessive processing

and bandwidth consumption. One technique now being used

to guarantee cloud data security is proven data possession

(PDP) and its variations. They are intended to enable users of

thin clients to seek data integrity challenges from major cloud

storage providers such as Google or Amazon.

Data deduplication is when a storage provider keeps just one

duplicate of a file (or portion of a file) that several users hold.

Four distinct deduplication methods differ based on whether

Deduplication happens at the file or block level and whether it

happens on the client or server side. Because client-side data

deduplication ensures that many uploads of the same content

Ingénierie des Systèmes d’Information
Vol. 29, No. 6, December, 2024, pp. 2197-2207

Journal homepage: http://iieta.org/journals/isi

2197

https://orcid.org/0000-0002-6633-7189
https://orcid.org/0000-0002-5457-1031
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290610&domain=pdf

only consume a single upload's network bandwidth and

storage space, it is preferable to server-side data deduplication.

Although security was not included in the initial

deduplication designs, it rapidly became necessary when users

sought data protection. Deduplication seems possible with

convergent encryption, which uses plaintext as the encryption

key. This technology is secure and easy to use. Regretfully, it

was shown to be susceptible [1]. Moreover, a general

impossibility conclusion contends that basic convergent

encryption techniques cannot provide traditional semantic

security.

Figure 1 describes Deduplication in edge cloud using the

chuck files to store the cloud, first segmenting the file in a

cluster set to reduce the similarity hash contents. Reduce the

number of computation operations for each hash that computes

a part of the hash and minimize duplication. This further

accelerates the decoupling process while achieving the same

decoupling result. On the other hand, tags assume a user-based

response mechanism instead of duplicating files, so cloud

users cannot cheat users using duplicate check results when

files are uploaded. Complete, and the same checks will be

ignored. Therefore, Deduplication is assumed to exist.

Figure 1. The basic flow of Deduplication in the cloud

2. PRELIMINARIES

Evaluating previous literature can uncover gaps,

contradictions, or limits in the current understanding of the

issue. This information contributes to the creation of research

topics and helps justify the necessity for additional research.

End-to-end encryption is becoming increasingly popular

due to recent data breach incidents, as more individuals and

businesses are outsourcing their data to cloud storage.

Regretfully, semantically secure encryption renders several

affordable storage optimization strategies, including data

deduplication, useless [1]. Users want to keep encrypted data

on cloud servers to safeguard their privacy. Cloud servers

reduce the cost of storage and network traffic by removing

redundant copies. First, aggregation bias is used to resolve the

potential risk of internal data leakage [2].

Customers can access low-latency services using Edge

Storage Systems (ESS), which are made up of linked edge

servers in a specific location. Conversely, poor edge server

storage capabilities result in large data storage overheads, a

significant obstacle to maintaining an ESS's application

performance [3]. However, in edge-based mobile

crowdsensing systems, it could be challenging to carry out safe

data deduplication while also shielding participants (like

clients and recruited mobile users) and sensing data from

different threats (like external and internal assaults) [4]. Data

deduplication can improve communication efficiency while

saving storage space. However, data deduplication brings new

edge computing functionality and security concerns [5].

The interaction above is much reduced by fine-grained

admission control using client-level keys and update tools

since the cloud server handles the proprietorship change [6].

In any case, no current work can give different deduplication

effectiveness and assurance for various information lumps. A

security-mindful and compelling information deduplication

plot for edge-helped distributed storage frameworks. It works

on the proficiency of Deduplication and lessens data spillage

brought about by recurrence examination assaults [7]. The

smooth execution of a considerable measure of holders

simultaneously on the hubs with restricted figuring assets

remains a test [8]. It has been shown that the summed-up

Deduplication (GD) pressure calculation offers serious

pressure proportion, throughput, and arbitrary access

properties that empower direct examination of packed

information [9].

Even with the widespread use of deduplication techniques

by cloud service providers, a substantial amount of overhead

bandwidth still needs to be increased. To reduce this extra

traffic, a middleware deduplication layer that verifies the

legitimacy of files without accessing the cloud is created [10].

Provide CaseDB, a unique key-value store that aggressively

isolates keys and bloom filters on the nonvolatile memory

express (NVMe) disk and saves the SSD values to overcome

the main problems with an LSM tree [11].

Portable edge processing is arising to deal with the sheer

volume of delivered information and arrive at the inactivity

interest of calculation escalated IoT applications. However,

the development of versatile edge figuring on assistance and

2198

idleness has been very much considered; security and

proficiency in information utilisation in portable edge

processing have yet to be distinguished [12]. Identifying Cloud

Security threats and mitigation strategies that detect data

leakage, tampering and other vulnerabilities in cloud service

deployment are significant [13].

Edge processing answers clients' solicitations with low

inactivity by putting away the pertinent documents at the

organisation's edge. Different information deduplication

innovations are presently utilized at the edge to dispose of

repetitive information lumps for space saving. Be that as it

may, the query for the worldwide gigantic volume of finger

impression lists forced by recognizing redundancies can

debase the information handling execution [14]. Previous

encrypted data deduplication algorithms were primarily built

for standard two-tier cloud storage. It cannot be used with the

3-layer fog assist cloud storage currently under development

[15]. Table 1 describes conventional methods for data

deduplication.

Table 1. Comparison of existing methods for data deduplication

Reference Proposed Method Drawbacks

Ni et al. [16]
A safe data deduplication system helped by fog (Fo-

SDD)

Sensed data is often protected, making it challenging

to deduplicate

Jiang et al. [17] An effective PoW procedure combined with secure data
Cannot effectively resolve dynamic ownership

changes and specific proof of ownership (PoW)

Li et al. [18]
deduplication strategy for active ownership

management Energy Efficient Storage System (EESS)

These storage systems consume much energy to

achieve high performance.

Yu et al. [19]
Tag-flexible Integrity Check Protocol with

Deduplication Support (TDICP)

Conceive customers into purchasing unnecessary

storage for redundant data only kept once.

Yang et al. [20]
User-defined access control-compatible secure

deduplication technique that is effective

Eliminate redundant encrypted data to save storage

and transmission costs.

He et al. [21] Routing Strategies in Clustered Deduplication Systems High deduction rates and low effectiveness rates.

Guo et al. [22] Double Sliding Window Chunking Algorithm It is not easy to find the file

Yuan et al. [23]
lightweight rekeying-aware encrypted deduplication

scheme (REED)
Difficult to store the data in the cloud

Jin et al. [24] jump-based chunking (JC) approach

The deduction rate is lower than that of the CDC

approach due to the inability to solve the boundary

transition problem.

Chen et al. [25] Dynamic, searchable symmetric encryption (DSSE)
Complex optimization processes and inflexible query

methods.

Wang et al. [26] Lightweight Secure Deduplication Scheme The complex symmetric key distribution

Edge computing is a crucial part of green computation

because it enables real-time applications, reduces the amount

of computing and network resources needed to transmit data

to the cloud for processing, and locates cloud resources closer

to the Edge [27]. A model for shifting processing from mobile

to wired networks is called share-based edge computing, or

SEC (M2W). Tasks from mobile devices can be divided

among wired devices for processing under the oversight of

SEC servers [28].

It is a significant problem for service providers, but more

needs to be discussed. Therefore, in the context of edge

computing, accurately and successfully verifying the integrity

of edge data is a critical security concern [29]. App providers

can host services for local consumers on the Edge Server

Network (ESN), composed of edge servers in a particular

region and the connections that link them. Several recent

studies have demonstrated that large ESN densities offer

excellent service performance because edge servers can

efficiently share resources and interact throughout the ESN

[30, 31]. Fifth-generation (5G) networks can benefit

significantly from the improved spectral efficiency, higher

quality of service, and reduced latency that NOMA and

Mobile Edge Computing (MEC) can provide.

This is a big concern for service providers, yet little has been

done about it. Therefore, in edge computing [32], precisely

and successfully confirming the integrity of edge data presents

a significant security problem. App providers can host their

services for local clients on the Edge Server Network (ESN),

which comprises edge servers in a particular region and the

connections that connect them. Several recent studies have

shown a high ESN density to enhance service performance

since edge servers can effectively communicate and share

resources across the ESN. Fifth-generation (5G) networks are

finding that NOMA [33] and Mobile Edge Computing (MEC)

are crucial enablers due to their improved quality of service,

reduced latency, and excellent spectrum efficiency [34].

Because of high latency and a rise in task failures in a

dynamic environment with frequent changes and unexpected

end-user demand, executing offloaded activities on a subpar

server may lower the quality of service [35, 36]. The resource

management issue at the edge server is addressed using a

Reinforcement-Learning-Based State-Action-Reward-State-

Action (RL-SARSA) technique. Additionally, it chooses the

optimal offloading strategy to lower system expenses like

compute latency and energy consumption [37]. Cloud storage

raises significant security issues. Data breaches can lead to

severe violations of privacy and data integrity, highlighting the

need for robust security measures [38].

3. PROPOSED SCHEME

A lot of storage space is one of the many resources a cloud

service provider offers its clients. Managing the constantly

expanding volumes of data in the cloud is one of the main

problems. In cloud edge computing, the DD approach

improves data management's scalability. However, the

primary issue with data deduplication is security. To overcome

2199

this issue, this study provides a safe data deduplication system

via an integrated cloud-edge environment using convergent

and Unique Tag Deduplication Integrity Check (UTDIC)

methods. This algorithm classifies people according to their

traits. Depending on whether the number of owners of a

collection of data matches the degree of popularity, the data

set may be considered duplicate.

Figure 2. Proposed system

Figure 3. Diagram for edge could deduplication

Figure 2 provides a proposed system for Deduplication

using in the cloud and then generating the chunk file to reduce

the duplicates, initially preprocessing using Threshold

Similarity Measures (TSM) to estimate the text and copies are

removed, then segmenting the cloud folder using CISWH for

storing the file in cluster format and ranking the order based

on the cloud for hashing identification. Checksum Selective

Indexing Chunking (CSIC) is finding the selective index range

for chunking content using Verify the integrity of deduplicated

data by integrating a checksum or error-checking appliance.

Prefetching the local index means allocating the store's

frequently accessed data blocks to the local cache. This

reduces redundant operations on processed chunks and

improves overall deduplication speed. Finally, the Unique Tag

Deduplication Integrity Check (UTDIC) is a validation

mechanism to verify the uniqueness of the tag when creating

or assigning a new tag. This includes checking the repository

to make sure the suggested tag is correct.

3.1 Edge cloud deduplication model

Only on centralised cloud servers does edge computing

allow data to be processed closer to the point of generation.

The process of eliminating multiple copies of repeated content

is known as Deduplication. It is frequently used in storage

systems to boost data speed and reduce the amount of storage

space needed.

Figure 3 shows a balanced design for end users and end

service providers. This edge computing solution consists of

user, storage, and management nodes for error file reduction

and Deduplication.

3.2 Preprocessing data using Threshold Similarity

Measures (TSM)

Preprocessing uses a word-based similarity metric to

discover inputs that surpass a predefined similarity threshold.

2200

Sets the point at which inputs are deemed identical. Using a

similarity metric based on threshold points can help to

decrease duplicate files in cloud storage. To avoid duplicate

data sets, use thresholding similarity algorithms to locate

related texts and delete unnecessary information.

𝑇ℎ𝑒𝑟(𝑡𝑒𝑥𝑡) = 1 −
∑ 𝑆𝑐𝑥(𝑡𝑥𝑡)
𝑁
𝑥=1

𝑁
(1)

where, 𝑇ℎ𝑟𝑒(𝑡𝑒𝑥𝑡) is the threshold of a particular text, and the

N number of records in cloud data, index (x) SCx (text) is a

similarity finding, and SCx (text) =1.

If the xth values of a particular similarity score is between 0

and 1, cloud records X1 and X2 of records calculating

similarity score values of texts. If the similarity score range

between two values of a field is greater than or equal to that

field's range, then the Similarity Score (SS) is defined as:

𝑆𝑐(𝑥1, 𝑥2) = 𝑡1 ∗ 𝑉1(𝑥1, 𝑥2) + 𝑡2 ∗ 𝑉2(𝑥1, 𝑥2)
Similarity=0;

For n=1 to X-1 do

𝑇ℎ𝑟𝑒(𝑛) = 𝑉(𝑛) − 𝑉(𝑛 + 1);
While 𝑀𝑎𝑥 (𝑆𝑐) > 0

X=finsTh.sc (max)

Swap (𝑉(𝑛) − 𝑉(𝑛 + 1));
Remove similarity;

End while

X 1 and X2 are input strings or records to be compared field

by field. T1 and T2 are weighted by the similarity and string

similarity algorithms, respectively, and are equal (t1=t2=0.5).

V1 represents the similarity score, and V2 represents the string

similarity score. This code shows the algorithm for obtaining

the similarity class. It is an iterative process that extracts the

outermost node from the entire set.

3.3 Cluster Index-Based Sliding Window Hashing

(CISWH)

Compared to reduced window or landmark models, very

few research has concentrated on clustering algorithms that

use sliding windows. A CISWH algorithm that is effective.

The technique seeks to deliver quick, excellent clustering

outcomes. Compared to previous methods, our method's

unique data structure and process can perform full-range

clustering on tuples and reduce the computational cost of

operations such as insert, delete, and search. Sliding window

aggregation divides the window into blocks and aggregates the

summaries of these blocks to create a window.

Our method uses hashing, whereas the other uses a tree

structure to find the nearest CF. The ' current state is S1=c1,

c2, S2=c3, S3=x4, and the input variables are c1, c2, ... (ci+1

is fresher than ci). The current loads are combined when a new

tuple, c5, appears, and a new bucket with the new tuple is

created, with S1=c1, c2, S2=c3, c4, and S3=c5. A sliding

window advances and deletes loads that have expired

timestamps. Nonetheless, the timestamps within a container

could differ. If the sliding window in the example has a size of

4, it should remove the tuple x1.

3.3.1 Sliding window

Only arrays with timestamps from the window's start to the

current timestamp are included in sliding windows. In

particular, the timestamp of the tuple 𝑥𝑖 and the current

timestamp t can define the window as a weight function.

𝒔𝑤(𝑥 − 𝑥𝑖) = {
1, 𝑖𝑓 𝑥 − 𝑥𝑖 ≤ 𝑉
0, 𝑖𝑓𝑥 − 𝑥𝑖 > 𝑉

(2)

where, V is the sliding window's temporal range, the window

removes the Cluster's loads based on the vectors. When

another 100 tuples come, the previous 100 are removed from

the window, and the new 100 are attached. The terms "a

window slides" and "a window moves" indicate that when set

SLIDE to V, the window's oldest V tuples are eliminated, and

fresh V tuples are inserted.

Sum0;

For x1 to V do

 𝑆𝑢𝑚𝑆𝑢𝑚 + 𝑋(𝑖);
End

Resultsum;

 For x v+1 to n do

𝑆𝑢𝑚𝑠𝑢𝑚 + 𝑥(𝑖) − 𝑥(𝑥 − 𝑥𝑖);
 Result Max (Res, sum)

 End

Return

First, all possible starts of the range are repeated. Each

range's elements are iterated from V to V+n-1, and their sum

is calculated.

Depending on the sliding condition and time unit, sliding

windows can be classified as either time-based or triple-based.

An index-based window for clarity, while a time-based

window may also be examined using the same techniques.

3.3.2 Cluster index

A clustered index is constructed using a column or group of

columns that uniquely identify each entry. This makes index

maintenance easier.

Assuming the incoming data streams 𝑥 =
ℎ𝑥1, 𝑡1𝑖, ℎ𝑥2, 𝑡2𝑖, ..., I cannot fulfill that request for the sliding

interval L=3, with 3 clusters (c=3) and a window size R=9.

|C|=5.

The number of tuple structures, their square sum, and their

linear sum are all maintained by the Clustering Feature (CF).

If the radius of a new tuple is less than a predetermined

threshold, the nearest CF absorbs it.

I ≤ 𝐶𝐼 is the clustering index range to be calculated based

on the data distance evaluation using weights 𝑤1, 𝑤2,

(𝑤1, 𝑤2) = ||𝑤1 −𝑤2||
2 = √∑(|𝑤1𝑥 − 𝑤2𝑥||

2)

𝑤

𝑥−1

 (3)

𝐶𝑜𝑛𝑠𝑡 (𝑤, 𝑣) = ∑𝑟𝑎𝑛𝑔𝑒2

𝑥∈𝑉

(𝑤, 𝑣) (4)

𝐶𝑜𝑛𝑠𝑡 𝑤(𝑤, 𝑣) =∑𝑤(𝑥).𝑤𝑒𝑖𝑔ℎ𝑡2(𝑤, 𝑣)

𝑥∈𝑆

 (5)

Aggregation aims to reduce the total squared distances

between each tuple in S and the nearest range. The clusters

have a weight function value with a sliding window. Figure 4

illustrates the cluster indexing grouping.

𝐶𝑜𝑛𝑠𝑡 (𝑤, 𝑣) = ∑𝑟𝑎𝑛𝑔𝑒2

𝑥∈𝑉

(𝑤, 𝑣) ∗ (𝑡 − 𝑡𝑤) (6)

2201

𝐶𝑜𝑛𝑡𝑂𝑝𝑡
𝑛 (𝑤) = min

𝐶∈𝑟𝑎𝑛𝑔𝑒2,||𝐶||=𝑛
𝑐𝑜𝑛𝑠𝑡(𝑤, 𝑣) (7)

Figure 4. Cluster index grouping

The clustering sliding window is processed in the cluster

center, and the indexing range follows each Cluster; the

quality of the clusters depends on the index cluster centers.

3.3.3 Cluster index hashing with Sliding window

𝑥1 = 0, 𝑥2 = 0; 𝑐𝑜𝑛𝑡 = 0 (8)

Sliding window cluster index (data)

While 𝑥2 is less, the counting of the clusters

𝑥2 = 𝑥 + 1 (9)

Error rate Index. Cluster (Data, 𝑥1, 𝑥2)

If index err is generating the Hash

𝑥1 = 𝑥2
𝐶𝑥1(𝐶𝑜𝑛) = 𝑥2

End if

Hash Index (𝑥1, 𝑥2))

If HHash (X. Get cluster Number (Chunk))

SWH.get (H)

Delete By Key (H Chunk)

It is Joint (x, y) then

Insert ((x, y))

Else

Data_ Insert (H)

Count the number of Chunks

Return

End if

End while

In addition, blocks often contain features much deeper than

the average sort depth, which increases the RAM required to

store hash tables in a particular location. Instead of a hash table

with conflict resolution, use a hash table H with fixed size h

without conflict resolution. Differently named alignments are

assigned the same hash value.

3.4 Checksum Selective Indexing Chunking (CSIC)

A checksum is a value calculated by summing the bits in a

data collection. It is used to identify mistakes in data transfer

or storage. Selecting specific data or material for inclusion in

an index is called selective indexing. In databases or search

engines, it entails choosing which qualities or fields to include

in an index to permit faster and more efficient search

operations. Indexing Chunking is the technique of dividing

vast information into smaller, more manageable "chunks." It

is frequently used for memory and learning.

Input: Default values, Length of sliding window, W

Output: Index selection

Function Checksum Chunking (File, values)

X=1;

Indexing Checksum=0;

While (Checksum=read (file))

Array [index%W+1]=checksum length

If selecting. Length>=V then

If the hash value (Checksum,

index,v)==Checksum values, then

Return x

End if

Else

Continue

End if

X=x+1

End while

End

Figure 5. Chunking process

2202

Figure 5 shows a comparison of the Chunking Method. (A)

While fixed-size chunking is fast, it has a boundary-shift

problem. (a) The issue can be resolved using variable-size

chunking, but each byte requires some processing. (c) This

problem can be improved with the time complexity of O(1) by

using the constant-time chunking that this study suggests;

variable-size and reverse chunking, on the other hand, only

identify the first and final chunks, leaving a sizeable middle

chunk c.

File types and sizes are represented as an array of bytes in

the input.

Different-sized File Chunks, Max Th and Min Th, are

generated.

Step 1: Configure the File Length (f).

Find the Length of the L.

Set the Endpoint to 0 and the Startpoint to 0.

Step 2: Though Not the End of the DocumentIf Len is equal

to zero, then move on to Step 5. Should Len match Min Th

Proceed to Step 3 after setting the File Chunk Bytes from

Startpoint to (Startpoint+Len).

Else If (Min Th.+L)=Len, Then

Proceed to Step 3 after setting the File Chunk Bytes from

Startpoint to (Startpoint+Len+L).

Endpoint

Bytes of File from Endpoint+L should be selected as the

window size.

Step 3: End

Additionally, chunking files with minimum and maximum

values are sometimes used as a hard barrier to prevent massive

storage of chunk size variation factors.

3.5 Prefetching Local Index Caching (PLIC)

Prefetching Local Index Caching is an approach used in

computing to increase system speed by retrieving data or

instructions on a local system or device before generating an

index rather than depending on a centralized index. Reducing

the need to query a central index can improve access times for

frequently used data. Caching is keeping copies of frequently

requested data at a location that enables quicker retrieval.

Local index caching may refer to retaining a cache of

commonly used index data on a local system to speed up

search or retrieval processes.

𝐶𝑛 = (𝑓𝑖𝑣: 𝑣 ∈ 𝑊,𝑤 ∈ |𝑤| = 𝑡, 𝑥 ∈ |𝑁|) (10)

𝑐𝑑 = (⊕∈ 𝑊;
𝑓𝑖𝑣

[𝑠]
: 𝑆 ⊆ |𝑁|, |𝑠| = 𝑡 + 1) (11)

Which requires broadcasting 𝑣 ∈ 𝑊: 𝑆 bits. Note that user

kS, for S), wants
𝑓𝑖𝑣

[𝑠]
: 𝑆 and has cached 𝑡 ∈ 𝑊 for all s∈S: s

6=k so that it can recover
𝑓𝑖𝑣

[𝑠]
: 𝑆 rom Xt and the cache content.

𝑤𝑥,𝑦𝑀𝑎𝑥 (𝑡) =
(𝑁
𝑇+1
) − (𝑁−min (𝑛,𝑚)

𝑡+1
)

(𝑁
𝑡
)

≥ 𝑉𝑥 (12)

𝑁
𝑇+1

 With 𝑡 ∈ 𝑣 the sub set t- an integer, one takes the lower

convex envelope of set of points (x,v)=
𝑁−min (𝑛,𝑚)

𝑡+1
 for t∈[0:

n].

∈𝑛≔ max
𝑥∈[𝑛]

𝑃𝑟𝑒{𝑤𝑥(𝑥
𝑛, (𝑁: 𝑥 ∈ 𝑖)) ≠ 𝐷𝑣} (13)

𝑅 ∈ ⋂ ⋃ 𝑅(
𝑁

𝑃
+ 𝐶𝑖)

𝑋𝑣′𝐶𝑖∈𝑉𝑥∈|𝑛|

(14)

⋃ 𝑅(
𝑁
𝑃
|𝐶𝑖)

𝑋𝑣′𝐶𝑖∈𝑉

= 𝑅(𝑃 + 1) (15)

∑ 𝑈𝑥 < 1

𝑋:𝑋∈|𝑁|

 (16)

The attainable step technique for composite (index) coding

is based on prefetching decoding. If the cache placement phase

is coded in caching, the delivery phase is a well-specified

message and demand set.

3.5 Unique Tag Deduplication Integrity Check (UTDIC)

Users can use UTDIC to create unique validation tags to

ensure data integrity across CSPs and enable Deduplication.

At the same time, to prevent the results of CSP duplicate

checking during the file upload process from misleading users,

UTDIC is based on the private set intersection, which allows

users to determine whether files are duplicates before CSP.

UTDIC requires challenger A to reply with (R) valid note

sets to pass the integrity check.

𝛿 =∑  

𝛾

𝑖=1

𝑃(𝑆𝑢𝑐𝑒𝑠𝑠,𝑖)
𝐴 = (1 − 𝜌𝑎𝑑𝑣)

𝛾

+
𝛾𝜌𝑎𝑑𝑣(1 − 𝜌𝑎𝑑𝑣)

𝛾−1

2𝑛𝑠
+ 𝑜(

1

2𝑛𝑠
)

⏟
𝜉

(17)

UTDIC can recover rD ¼ d if there are more than d 2

corrupted errors in a block, our protocol cannot recover the

blocks.

𝑃(𝐹𝑎𝑖𝑙,𝑖)
𝜎 ≤ 𝑒𝑥𝑝(−

𝜌𝑎𝑑𝑣𝐷

3
(1 −

𝜌

𝜌𝑎𝑑𝑣
)𝑧) (18)

(1 −
𝜌

𝜌𝑛𝜖𝑔
)2𝜌𝑛𝜖𝑔 =

3ln (2)𝜏

𝐷
𝑎𝑛𝑑𝜌𝑛𝜖𝑔 < 𝜌 (19)

Next, choose a threshold (T) for the query time g so our

protocol will discover a chunk reduction. A with an

overwhelming likelihood if it corrupts more than γ neg

proportion of the blocks. 𝑖𝑓 𝑔 >= 𝑛𝑒𝑔 𝑎𝑛𝑑 𝑟𝑎𝑑𝑣 >
𝜂𝑛𝑒𝑔. 𝑁𝑒𝑥𝑡

𝑅𝑒𝑠𝑝 ∗ 𝑏−1𝑚𝑜𝑑𝑚 = (𝑣 × 𝐷) ∗ 𝑏−1𝑚𝑜𝑑𝑚

= (𝑏𝑒 × 𝐷) ∗ 𝑏−1𝑚𝑜𝑑𝑚
= 𝑒 × 𝐷𝑚𝑜𝑑𝑚

(20)

𝐷 = (

𝑑11 ⋯ 𝑑1𝑦
⋮ ⋱ ⋮
𝑑𝑥1 ⋯ 𝑑𝑥𝑦

) (21)

Then

𝑒 × 𝐷mod𝑚 = (∑ 

𝑥

𝑖=1

𝑒𝑖𝑑𝑖1,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖2, … ,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖𝑦)mod𝑚

= (∑ 

𝑥

𝑖=1

𝑒𝑖𝑑𝑖1,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖2, … ,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖𝑦)

(22)

2203

Demonstrate the efficacy of utilizing the UTDIC approach

to retrieve the query column containing the notes, enabling

many users to generate their verification tags while

maintaining support for tag deduplication at the CSP.

Additionally, try your hardest to guarantee that the data

duplication check is accurate.

3.5.1 Deduplication file

The proposed approach of deduplication functions at the file

level. Only text files (.txt) are allowed. The user and his cloud

environment are the two stakeholders. Google Drive is the

cloud environment in this case. The files to be uploaded are

selected by the user using this method. The UTDIC technique

is used to produce the file's hash. The hash value of the cloud

and uploaded files are compared throughout the upload

process. Uploading of the file will be blocked if a match is

discovered. The chosen file will be uploaded successfully,

even without a support file.

The new file's bin information and the segment numbers

that were generated for it are added to the file-to-segment

metadata. The segments that are duplicates have the same

segment number. The quantity of file-generated unique Tag

segments is updated in the bin structure configuration file. In

essence, the number of segments beneath each bin is counted

in this file. This module uses gzip to compress and decompress

files, saving additional storage space.

Begin Deduplicated

Index_file [] cluster chunk=

Hash_cluster_Identifier ()

ForEach(Seg in clusters[])do

Index_clusters calculating

hash(seg)

If (Index_file==Hash[]) then

Downloading file

authenticated user

End

Else

Error Message

End

End

End

A list search has already produced the computed hash value.

The hash () function generates this list lookup. Specific

segments are not preserved if the hash value is present. If not,

the section is stored as indicated and then downloaded

afterward.

4. RESULT AND DISCUSSION

The outcomes are verified using an EC2 server instance, a

cloud environment powered by Amazon Web Services (AWS),

and EBS storage; a duplicate dataset is created by combining

the gathered content files to provide deduplication redundancy

storage. The UTDIC implementation uses lookup indexing

tables and indexed hash table files to perform block-based

comparisons. This technique yields better results than others

when tested using a confusion matrix to gauge efficiency in

terms of precision, recall, false rate, and accuracy of storage

optimization. Table 2 provides a clear illustration of

simulation processing.

The introduced technique provides better performance

under different levels of testing by ensuring accuracy of

collection, time complexity, and recall.

Table 2. Simulation processing

Simulation Parameters Values

Environment of Cloud AWS cloud storage

Size of data 20Gb

Tool Visual Studio/ c#

Table 3. Analysis of precision rate

Performance of Precision Rate in %

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC

10GB 74.3 87.3 89.1 92.4 94.8

15GB 76.8 84.6 85.4 94.9 95.4

20GB 77.2 85.5 87.8 96.3 97.9

Table 4. Analysis of false rate

Analysis of False Rate %

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC

10GB 6.5 5.2 4.9 4.6 3.8

15GB 7.8 7.4 6.2 5.6 3.5

20GB 10.3 9.6 7.3 4.4 2.3

Table 5. Performance of storage

Performance of Storage Rate in %

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC

10GB 6.8 10.4 15.6 20.5 28.2

15 GB 7.3 14.9 18.1 23.4 33.6

20 GB 15.7 23.3 26.5 34.7 43.2

Figure 6. Performance of precision rate

Figure 7. Performance of recall rate

Table 3 shows the performance comparison results of

invention accuracy by different methods. Compared to other

2204

approaches, the proposed UTDIC can provide improved

accuracy in terms of precision ratio.

Figure 6 clearly illustrates different methods for diverse

data sizes to observe the performance of the tested accuracy.

The proposed UTDIC performs at 97.9% and can be

associated with the tested pipeline in 10GB size. While the

RSLI-SCCC method attained 96.3%, the existing REED,

DSSE, and TDICP methods are 77.2%, 85.5%, and 87.8% of

precision performance.

Recall performance can be measured using various methods,

as illustrated in Figure 7. The proposed method shows 98.8%,

compared with the tested methods on 10GB data. Also, the

proposed UTDIC algorithm can achieve higher memory

efficiency than other methods. While the RSLI-SCCC method

attained 96.6%, the existing REED, DSSE, and TDICP

methods are 72.2%, 83.5%, and 94.6% of recall performance,

respectively. The previous methods obtained less recall rate

performance.

The results show that the proposed UTDIC algorithm's

classification rate is lower than that of other methods.

Furthermore, Table 4 lists the error rate production rates

measured by the different methods.

Figure 8. False classification rate

Figure 9. Comparison of storage optimization performance

rate

Figure 10. Time process

Figure 8 illustrates the many approaches used to quantify

the productivity of the error redundancy rate. The suggested

UTDIC is 2.3% compared to the techniques evaluated on

10GB of data. According to the data, the proposed UTDIC

process has a lower organization ratio than alternative

techniques. While the RSLI-SCCC method attained 4.4%, the

existing REED, DSSE, and TDICP methods are 10.3%, 9.6%,

and 7.3% of false rate performance. The previous methods

obtained high false rate performance.

Performance analysis Figure 9 shows the results of the

storage enactment ratios of the diverse methods in memory.

Compared to the methods tested on 10GB of data, the offered

UTDIC gives the best performance, up to 43.2%, reduces data

duplication, and minimizes memory consumption. However,

the traditional methods still need to achieve efficient storage

optimization performance.

Table 5 analyzes the storage performance rate performance

measure and provides a variance estimate for the compared

datasets. The comparison results show that the suggested

UTDIC system uses less storage than the other approaches.

Figure 10 above shows the production measurement time

flow for different methods. The proposed UTDIC algorithm

reduces the time compared to other methods. Compared to the

methods tested with 10GB data, the proposed UTDIC yields

the best performance up to 6.2 (s), DSSE yields 8.9 (s), and

RSLI-SCCC delivers 6.7 (s).

4.1 Discussion

The experimental results show that the proposed method

attains proficient precision, recall, false rate, storage

optimization, and time process performance. The proposed

method reaches 94.8%, 95.4%, and 97.9% for 10GB, 15GB,

and 20GB, respectively. Similarly, the existing method

individually obtained 77.2%, 85.5%, 87.8%, and 96.3% for

REED, DSSE, TDICP, and RSLI-SCCC.

Another parameter is recalling comparison performance.

The proposed method attained a recall result of 98.8%;

similarly, the traditional methods like the RSLI-SCCC method

attained 96.6%, the existing REED, DSSE, and TDICP

methods are 72.2%, 83.5%, and 94.6% of recall performance,

correspondingly.

Also, storage optimization performance outcomes in the

cloud environment. The proposed UTDIC method attains

28.2%, 33.6%, and 43.2%. Likewise, the time process and

false rate performance achieved fewer outcomes by the

proposed method. However, the traditional method gained a

higher time process and false rate performance.

5. CONCLUSION

In conclusion, edge cloud deduplication is now a vital

remedy in distributed computing. This technique enhances the

overall performance of edge devices in addition to optimizing

bandwidth utilization and storage economy. Duplication

minimizes latency, speeds up data transfers, and eases the load

on network resources by removing redundant data at the edge.

With edge computing still a significant player in many sectors,

it is increasingly dedicated to efficient operation data

management. Deduplication is the most well-known method

of data compression. Many existing approaches presented

various deduplication algorithms but were insecure in a cloud-

based secure deduplication solution based on convergent and

2205

UTDIC algorithms. Using file sizes ranging from 10GB to 20

GB, with a 10GB increment in each iteration, the suggested

system's performance was assessed. According to the

performance research, the proposed method has a 43.2%

storage optimization performance, which is higher than the

other existing approaches and has a promising outcome. To

guarantee the correctness of the duplication check, however,

we employed a novel challenge and answer approach in the

duplication check UTDIC, allowing the data deliverer, rather

than the CSP, to ascertain if a file is duplicated first. According

to security and performance, UTDIC is safe and effective

within the specified security model. In the future, we can

improve de-duplication performance using an indexing

approach.

REFERENCES

[1] Stanek, J., Kencl, L. (2016). Enhanced secure

thresholded data deduplication scheme for cloud storage.

IEEE Transactions on Dependable and Secure

Computing, 15(4): 694-707.

https://doi.org/10.1109/TDSC.2016.2603501

[2] Teng, Y., Xian, H., Lu, Q., Guo, F. (2022). A data

deduplication scheme based on DBSCAN with tolerable

clustering deviation. IEEE Access, 11: 9742-9750.

https://doi.org/10.1109/ACCESS.2022.3231604

[3] Luo, R., Jin, H., He, Q., Wu, S., Xia, X. (2023). Enabling

balanced data deduplication in mobile edge computing.

IEEE Transactions on Parallel and Distributed Systems,

34(5): 1420-1431.

https://doi.org/10.1109/TPDS.2023.3247061

[4] Li, J., Su, Z., Guo, D., Choo, K.K.R., Ji, Y., Pu, H. (2020).

Secure data deduplication protocol for edge-assisted

mobile crowdsensing services. IEEE Transactions on

Vehicular Technology, 70(1): 742-753.

https://doi.org/10.1109/TVT.2020.3035588

[5] Ming, Y., Wang, C., Liu, H., Zhao, Y., Feng, J., Zhang,

N., Shi, W. (2022). Blockchain-enabled efficient

dynamic cross-domain deduplication in edge computing.

IEEE Internet of Things Journal, 9(17): 15639-15656.

https://doi.org/10.1109/JIOT.2022.3150042

[6] Lang, W., Ma, W., Zhang, Y., Wei, S., Zhang, H. (2020).

EdgeDeup: An edge-IoT data deduplication scheme with

dynamic ownership management and privacy-preserving.

In 2020 IEEE 4th Information Technology, Networking,

Electronic and Automation Control Conference (ITNEC),

Chongqing, China, IEEE, 1: 788-793.

https://doi.org/10.1109/ITNEC48623.2020.9085119

[7] Xie, Q., Zhang, C., Jia, X. (2022). Security-aware and

efficient data deduplication for edge-assisted cloud

storage systems. IEEE Transactions on Services

Computing, 16(3): 2191-2202.

https://doi.org/10.1109/TSC.2022.3195318

[8] Shen, G.L., Lee, C.R. (2022). FLOMD: Fast and low

overhead memory deduplication for edge nodes. In 2022

IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), Bangkok,

Thailand, pp. 83-90.

https://doi.org/10.1109/CloudCom55334.2022.00022

[9] Hurst, A., Lucani, D.E., Assent, I., Zhang, Q. (2022).

GLEAN: Generalized-deduplication-enabled

approximate edge analytics. IEEE Internet of Things

Journal, 10(5): 4006-4020.

https://doi.org/10.1109/JIOT.2022.3166455

[10] Aparna, R., Bandopadhyay, S., Pandey, S. (2021).

Blockdrive: A deduplication framework for cloud using

edge-level blockchain. In 2021 International Conference

on Communication Information and Computing

Technology (ICCICT), Mumbai, India, pp. 1-6.

https://doi.org/10.1109/ICCICT50803.2021.9510039

[11] Tulkinbekov, K., Kim, D.H. (2020). CaseDB:

Lightweight key-value store for edge computing

environment. IEEE Access, 8: 149775-149786.

https://doi.org/10.1109/ACCESS.2020.3016680

[12] Ni, J., Lin, X., Shen, X.S. (2019). Toward edge-assisted

Internet of Things: From security and efficiency

perspectives. IEEE Network, 33(2): 50-57.

https://doi.org/10.1109/MNET.2019.1800229

[13] Gadde, S., Rao, G.S., Veesam, V.S., Yarlagadda, M.,

Patibandla, R.S.M.L. (2023). Secure data sharing in

cloud computing: A comprehensive survey of two-factor

authentication and cryptographic solutions. Ingénierie

des Systèmes d’Information, 28(6): 1467-1477.

https://doi.org/10.18280/isi.280604

[14] Cheng, G., Guo, D., Luo, L., Xia, J., Gu, S. (2021). LOFS:

A lightweight online file storage strategy for effective

data deduplication at network edge. IEEE Transactions

on Parallel and Distributed Systems, 33(10): 2263-2276.

https://doi.org/10.1109/TPDS.2021.3133098

[15] Song, M., Hua, Z., Zheng, Y., Xiang, T., Jia, X. (2023).

FCDedup: A two-level deduplication system for

encrypted data in fog computing. IEEE Transactions on

Parallel and Distributed Systems, 34(10): 2642-2656.

https://doi.org/10.1109/TPDS.2023.3298684

[16] Ni, J., Zhang, K., Yu, Y., Lin, X., Shen, X.S. (2018).

Providing task allocation and secure deduplication for

mobile crowdsensing via fog computing. IEEE

Transactions on Dependable and Secure Computing,

17(3): 581-594.

https://doi.org/10.1109/TDSC.2018.2791432

[17] Jiang, S., Jiang, T., Wang, L. (2017). Secure and efficient

cloud data deduplication with ownership management.

IEEE Transactions on Services Computing, 13(6): 1152-

1165. https://doi.org/10.1109/TSC.2017.2771280

[18] Li, H., Dong, M., Liao, X., Jin, H. (2015). Deduplication-

based energy efficient storage system in cloud

environment. The Computer Journal, 58(6): 1373-1383.

https://doi.org/10.1093/comjnl/bxu122

[19] Yu, X., Bai, H., Yan, Z., Zhang, R. (2022). Veridedup: A

verifiable cloud data deduplication scheme with integrity

and duplication proof. IEEE Transactions on Dependable

and Secure Computing, 20(1): 680-694.

https://doi.org/10.1109/TDSC.2022.3141521

[20] Yang, X., Lu, R., Shao, J., Tang, X., Ghorbani, A.A.

(2020). Achieving efficient secure deduplication with

user-defined access control in cloud. IEEE Transactions

on Dependable and Secure Computing, 19(1): 591-606.

https://doi.org/10.1109/TDSC.2020.2987793

[21] He, Q., Bian, G., Zhang, W., Zhang, F., Duan, S., Wu, F.

(2021). Research on routing strategy in cluster

deduplication system. IEEE Access, 9: 135485-135495.

https://doi.org/10.1109/ACCESS.2021.3116270

[22] Guo, S., Mao, X., Sun, M., Wang, S. (2023). Double

sliding window chunking algorithm for data

deduplication in ocean observation. IEEE Access, 11:

2206

70470-70481.

https://doi.org/10.1109/ACCESS.2023.3276785

[23] Yuan, H., Chen, X., Li, J., Jiang, T., Wang, J., Deng, R.H.

(2019). Secure cloud data deduplication with efficient re-

encryption. IEEE Transactions on Services Computing,

15(1): 442-456.

https://doi.org/10.1109/TSC.2019.2948007

[24] Jin, X., Liu, H., Ye, C., Liao, X., Jin, H., Zhang, Y.

(2023). Accelerating content-defined chunking for data

deduplication based on speculative jump. IEEE

Transactions on Parallel and Distributed Systems, 34(9):

2568-2579.

https://doi.org/10.1109/TPDS.2023.3290770

[25] Chen, L., Li, J., Li, J. (2023). Toward forward and

backward private dynamic searchable symmetric

encryption supporting data deduplication and

conjunctive queries. IEEE Internet of Things Journal,

10(19): 17408-17423.

https://doi.org/10.1109/JIOT.2023.3274390

[26] Wang, Z., Gao, W., Yu, J., Shen, W., Hao, R. (2023).

Lightweight secure deduplication based on data

popularity. IEEE Systems Journal, 17(4): 5531-5542.

https://doi.org/10.1109/JSYST.2023.3307883

[27] Yao, W., Hao, M., Hou, Y., Li, X. (2022). FASR: An

efficient feature-aware deduplication method in

distributed storage systems. IEEE Access, 10: 15311-

15321. https://doi.org/10.1109/ACCESS.2022.3147545

[28] Wu, J., Hua, Y., Zuo, P., Sun, Y. (2018). Improving

restore performance in deduplication systems via a cost-

efficient rewriting scheme. IEEE Transactions on

Parallel and Distributed Systems, 30(1): 119-132.

https://doi.org/10.1109/TPDS.2018.2852642

[29] Guim, F., Metsch, T., Moustafa, H., Verrall, T., Carrera,

D., Cadenelli, N., Chen, J., Doria, D., Ghadie, C., Prats,

R.G. (2021). Autonomous lifecycle management for

resource-efficient workload orchestration for green edge

computing. IEEE Transactions on Green

Communications and Networking, 6(1): 571-582.

https://doi.org/10.1109/TGCN.2021.3127531

[30] Shi, W., Zhang, J., Zhang, R. (2019). Share-based edge

computing paradigm with mobile-to-wired offloading

computing. IEEE Communications Letters, 23(11):

1953-1957.

https://doi.org/10.1109/LCOMM.2019.2934411

[31] Cui, G., He, Q., Li, B., Xia, X., Chen, F., Jin, H., Xiang,

Y., Yang, Y. (2021). Efficient verification of edge data

integrity in edge computing environment. IEEE

Transactions on Services Computing, 15(6): 3233-3244.

https://doi.org/10.1109/TSC.2021.3090173

[32] Luo, R., Jin, H., He, Q., Wu, S., Xia, X. (2022). Cost-

effective edge server network design in mobile edge

computing environment. IEEE Transactions on

Sustainable Computing, 7(4): 839-850.

https://doi.org/10.1109/TSUSC.2022.3178661

[33] Kiani, A.Y., Hassan, S.A., Su, B., Pervaiz, H., Ni, Q.

(2020). Minimizing the transaction time difference for

NOMA-based mobile edge computing. IEEE

Communications Letters, 24(4): 853-857.

https://doi.org/10.1109/LCOMM.2020.2966442

[34] Douch, S., Abid, M.R., Zine-Dine, K., Bouzidi, D.,

Benhaddou, D. (2022). Edge computing technology

enablers: A systematic lecture study. IEEE Access, 10:

69264-69302.

https://doi.org/10.1109/ACCESS.2022.3183634

[35] Valadares, D.C.G., De Oliveira Filho, T.B., Meneses,

T.F., Santos, D.F., Perkusich, A. (2022). Automating the

deployment of artificial intelligence services in

multiaccess edge computing scenarios. IEEE Access, 10:

100736-100745.

https://doi.org/10.1109/ACCESS.2022.3208118

[36] Jamil, M.N., Hossain, M.S., Islam, R.U., Andersson, K.

(2023). Workload orchestration in multi-access edge

computing using belief rule-based approach. IEEE

Access, 11: 118002-118023.

https://doi.org/10.1109/ACCESS.2023.3326244

[37] Alfakih, T., Hassan, M.M., Gumaei, A., Savaglio, C.,

Fortino, G. (2020). Task offloading and resource

allocation for mobile edge computing by deep

reinforcement learning based on SARSA. IEEE Access,

8: 54074-54084.

https://doi.org/10.1109/ACCESS.2020.2981434

[38] Abdalhameed, A.A., Kadhim, A.I. (2024). Data recovery

in cloud data storage. Ingénierie des Systèmes

d’Information, 29(5): 1959-1966.

https://doi.org/10.18280/isi.290527

2207

