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Edge computing is an extension of cloud computing that uses additional middleware, or 

edge nodes, located closer to clients to speed up request processing for the central cloud. It 

offers benefits such as reduced latency and bandwidth savings at the edge. Extensive 

research has focused on decryption technologies for encrypted data to enhance the security 

and functionality of traditional cloud systems while maintaining privacy. Secure encryption 

techniques on the server side protect data privacy but can hinder network performance and 

allow for multiple uploads. On the other hand, a client-side approach improves network 

performance but is vulnerable to data leakage. To overcome the problem, we proposed a 

new method based on Checksum Selective Indexing Chunking (CSIC) for improving cloud 

storage for deduplication files and an error checking that verifies the integrity of the deleted 

data. Initially, preprocessing can reduce the similarity of text and duplicates between files 

based on the Threshold Similarity Measures (TSM) and calculate the similarity scores. The 

second stage is segmentation, based on a Cluster Index-Based Sliding Window Hashing 

(CISWH) for segmenting the index content using the set. Each data set uses a Hash identifier 

for chunk contents. Then, the content integrity should be ranked based on the weightage of 

the file and reduced the empty storage in the cloud by processing a large number of edge 

data copies and finding multiple degraded edge data files using Prefetching Local Index 

Caching (PLIC). Then, the Unique Tag Deduplication Integrity Check (UTDIC) is used to 

download private information in the cloud. A protection analysis demonstrates the accuracy 

and robustness of the scheme. This method allows you to identify data redundancies at the 

block level and reduce data redundancies more effectively. The simulation results show that 

the proposed method is superior in terms of computational efficiency and security level. 

Thus, the proposed attains high results in terms of precision at 97.9%, recall at 98.8%, and 

storage optimization performance at 43.2%. 
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1. INTRODUCTION

Multi-user cloud storage solutions with shared networks are 

gaining popularity due to the constant increase in data creation 

on a global scale. However, many users still need to be more 

hesitant to move data to remote storage due to concerns about 

data security. Encrypting data before it leaves the owner's 

property is a standard procedure. While this method is 

beneficial for safety, it hinders storage efficiency features such 

as compression and Deduplication. These features allow 

storage providers to utilize their back-ends more effectively 

and serve more customers with the same infrastructure. 

However, because they no longer own this data locally, 

service providers find it challenging to maintain complete 

control over their data housed on dispersed edge servers. In the 

highly distributed edge computing environment, edge servers 

should not be taken for granted since hardware and software 

exceptions might occur accidentally or maliciously. When it 

comes to edge computing, the issue intensifies considerably. 

The unique characteristics of edge computing allow us to 

maintain traditional methods of maintaining data integrity 

with edge data from cloud service providers. 

First, edge servers typically have low processing power, 

whereas most cloud data integrity techniques assume and 

leverage the near-limitless computing power of cloud servers. 

Then, to serve regional customers, service providers typically 

cache their viral data on edge servers in specific locations. The 

service provider cannot look at each edge data point separately 

to find the problematic ones because of excessive processing 

and bandwidth consumption. One technique now being used 

to guarantee cloud data security is proven data possession 

(PDP) and its variations. They are intended to enable users of 

thin clients to seek data integrity challenges from major cloud 

storage providers such as Google or Amazon. 

Data deduplication is when a storage provider keeps just one 

duplicate of a file (or portion of a file) that several users hold. 

Four distinct deduplication methods differ based on whether 

Deduplication happens at the file or block level and whether it 

happens on the client or server side. Because client-side data 

deduplication ensures that many uploads of the same content 
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only consume a single upload's network bandwidth and 

storage space, it is preferable to server-side data deduplication. 

Although security was not included in the initial 

deduplication designs, it rapidly became necessary when users 

sought data protection. Deduplication seems possible with 

convergent encryption, which uses plaintext as the encryption 

key. This technology is secure and easy to use. Regretfully, it 

was shown to be susceptible [1]. Moreover, a general 

impossibility conclusion contends that basic convergent 

encryption techniques cannot provide traditional semantic 

security. 

Figure 1 describes Deduplication in edge cloud using the 

chuck files to store the cloud, first segmenting the file in a 

cluster set to reduce the similarity hash contents. Reduce the 

number of computation operations for each hash that computes 

a part of the hash and minimize duplication. This further 

accelerates the decoupling process while achieving the same 

decoupling result. On the other hand, tags assume a user-based 

response mechanism instead of duplicating files, so cloud 

users cannot cheat users using duplicate check results when 

files are uploaded. Complete, and the same checks will be 

ignored. Therefore, Deduplication is assumed to exist. 

Figure 1. The basic flow of Deduplication in the cloud 

2. PRELIMINARIES

Evaluating previous literature can uncover gaps, 

contradictions, or limits in the current understanding of the 

issue. This information contributes to the creation of research 

topics and helps justify the necessity for additional research. 

End-to-end encryption is becoming increasingly popular 

due to recent data breach incidents, as more individuals and 

businesses are outsourcing their data to cloud storage. 

Regretfully, semantically secure encryption renders several 

affordable storage optimization strategies, including data 

deduplication, useless [1]. Users want to keep encrypted data 

on cloud servers to safeguard their privacy. Cloud servers 

reduce the cost of storage and network traffic by removing 

redundant copies. First, aggregation bias is used to resolve the 

potential risk of internal data leakage [2]. 

Customers can access low-latency services using Edge 

Storage Systems (ESS), which are made up of linked edge 

servers in a specific location. Conversely, poor edge server 

storage capabilities result in large data storage overheads, a 

significant obstacle to maintaining an ESS's application 

performance [3]. However, in edge-based mobile 

crowdsensing systems, it could be challenging to carry out safe 

data deduplication while also shielding participants (like 

clients and recruited mobile users) and sensing data from 

different threats (like external and internal assaults) [4]. Data 

deduplication can improve communication efficiency while 

saving storage space. However, data deduplication brings new 

edge computing functionality and security concerns [5]. 

The interaction above is much reduced by fine-grained 

admission control using client-level keys and update tools 

since the cloud server handles the proprietorship change [6]. 

In any case, no current work can give different deduplication 

effectiveness and assurance for various information lumps. A 

security-mindful and compelling information deduplication 

plot for edge-helped distributed storage frameworks. It works 

on the proficiency of Deduplication and lessens data spillage 

brought about by recurrence examination assaults [7]. The 

smooth execution of a considerable measure of holders 

simultaneously on the hubs with restricted figuring assets 

remains a test [8]. It has been shown that the summed-up 

Deduplication (GD) pressure calculation offers serious 

pressure proportion, throughput, and arbitrary access 

properties that empower direct examination of packed 

information [9]. 

Even with the widespread use of deduplication techniques 

by cloud service providers, a substantial amount of overhead 

bandwidth still needs to be increased. To reduce this extra 

traffic, a middleware deduplication layer that verifies the 

legitimacy of files without accessing the cloud is created [10]. 

Provide CaseDB, a unique key-value store that aggressively 

isolates keys and bloom filters on the nonvolatile memory 

express (NVMe) disk and saves the SSD values to overcome 

the main problems with an LSM tree [11]. 

Portable edge processing is arising to deal with the sheer 

volume of delivered information and arrive at the inactivity 

interest of calculation escalated IoT applications. However, 

the development of versatile edge figuring on assistance and 
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idleness has been very much considered; security and 

proficiency in information utilisation in portable edge 

processing have yet to be distinguished [12]. Identifying Cloud 

Security threats and mitigation strategies that detect data 

leakage, tampering and other vulnerabilities in cloud service 

deployment are significant [13]. 

Edge processing answers clients' solicitations with low 

inactivity by putting away the pertinent documents at the 

organisation's edge. Different information deduplication 

innovations are presently utilized at the edge to dispose of 

repetitive information lumps for space saving. Be that as it 

may, the query for the worldwide gigantic volume of finger 

impression lists forced by recognizing redundancies can 

debase the information handling execution [14]. Previous 

encrypted data deduplication algorithms were primarily built 

for standard two-tier cloud storage. It cannot be used with the 

3-layer fog assist cloud storage currently under development

[15]. Table 1 describes conventional methods for data

deduplication.

Table 1. Comparison of existing methods for data deduplication 

Reference Proposed Method Drawbacks 

Ni et al. [16] 
A safe data deduplication system helped by fog (Fo-

SDD) 

Sensed data is often protected, making it challenging 

to deduplicate 

Jiang et al. [17] An effective PoW procedure combined with secure data 
Cannot effectively resolve dynamic ownership 

changes and specific proof of ownership (PoW) 

Li et al. [18] 
deduplication strategy for active ownership 

management Energy Efficient Storage System (EESS) 

These storage systems consume much energy to 

achieve high performance. 

Yu et al. [19] 
Tag-flexible Integrity Check Protocol with 

Deduplication Support (TDICP) 

Conceive customers into purchasing unnecessary 

storage for redundant data only kept once. 

Yang et al. [20] 
User-defined access control-compatible secure 

deduplication technique that is effective 

Eliminate redundant encrypted data to save storage 

and transmission costs. 

He et al. [21] Routing Strategies in Clustered Deduplication Systems High deduction rates and low effectiveness rates. 

Guo et al. [22] Double Sliding Window Chunking Algorithm It is not easy to find the file 

Yuan et al. [23] 
lightweight rekeying-aware encrypted deduplication 

scheme (REED) 
Difficult to store the data in the cloud 

Jin et al. [24] jump-based chunking (JC) approach 

The deduction rate is lower than that of the CDC 

approach due to the inability to solve the boundary 

transition problem. 

Chen et al. [25] Dynamic, searchable symmetric encryption (DSSE) 
Complex optimization processes and inflexible query 

methods. 

Wang et al. [26] Lightweight Secure Deduplication Scheme The complex symmetric key distribution 

Edge computing is a crucial part of green computation 

because it enables real-time applications, reduces the amount 

of computing and network resources needed to transmit data 

to the cloud for processing, and locates cloud resources closer 

to the Edge [27]. A model for shifting processing from mobile 

to wired networks is called share-based edge computing, or 

SEC (M2W). Tasks from mobile devices can be divided 

among wired devices for processing under the oversight of 

SEC servers [28]. 

It is a significant problem for service providers, but more 

needs to be discussed. Therefore, in the context of edge 

computing, accurately and successfully verifying the integrity 

of edge data is a critical security concern [29]. App providers 

can host services for local consumers on the Edge Server 

Network (ESN), composed of edge servers in a particular 

region and the connections that link them. Several recent 

studies have demonstrated that large ESN densities offer 

excellent service performance because edge servers can 

efficiently share resources and interact throughout the ESN 

[30, 31]. Fifth-generation (5G) networks can benefit 

significantly from the improved spectral efficiency, higher 

quality of service, and reduced latency that NOMA and 

Mobile Edge Computing (MEC) can provide. 

This is a big concern for service providers, yet little has been 

done about it. Therefore, in edge computing [32], precisely 

and successfully confirming the integrity of edge data presents 

a significant security problem. App providers can host their 

services for local clients on the Edge Server Network (ESN), 

which comprises edge servers in a particular region and the 

connections that connect them. Several recent studies have 

shown a high ESN density to enhance service performance 

since edge servers can effectively communicate and share 

resources across the ESN. Fifth-generation (5G) networks are 

finding that NOMA [33] and Mobile Edge Computing (MEC) 

are crucial enablers due to their improved quality of service, 

reduced latency, and excellent spectrum efficiency [34]. 

Because of high latency and a rise in task failures in a 

dynamic environment with frequent changes and unexpected 

end-user demand, executing offloaded activities on a subpar 

server may lower the quality of service [35, 36]. The resource 

management issue at the edge server is addressed using a 

Reinforcement-Learning-Based State-Action-Reward-State-

Action (RL-SARSA) technique. Additionally, it chooses the 

optimal offloading strategy to lower system expenses like 

compute latency and energy consumption [37]. Cloud storage 

raises significant security issues. Data breaches can lead to 

severe violations of privacy and data integrity, highlighting the 

need for robust security measures [38]. 

3. PROPOSED SCHEME

A lot of storage space is one of the many resources a cloud 

service provider offers its clients. Managing the constantly 

expanding volumes of data in the cloud is one of the main 

problems. In cloud edge computing, the DD approach 

improves data management's scalability. However, the 

primary issue with data deduplication is security. To overcome 
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this issue, this study provides a safe data deduplication system 

via an integrated cloud-edge environment using convergent 

and Unique Tag Deduplication Integrity Check (UTDIC) 

methods. This algorithm classifies people according to their 

traits. Depending on whether the number of owners of a 

collection of data matches the degree of popularity, the data 

set may be considered duplicate. 

Figure 2. Proposed system 

Figure 3. Diagram for edge could deduplication 

Figure 2 provides a proposed system for Deduplication 

using in the cloud and then generating the chunk file to reduce 

the duplicates, initially preprocessing using Threshold 

Similarity Measures (TSM) to estimate the text and copies are 

removed, then segmenting the cloud folder using CISWH for 

storing the file in cluster format and ranking the order based 

on the cloud for hashing identification. Checksum Selective 

Indexing Chunking (CSIC) is finding the selective index range 

for chunking content using Verify the integrity of deduplicated 

data by integrating a checksum or error-checking appliance. 

Prefetching the local index means allocating the store's 

frequently accessed data blocks to the local cache. This 

reduces redundant operations on processed chunks and 

improves overall deduplication speed. Finally, the Unique Tag 

Deduplication Integrity Check (UTDIC) is a validation 

mechanism to verify the uniqueness of the tag when creating 

or assigning a new tag. This includes checking the repository 

to make sure the suggested tag is correct. 

3.1 Edge cloud deduplication model 

Only on centralised cloud servers does edge computing 

allow data to be processed closer to the point of generation. 

The process of eliminating multiple copies of repeated content 

is known as Deduplication. It is frequently used in storage 

systems to boost data speed and reduce the amount of storage 

space needed. 

Figure 3 shows a balanced design for end users and end 

service providers. This edge computing solution consists of 

user, storage, and management nodes for error file reduction 

and Deduplication. 

3.2 Preprocessing data using Threshold Similarity 

Measures (TSM) 

Preprocessing uses a word-based similarity metric to 

discover inputs that surpass a predefined similarity threshold. 

2200



Sets the point at which inputs are deemed identical. Using a 

similarity metric based on threshold points can help to 

decrease duplicate files in cloud storage. To avoid duplicate 

data sets, use thresholding similarity algorithms to locate 

related texts and delete unnecessary information. 

𝑇ℎ𝑒𝑟(𝑡𝑒𝑥𝑡) = 1 −
∑ 𝑆𝑐𝑥(𝑡𝑥𝑡)
𝑁
𝑥=1

𝑁
(1) 

where, 𝑇ℎ𝑟𝑒(𝑡𝑒𝑥𝑡) is the threshold of a particular text, and the 

N number of records in cloud data, index (x) SCx (text) is a 

similarity finding, and SCx (text) =1. 

If the xth values of a particular similarity score is between 0 

and 1, cloud records X1 and X2 of records calculating 

similarity score values of texts. If the similarity score range 

between two values of a field is greater than or equal to that 

field's range, then the Similarity Score (SS) is defined as: 

𝑆𝑐(𝑥1, 𝑥2) = 𝑡1 ∗ 𝑉1(𝑥1, 𝑥2) + 𝑡2 ∗ 𝑉2(𝑥1, 𝑥2)
Similarity=0; 

For n=1 to X-1 do 

𝑇ℎ𝑟𝑒(𝑛) = 𝑉(𝑛) − 𝑉(𝑛 + 1); 
While 𝑀𝑎𝑥 (𝑆𝑐) > 0 

X=finsTh.sc (max) 

Swap (𝑉(𝑛) − 𝑉(𝑛 + 1)); 
Remove similarity; 

End while 

X 1 and X2 are input strings or records to be compared field 

by field. T1 and T2 are weighted by the similarity and string 

similarity algorithms, respectively, and are equal (t1=t2=0.5). 

V1 represents the similarity score, and V2 represents the string 

similarity score. This code shows the algorithm for obtaining 

the similarity class. It is an iterative process that extracts the 

outermost node from the entire set. 

3.3 Cluster Index-Based Sliding Window Hashing 

(CISWH) 

Compared to reduced window or landmark models, very 

few research has concentrated on clustering algorithms that 

use sliding windows. A CISWH algorithm that is effective. 

The technique seeks to deliver quick, excellent clustering 

outcomes. Compared to previous methods, our method's 

unique data structure and process can perform full-range 

clustering on tuples and reduce the computational cost of 

operations such as insert, delete, and search. Sliding window 

aggregation divides the window into blocks and aggregates the 

summaries of these blocks to create a window. 

Our method uses hashing, whereas the other uses a tree 

structure to find the nearest CF. The ' current state is S1=c1, 

c2, S2=c3, S3=x4, and the input variables are c1, c2, ... (ci+1 

is fresher than ci). The current loads are combined when a new 

tuple, c5, appears, and a new bucket with the new tuple is 

created, with S1=c1, c2, S2=c3, c4, and S3=c5. A sliding 

window advances and deletes loads that have expired 

timestamps. Nonetheless, the timestamps within a container 

could differ. If the sliding window in the example has a size of 

4, it should remove the tuple x1. 

3.3.1 Sliding window 

Only arrays with timestamps from the window's start to the 

current timestamp are included in sliding windows. In 

particular, the timestamp of the tuple 𝑥𝑖  and the current

timestamp t can define the window as a weight function. 

𝒔𝑤(𝑥 − 𝑥𝑖) = {
1, 𝑖𝑓 𝑥 − 𝑥𝑖 ≤ 𝑉
0, 𝑖𝑓𝑥 − 𝑥𝑖 > 𝑉

(2) 

where, V is the sliding window's temporal range, the window 

removes the Cluster's loads based on the vectors. When 

another 100 tuples come, the previous 100 are removed from 

the window, and the new 100 are attached. The terms "a 

window slides" and "a window moves" indicate that when set 

SLIDE to V, the window's oldest V tuples are eliminated, and 

fresh V tuples are inserted. 

Sum0; 

For x1 to V do 

       𝑆𝑢𝑚𝑆𝑢𝑚 + 𝑋(𝑖); 
End 

Resultsum; 

       For x v+1 to n do 

𝑆𝑢𝑚𝑠𝑢𝑚 + 𝑥(𝑖) − 𝑥(𝑥 − 𝑥𝑖);
     Result Max (Res, sum) 

        End 

Return 

First, all possible starts of the range are repeated. Each 

range's elements are iterated from V to V+n-1, and their sum 

is calculated. 

Depending on the sliding condition and time unit, sliding 

windows can be classified as either time-based or triple-based. 

An index-based window for clarity, while a time-based 

window may also be examined using the same techniques. 

3.3.2 Cluster index 

A clustered index is constructed using a column or group of 

columns that uniquely identify each entry. This makes index 

maintenance easier. 

Assuming the incoming data streams  𝑥 =
ℎ𝑥1, 𝑡1𝑖, ℎ𝑥2, 𝑡2𝑖, ..., I cannot fulfill that request for the sliding 

interval L=3, with 3 clusters (c=3) and a window size R=9. 

|C|=5. 

The number of tuple structures, their square sum, and their 

linear sum are all maintained by the Clustering Feature (CF). 

If the radius of a new tuple is less than a predetermined 

threshold, the nearest CF absorbs it. 

I ≤ 𝐶𝐼 is the clustering index range to be calculated based

on the data distance evaluation using weights 𝑤1, 𝑤2,

(𝑤1, 𝑤2) = ||𝑤1 −𝑤2||
2 = √∑(|𝑤1𝑥 − 𝑤2𝑥||

2)

𝑤

𝑥−1

 (3) 

𝐶𝑜𝑛𝑠𝑡 (𝑤, 𝑣) = ∑𝑟𝑎𝑛𝑔𝑒2

𝑥∈𝑉

(𝑤, 𝑣) (4) 

𝐶𝑜𝑛𝑠𝑡 𝑤(𝑤, 𝑣) =∑𝑤(𝑥).𝑤𝑒𝑖𝑔ℎ𝑡2(𝑤, 𝑣)

𝑥∈𝑆

 (5) 

Aggregation aims to reduce the total squared distances 

between each tuple in S and the nearest range. The clusters 

have a weight function value with a sliding window. Figure 4 

illustrates the cluster indexing grouping. 

𝐶𝑜𝑛𝑠𝑡 (𝑤, 𝑣) = ∑𝑟𝑎𝑛𝑔𝑒2

𝑥∈𝑉

(𝑤, 𝑣) ∗ (𝑡 − 𝑡𝑤) (6) 
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𝐶𝑜𝑛𝑡𝑂𝑝𝑡
𝑛 (𝑤) = min

𝐶∈𝑟𝑎𝑛𝑔𝑒2,||𝐶||=𝑛
𝑐𝑜𝑛𝑠𝑡(𝑤, 𝑣) (7) 

Figure 4. Cluster index grouping 

The clustering sliding window is processed in the cluster 

center, and the indexing range follows each Cluster; the 

quality of the clusters depends on the index cluster centers. 

3.3.3 Cluster index hashing with Sliding window 

𝑥1 = 0, 𝑥2 = 0; 𝑐𝑜𝑛𝑡 = 0 (8) 

Sliding window cluster index (data) 

While 𝑥2 is less, the counting of the clusters

𝑥2 = 𝑥 + 1 (9) 

Error rate Index. Cluster (Data, 𝑥1, 𝑥2)

If index err is generating the Hash 

𝑥1 = 𝑥2
𝐶𝑥1(𝐶𝑜𝑛) = 𝑥2

End if  

Hash Index (𝑥1, 𝑥2))

If HHash (X. Get cluster Number (Chunk)) 

SWH.get (H) 

Delete By Key (H Chunk) 

It is Joint (x, y) then 

Insert ((x, y)) 

Else 

Data_ Insert (H) 

Count the number of Chunks 

Return 

End if  

End while 

In addition, blocks often contain features much deeper than 

the average sort depth, which increases the RAM required to 

store hash tables in a particular location. Instead of a hash table 

with conflict resolution, use a hash table H with fixed size h 

without conflict resolution. Differently named alignments are 

assigned the same hash value. 

3.4 Checksum Selective Indexing Chunking (CSIC) 

A checksum is a value calculated by summing the bits in a 

data collection. It is used to identify mistakes in data transfer 

or storage. Selecting specific data or material for inclusion in 

an index is called selective indexing. In databases or search 

engines, it entails choosing which qualities or fields to include 

in an index to permit faster and more efficient search 

operations. Indexing Chunking is the technique of dividing 

vast information into smaller, more manageable "chunks." It 

is frequently used for memory and learning. 

Input: Default values, Length of sliding window, W 

Output: Index selection 

Function Checksum Chunking (File, values) 

X=1; 

Indexing Checksum=0; 

While (Checksum=read (file)) 

Array [index%W+1]=checksum length 

If selecting. Length>=V then 

If the hash value (Checksum, 

index,v)==Checksum values, then 

Return x 

End if 

Else 

Continue 

End if 

X=x+1 

End while 

End 

Figure 5. Chunking process 
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Figure 5 shows a comparison of the Chunking Method. (A) 

While fixed-size chunking is fast, it has a boundary-shift 

problem. (a) The issue can be resolved using variable-size 

chunking, but each byte requires some processing. (c) This 

problem can be improved with the time complexity of O(1) by 

using the constant-time chunking that this study suggests; 

variable-size and reverse chunking, on the other hand, only 

identify the first and final chunks, leaving a sizeable middle 

chunk c. 

File types and sizes are represented as an array of bytes in 

the input. 

Different-sized File Chunks, Max Th and Min Th, are 

generated. 

Step 1: Configure the File Length (f). 

Find the Length of the L. 

Set the Endpoint to 0 and the Startpoint to 0. 

Step 2: Though Not the End of the DocumentIf Len is equal 

to zero, then move on to Step 5. Should Len match Min Th 

Proceed to Step 3 after setting the File Chunk Bytes from 

Startpoint to (Startpoint+Len). 

Else If (Min Th.+L)=Len, Then 

Proceed to Step 3 after setting the File Chunk Bytes from 

Startpoint to (Startpoint+Len+L). 

Endpoint 

Bytes of File from Endpoint+L should be selected as the 

window size. 

Step 3: End 

Additionally, chunking files with minimum and maximum 

values are sometimes used as a hard barrier to prevent massive 

storage of chunk size variation factors. 

3.5 Prefetching Local Index Caching (PLIC) 

Prefetching Local Index Caching is an approach used in 

computing to increase system speed by retrieving data or 

instructions on a local system or device before generating an 

index rather than depending on a centralized index. Reducing 

the need to query a central index can improve access times for 

frequently used data. Caching is keeping copies of frequently 

requested data at a location that enables quicker retrieval. 

Local index caching may refer to retaining a cache of 

commonly used index data on a local system to speed up 

search or retrieval processes. 

𝐶𝑛 = (𝑓𝑖𝑣: 𝑣 ∈ 𝑊,𝑤 ∈ |𝑤| = 𝑡, 𝑥 ∈ |𝑁|) (10) 

𝑐𝑑 = (⊕∈ 𝑊;
𝑓𝑖𝑣

[𝑠]
: 𝑆 ⊆ |𝑁|, |𝑠| = 𝑡 + 1) (11) 

Which requires broadcasting 𝑣 ∈ 𝑊: 𝑆 bits. Note that user 

kS, for S), wants 
𝑓𝑖𝑣

[𝑠]
: 𝑆 and has cached 𝑡 ∈ 𝑊 for all s∈S: s

6=k so that it can recover 
𝑓𝑖𝑣

[𝑠]
: 𝑆 rom Xt and the cache content. 

𝑤𝑥,𝑦𝑀𝑎𝑥 (𝑡) =
( 𝑁
𝑇+1
) − (𝑁−min (𝑛,𝑚)

𝑡+1
)

(𝑁
𝑡
)

≥ 𝑉𝑥 (12) 

𝑁
𝑇+1

 With 𝑡 ∈ 𝑣 the sub set t- an integer, one takes the lower 

convex envelope of set of points (x,v)=
𝑁−min (𝑛,𝑚)

𝑡+1
 for t∈[0: 

n]. 

∈𝑛≔ max
𝑥∈[𝑛]

𝑃𝑟𝑒{𝑤𝑥(𝑥
𝑛, (𝑁: 𝑥 ∈ 𝑖)) ≠ 𝐷𝑣} (13) 

𝑅 ∈ ⋂ ⋃ 𝑅(
𝑁

𝑃
+ 𝐶𝑖)

𝑋𝑣′𝐶𝑖∈𝑉𝑥∈|𝑛|

(14) 

⋃ 𝑅(
𝑁
𝑃
|𝐶𝑖)

𝑋𝑣′𝐶𝑖∈𝑉

= 𝑅(𝑃 + 1) (15) 

∑ 𝑈𝑥 < 1

𝑋:𝑋∈|𝑁|

 (16) 

The attainable step technique for composite (index) coding 

is based on prefetching decoding. If the cache placement phase 

is coded in caching, the delivery phase is a well-specified 

message and demand set. 

3.5 Unique Tag Deduplication Integrity Check (UTDIC) 

Users can use UTDIC to create unique validation tags to 

ensure data integrity across CSPs and enable Deduplication. 

At the same time, to prevent the results of CSP duplicate 

checking during the file upload process from misleading users, 

UTDIC is based on the private set intersection, which allows 

users to determine whether files are duplicates before CSP. 

UTDIC requires challenger A to reply with (R) valid note 

sets to pass the integrity check. 

𝛿 =∑  

𝛾

𝑖=1

𝑃(𝑆𝑢𝑐𝑒𝑠𝑠,𝑖)
𝐴 = (1 − 𝜌𝑎𝑑𝑣)

𝛾

+
𝛾𝜌𝑎𝑑𝑣(1 − 𝜌𝑎𝑑𝑣)

𝛾−1

2𝑛𝑠
+ 𝑜(

1

2𝑛𝑠
)

⏟             
𝜉

 

(17) 

UTDIC can recover rD ¼ d if there are more than d 2 

corrupted errors in a block, our protocol cannot recover the 

blocks. 

𝑃(𝐹𝑎𝑖𝑙,𝑖)
𝜎 ≤ 𝑒𝑥𝑝(−

𝜌𝑎𝑑𝑣𝐷

3
(1 −

𝜌

𝜌𝑎𝑑𝑣
)𝑧) (18) 

(1 −
𝜌

𝜌𝑛𝜖𝑔
)2𝜌𝑛𝜖𝑔 =

3ln (2)𝜏

𝐷
𝑎𝑛𝑑𝜌𝑛𝜖𝑔 < 𝜌 (19) 

Next, choose a threshold (T) for the query time g so our 

protocol will discover a chunk reduction. A with an 

overwhelming likelihood if it corrupts more than γ neg 

proportion of the blocks. 𝑖𝑓 𝑔 >= 𝑛𝑒𝑔 𝑎𝑛𝑑 𝑟𝑎𝑑𝑣 >
𝜂𝑛𝑒𝑔. 𝑁𝑒𝑥𝑡 

𝑅𝑒𝑠𝑝 ∗ 𝑏−1𝑚𝑜𝑑𝑚 = (𝑣 × 𝐷) ∗ 𝑏−1𝑚𝑜𝑑𝑚

= (𝑏𝑒 × 𝐷) ∗ 𝑏−1𝑚𝑜𝑑𝑚
= 𝑒 × 𝐷𝑚𝑜𝑑𝑚

(20) 

𝐷 = (

𝑑11 ⋯ 𝑑1𝑦
⋮ ⋱ ⋮
𝑑𝑥1 ⋯ 𝑑𝑥𝑦

) (21) 

Then 

𝑒 × 𝐷mod𝑚 = (∑ 

𝑥

𝑖=1

𝑒𝑖𝑑𝑖1,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖2, … ,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖𝑦)mod𝑚

= (∑ 

𝑥

𝑖=1

𝑒𝑖𝑑𝑖1,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖2, … ,∑  

𝑥

𝑖=1

𝑒𝑖𝑑𝑖𝑦)

(22) 
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Demonstrate the efficacy of utilizing the UTDIC approach 

to retrieve the query column containing the notes, enabling 

many users to generate their verification tags while 

maintaining support for tag deduplication at the CSP. 

Additionally, try your hardest to guarantee that the data 

duplication check is accurate. 

3.5.1 Deduplication file 

The proposed approach of deduplication functions at the file 

level. Only text files (.txt) are allowed. The user and his cloud 

environment are the two stakeholders. Google Drive is the 

cloud environment in this case. The files to be uploaded are 

selected by the user using this method. The UTDIC technique 

is used to produce the file's hash. The hash value of the cloud 

and uploaded files are compared throughout the upload 

process. Uploading of the file will be blocked if a match is 

discovered. The chosen file will be uploaded successfully, 

even without a support file. 

The new file's bin information and the segment numbers 

that were generated for it are added to the file-to-segment 

metadata. The segments that are duplicates have the same 

segment number. The quantity of file-generated unique Tag 

segments is updated in the bin structure configuration file. In 

essence, the number of segments beneath each bin is counted 

in this file. This module uses gzip to compress and decompress 

files, saving additional storage space. 

Begin Deduplicated 

Index_file [] cluster chunk= 

Hash_cluster_Identifier () 

ForEach(Seg in clusters[])do 

Index_clusters calculating 

hash(seg) 

If (Index_file==Hash[]) then 

Downloading file 

authenticated user 

End 

Else 

Error Message 

End 

End 

End 

A list search has already produced the computed hash value. 

The hash () function generates this list lookup. Specific 

segments are not preserved if the hash value is present. If not, 

the section is stored as indicated and then downloaded 

afterward. 

4. RESULT AND DISCUSSION

The outcomes are verified using an EC2 server instance, a 

cloud environment powered by Amazon Web Services (AWS), 

and EBS storage; a duplicate dataset is created by combining 

the gathered content files to provide deduplication redundancy 

storage. The UTDIC implementation uses lookup indexing 

tables and indexed hash table files to perform block-based 

comparisons. This technique yields better results than others 

when tested using a confusion matrix to gauge efficiency in 

terms of precision, recall, false rate, and accuracy of storage 

optimization. Table 2 provides a clear illustration of 

simulation processing. 

The introduced technique provides better performance 

under different levels of testing by ensuring accuracy of 

collection, time complexity, and recall. 

Table 2. Simulation processing 

Simulation Parameters Values 

Environment of Cloud AWS cloud storage 

Size of data 20Gb 

Tool Visual Studio/ c# 

Table 3. Analysis of precision rate 

Performance of Precision Rate in % 

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC 

10GB 74.3 87.3 89.1 92.4 94.8 

15GB 76.8 84.6 85.4 94.9 95.4 

20GB 77.2 85.5 87.8 96.3 97.9 

Table 4. Analysis of false rate 

Analysis of False Rate % 

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC 

10GB 6.5 5.2 4.9 4.6 3.8 

15GB 7.8 7.4 6.2 5.6 3.5 

20GB 10.3 9.6 7.3 4.4 2.3 

Table 5. Performance of storage 

Performance of Storage Rate in % 

Storage /methods REED DSSE TDICP RSLI-SCCC UTDIC 

10GB 6.8 10.4 15.6 20.5 28.2 

15 GB 7.3 14.9 18.1 23.4 33.6 

20 GB 15.7 23.3 26.5 34.7 43.2 

Figure 6. Performance of precision rate 

Figure 7. Performance of recall rate 

Table 3 shows the performance comparison results of 

invention accuracy by different methods. Compared to other 
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approaches, the proposed UTDIC can provide improved 

accuracy in terms of precision ratio. 

Figure 6 clearly illustrates different methods for diverse 

data sizes to observe the performance of the tested accuracy. 

The proposed UTDIC performs at 97.9% and can be 

associated with the tested pipeline in 10GB size. While the 

RSLI-SCCC method attained 96.3%, the existing REED, 

DSSE, and TDICP methods are 77.2%, 85.5%, and 87.8% of 

precision performance. 

Recall performance can be measured using various methods, 

as illustrated in Figure 7. The proposed method shows 98.8%, 

compared with the tested methods on 10GB data. Also, the 

proposed UTDIC algorithm can achieve higher memory 

efficiency than other methods. While the RSLI-SCCC method 

attained 96.6%, the existing REED, DSSE, and TDICP 

methods are 72.2%, 83.5%, and 94.6% of recall performance, 

respectively. The previous methods obtained less recall rate 

performance. 

The results show that the proposed UTDIC algorithm's 

classification rate is lower than that of other methods. 

Furthermore, Table 4 lists the error rate production rates 

measured by the different methods. 

Figure 8. False classification rate 

Figure 9. Comparison of storage optimization performance 

rate 

Figure 10. Time process 

Figure 8 illustrates the many approaches used to quantify 

the productivity of the error redundancy rate. The suggested 

UTDIC is 2.3% compared to the techniques evaluated on 

10GB of data. According to the data, the proposed UTDIC 

process has a lower organization ratio than alternative 

techniques. While the RSLI-SCCC method attained 4.4%, the 

existing REED, DSSE, and TDICP methods are 10.3%, 9.6%, 

and 7.3% of false rate performance. The previous methods 

obtained high false rate performance. 

Performance analysis Figure 9 shows the results of the 

storage enactment ratios of the diverse methods in memory. 

Compared to the methods tested on 10GB of data, the offered 

UTDIC gives the best performance, up to 43.2%, reduces data 

duplication, and minimizes memory consumption. However, 

the traditional methods still need to achieve efficient storage 

optimization performance. 

Table 5 analyzes the storage performance rate performance 

measure and provides a variance estimate for the compared 

datasets. The comparison results show that the suggested 

UTDIC system uses less storage than the other approaches. 

Figure 10 above shows the production measurement time 

flow for different methods. The proposed UTDIC algorithm 

reduces the time compared to other methods. Compared to the 

methods tested with 10GB data, the proposed UTDIC yields 

the best performance up to 6.2 (s), DSSE yields 8.9 (s), and 

RSLI-SCCC delivers 6.7 (s). 

4.1 Discussion 

The experimental results show that the proposed method 

attains proficient precision, recall, false rate, storage 

optimization, and time process performance. The proposed 

method reaches 94.8%, 95.4%, and 97.9% for 10GB, 15GB, 

and 20GB, respectively. Similarly, the existing method 

individually obtained 77.2%, 85.5%, 87.8%, and 96.3% for 

REED, DSSE, TDICP, and RSLI-SCCC. 

Another parameter is recalling comparison performance. 

The proposed method attained a recall result of 98.8%; 

similarly, the traditional methods like the RSLI-SCCC method 

attained 96.6%, the existing REED, DSSE, and TDICP 

methods are 72.2%, 83.5%, and 94.6% of recall performance, 

correspondingly. 

Also, storage optimization performance outcomes in the 

cloud environment. The proposed UTDIC method attains 

28.2%, 33.6%, and 43.2%. Likewise, the time process and 

false rate performance achieved fewer outcomes by the 

proposed method. However, the traditional method gained a 

higher time process and false rate performance. 

5. CONCLUSION

In conclusion, edge cloud deduplication is now a vital 

remedy in distributed computing. This technique enhances the 

overall performance of edge devices in addition to optimizing 

bandwidth utilization and storage economy. Duplication 

minimizes latency, speeds up data transfers, and eases the load 

on network resources by removing redundant data at the edge. 

With edge computing still a significant player in many sectors, 

it is increasingly dedicated to efficient operation data 

management. Deduplication is the most well-known method 

of data compression. Many existing approaches presented 

various deduplication algorithms but were insecure in a cloud-

based secure deduplication solution based on convergent and 
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UTDIC algorithms. Using file sizes ranging from 10GB to 20 

GB, with a 10GB increment in each iteration, the suggested 

system's performance was assessed. According to the 

performance research, the proposed method has a 43.2% 

storage optimization performance, which is higher than the 

other existing approaches and has a promising outcome. To 

guarantee the correctness of the duplication check, however, 

we employed a novel challenge and answer approach in the 

duplication check UTDIC, allowing the data deliverer, rather 

than the CSP, to ascertain if a file is duplicated first. According 

to security and performance, UTDIC is safe and effective 

within the specified security model. In the future, we can 

improve de-duplication performance using an indexing 

approach. 
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