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Identification of human action is a crucial field in machine learning with applications in 

healthcare monitoring and smart home automation. Recognizing and detecting human 

actions in videos is essential for various real-world applications. This paper presents a 

comparative study of Support Vector Machine (SVM), Thresholding algorithm, and 

MobileNetV2 for human activity recognition. These models are evaluated for accuracy, 

computational efficiency, and suitability for real-time applications. The study addresses the 

challenge of detecting humans in video sequences from a thermal camera in low light 

conditions, dealing with complexities like illumination changes, motion blur, and varying 

perspectives. Experimental results demonstrate that while MobileNetV2 outperforms SVM 

in accuracy and real-time processing capabilities, SVM offers a simpler and less resource-

intensive solution. Deep pre-trained Convolutional Neural Networks (CNNs) like 

MobileNetV2 were used to extract informative features from detected human patches. The 

performance evaluation focused on four human movements: walking, running, duck 

walking, and crawling. Experimental data showed that MobileNetV2 achieved an average 

accuracy of 92.9%, maintaining high accuracy even in challenging conditions such as 

blurring, Gaussian noise, and low light. 
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1. INTRODUCTION

Identification of human action involves the automatic 

recognition of human activities using various sensor data. This 

technology has significant applications in medical services, 

fitness tracking, and smart environments. Traditionally, 

machine learning methods such as Support Vector Machines 

(SVM) have been widely used for this purpose. However, the 

advent of deep learning has introduced advanced models like 

MobileNetV2, which offer higher accuracy and efficiency. 

This investigation aims to compare the performance of SVM 

and MobileNetV2 in the context of human action 

identification. With over two decades of development, human 

detection technology is employed in numerous applications, 

including law enforcement, search and rescue, fall detection, 

pedestrian detection for automated driver assistance, and 

traffic management. Computer vision techniques and deep 

learning models are effective in detecting human activity in 

low-light conditions. Robotic sensing and computer vision 

applications have shown impressive results with deep 

learning-based object recognition techniques, particularly 

excelling in vision-based driver autonomy, demonstrating 

their potential and versatility. However, creating robust and 

real-time detectors for mobile and edge applications remains a 

significant challenge. Identification of human action is a 

specialized branch of study devoted to the automatic 

recognition of routine activities performed by individuals. 

This recognition is achieved using time series recordings from 

cameras, providing valuable insights into everyday behaviors. 

Despite the progress, developing efficient detectors that 

operate in real-time for mobile and edge applications 

continues to pose difficulties. Deep learning-based object 

identification techniques have made remarkable progress in 

the field of visual sensing for automated driving. These 

methods have transformed a number of computer vision and 

robotic sensing applications. Nonetheless, the challenge of 

designing and developing robust and real-time detectors 

persists, particularly in the context of mobile and edge 

applications. Identification of human action focuses on the 

spontaneous recognition of everyday activities using time 

series data captured by cameras. This field of study aims to 

understand and interpret routine human behaviors, which can 

be complex and varied. While deep learning models and 

computer vision techniques have made significant strides, the 

ongoing challenge lies in enhancing the robustness and real-

time performance of detectors for mobile and edge use cases 

[1]. The goal of the study and development of identification of 

human activity is to develop techniques for automatically 

identifying and comprehending human actions through the use 

of sensors. Applications for human action recognition can be 

found in many domains, such as robots, sports, medical 

services, security, and surveillance. Its potential advantages 

and numerous practical uses have significantly increased its 

relevance in recent years. Identification of human action is 

particularly useful for monitoring daily actions such as 

walking, running, duck walking and crawling, which are 
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necessary for the analysis of activities.  

This field involves the challenge of detecting specific 

activities within a video sequence, providing valuable insights 

into routine human behaviors. The goal of identification of 

human action is to identify one or more people's actions within 

a particular situation, offering useful data about different types 

of actions. The ability to automatically detect and understand 

human actions has broad applications. In healthcare, tracking 

human activity can be utilized to keep an eye on patients' 

activities and detect falls, while in security, it can help identify 

suspicious behavior. In sports, identification of human action 

can analyze athletes' performance, and in robotics, it can 

enhance human-robot interaction. Surveillance applications 

benefit from identification of human action by enabling the 

automatic detection of unusual activities. Identification of 

human action attempts to identify specific actions in a video 

sequence, which is crucial for activity analysis. By 

recognizing the actions of individuals in a scene, identification 

of human action provides important data about various 

activities. This capability is instrumental in fields such as 

healthcare, security, sports, robotics, and surveillance, where 

understanding human actions can lead to significant 

advancements and improved outcomes [2]. 

Real-time identification of people in recorded video footage 

presents numerous challenges. The size of a human in these 

videos can vary significantly depending on the UAV's altitude, 

complicating the detection process. Additionally, the natural 

variation in human sizes further complicates the technology 

used for detection. Dynamic occurrences include sharp motion 

blur degrees and variations in illumination, often caused by 

camera jitter, also pose significant obstacles during the 

acquisition of video. These challenges necessitate the 

development of a highly robust classification method capable 

of distinguishing humans from non-humans accurately. For 

instance, variations in illumination can make it difficult to 

maintain consistent detection accuracy. Similarly, motion blur 

resulting from camera jitter can obscure human figures, 

making them harder to identify. Addressing these issues is 

essential to improve the reliability and effectiveness of real-

time human detection systems in video [3, 4]. The variability 

in human size due to different altitudes of UAVs adds another 

layer of complexity to the detection process. Furthermore, 

variations in the illumination and the happening of motion blur 

can severely impact the quality of the captured video, making 

human detection even more challenging. Developing robust 

solutions to these problems is crucial for enhancing the 

accuracy and reliability of human detection technologies in a 

video surveillance [5, 6]. Real-time identification of people in 

video sequences faces many difficulties, such as motion blur 

from camera jitter, changes in illumination, and variations in 

human size. Addressing the challenges in dependable 

classification for human and non-human detection in videos 

requires advanced, high-performance methods that can 

differentiate between subjects accurately across diverse 

conditions. Convolutional Neural Networks (CNNs) have 

been instrumental in this advancement, enabling deep learning 

(DL) applications in object detection across multiple domains 

[7, 8]. A range of algorithms, including EfficientNet, 

YOLOv5, Mask R-CNN, Faster R-CNN, and MobileNetV2, 

have demonstrated robust performance, significantly 

enhancing the domain of object recognition by delivering high 

accuracy and efficiency [9]. Fast inference speeds are crucial 

in real-time applications, where immediate detection results 

are necessary.  

 
 

Figure 1. Activities related to object detection in several 

areas 

 

Algorithms like EfficientNet and MobileNetV2 stand out 

for their impressive balance of speed and accuracy in various 

scenarios, gaining popularity among researchers and 

practitioners alike. Within human detection tasks, methods 

have been developed to focus on body, head, and shoulder 

detection, showing high performance even in complex 

environments, such as crowded scenes [10]. YOLOv5 and 

Mask R-CNN, for example, are noteworthy for their ability to 

maintain accuracy in challenging settings, advancing human 

detection capabilities with reliable results [11]. 

Figure 1 illustrates the broad application of these object 

detection methods across domains, with algorithms 

continually refined to meet real-world demands. The 

continuous evolution of CNN-based methods and the ongoing 

improvements in these models contribute to a dynamic 

landscape in object detection. Recent advancements in 

machine learning (ML), particularly in neural networks, have 

driven transformative progress in areas like computer vision 

and natural language processing, achieving near-perfect 

accuracy in static object detection and encouraging researchers 

to explore novel methods for handling more complex tasks 

[12, 13]. 
One notable progression is the transition from merely 

identifying people in recorded videos to the more sophisticated 

task of identification of human action. This paper's goal is to 

delve into identification of human action, which represents a 

more intricate challenge compared to simple object detection. 

Identification of human action involves not just identifying the 

presence of humans but also recognizing and interpreting their 

actions, adding a layer of complexity and utility to the analysis 

[14].  

We can extract much more useful information from 

digitized data by exploring deep learning (DL) approaches for 

human action recognition. This capability has the potential to 

enhance a wide array of real-world functions, providing more 

detailed and actionable insights. For instance, by 

understanding specific human activities, applications in 

surveillance, healthcare, sports, and robotics can be greatly 

improved.  
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Figure 2. Human activity identification from a live video clip 

 

Figure 2 shows human activity identification from a live 

video clip. It suggests using MobileNet to overcome the 

limitations of earlier techniques laid out in the literature. 

Exploring DL techniques for identification of human action 

enables the extraction of detailed activity patterns from video 

data, offering substantial benefits over traditional methods 

[15]. This advancement can lead to better decision-making 

processes and more effective interventions in various fields. 

For example, in healthcare, recognizing specific patient 

activities can improve monitoring and treatment plans, while 

in security, detecting unusual behaviors can help prevent 

incidents. Three basic categories can be used to group methods 

for identifying human action: multimodal, vision-based, and 

non-vision or sensor-based. Depth cameras are used in vision-

based systems for human activity recognition in order to 

record color videos that are enhanced with depth data, 

enabling the analysis of human movements for activity 

recognition. However, these methods are prone to errors 

produced by differences in environmental illumination and 

have a limited detection range. Non-vision or sensor-based 

identification of human action methods utilize a variety of 

sensors, including wearable devices and ambient sensors, to 

gather information on human movements. These sensors can 

be combined to create hybrid systems that enhance the quality 

and diversity of the data collected. For instance, wearable 

devices can track motion and physiological data, while 

ambient sensors can monitor environmental changes, 

providing a comprehensive view of human activities [16]. 

Combining different types of sensors allows for the 

collection of more detailed sensory information from real 

environments, such as those found in cyber-physical-social 

systems. This integration improves the accuracy and reliability 

of identification of human action systems by leveraging the 

strengths of multiple sensor types [17]. Additionally, magnetic 

sensors embedded in smartphones can determine the position 

of users, adding another layer of data for activity recognition. 

Multimodal identification of human action methods combines 

vision-based and sensor-based approaches to leverage the 

advantages of both. This fusion enables the creation of robust 

systems that can accurately recognize human activities in 

various conditions and environments. By integrating data from 

multiple sources, multimodal methods can overcome the 

limitations of individual approaches, such as the susceptibility 

to lighting changes in vision-based methods and the reliance 

on physical sensors in non-vision methods [18].  

It is now possible to handle raw data from sensors and 

recordings from cameras automatically and analyzed using 

advanced deep learning (DL) techniques. State-of-the-art 

methods, particularly recurrent neural networks (RNNs) and 

Convolutional Neural Networks (CNNs), have shown 

outstanding improvements in performance over the years [19]. 

These DL methods can pick up intricate features and patterns 

from raw data, making them highly effective for various 

applications. For instance, one system developed by 

researchers utilizes CNNs and RNNs to classify human actions 

by analyzing fundamental force patterns found in the input 

data that were derived from first- and second-order dynamics. 

This approach allows the system to collect the data's minute 

intricacies and temporal dependencies, leading to more 

accurate classification of human activities. By processing both 

spatial and temporal information, CNNs and RNNs able to 

identify and differentiate between a broad variety of human 

actions. The ability to automatically process and learn from 

raw sensor data and video feeds is a notable progress in the 

area of identification of human action. These DL techniques 

enable the extraction of meaningful insights from large 

volumes of data, it can be applied to enhance a number of 

practical uses. For example, in healthcare, such systems can 

monitor patients' movements and detect abnormalities, while 

in security, they can identify suspicious behaviors and enhance 

surveillance capabilities [20]. Moreover, the continuous 

advancements in CNNs and RNNs have expanded their 

applicability beyond traditional domains, allowing for the 

development of more sophisticated HAR systems. These 

systems can now handle complex scenarios, such as 

recognizing activities in crowded environments or under 

varying lighting conditions, with high accuracy. 

Infrared imaging, known for its specialized applications in 

areas like wildlife monitoring using CNN and tranfer learning 

along with SVM methods to enhance the performance of 

animal region segmentation in images is analysed [21]. The 

integration of DL techniques into HAR has paved the creating 

the path for more perceptive and agile systems that can adapt 

to different contexts and provide reliable results [22]. In this 

paper, the recognition of human activities at night in low-light 

video conditions using motion features through a bag-of-
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features approach is explored. The (SVM) Support Vector 

Machine classifier is employed as the activity detector. For 

detecting human areas, we utilize the faster R-CNN method, 

and we use a framework that combines a residual network and 

a three-dimensional CNN architecture for action recognition. 

The use of MobileNet, a cutting-edge human detection 

detector, enhances the accuracy of both detection and 

classification. By leveraging the strengths of MobileNet, we 

aim to improve the system's overall performance in 

recognizing human activities in challenging low-light 

conditions. The combination of faster R-CNN for human area 

detection and the three-dimensional CNN architecture with a 

residual network for action recognition allows for more 

accurate and robust analysis of human activities. This 

integrated approach ensures that both spatial and temporal 

features are effectively captured and processed, leading to 

better recognition outcomes [23]. 

This paper is layout as follows: Section 2 lists the several 

techniques utilized in this work, including Mobilenet, 

Thresholding, and SVM, along with the dataset. Section 3 

explains the comparison of the experimental data, and the 

conclusion is presented in Section 4. 

 

 

2. MATERIALS AND METHOD 

 

The section also examines different Convolutional Neural 

Networks (CNNs) that play a crucial role in the research. 

Finally, the discussion extends to the mobilenetV2 model, 

which is essential for the ultimate goal of the classification of 

human activities. Initially, by describing the specific video 

datasets selected for this research, detailing their 

characteristics and relevance to the study. Following this, it 

involves exploring the range of human activity detection 

models used, highlighting their functionalities and how they 

contribute to the detection process [24]. 

The focus then shifts to various CNNs, demonstrating their 

architecture and their importance in extracting meaningful 

features from the video data. Finally, the section investigates 

the use of the Mobilenet V2 model. The Mobilenet V2 model 

is critical for achieving the goal of human activity 

classification, as it effectively captures the temporal dynamics 

of the activities. This thorough examination of the datasets, 

object detection models, CNNs, and the Mobilenet V2 model 

provides a solid foundation for understanding the 

methodologies applied in this research. The block diagram of 

Human action recognition is displayed in Figure 3. 

 

 
 

Figure 3. Human action recognition block diagram 

 

2.1 Overview of the dataset 

 

This paper utilizes a collection of images acquired with the 

thermal imager FLIR C5. The thermal imager FLIR C5 is a 

compact, professional-grade thermal camera designed for easy 

use in various applications, including building inspections, 

HVAC/R, electrical inspections, and mechanical 

troubleshooting. It features a 160×120 (19,200 pixels) thermal 

resolution, providing clear and detailed thermal images. 

FLIR’s patented MSX technology enhances image clarity by 

adding visible light details to thermal images, making it easier 

to identify problem areas. The camera can measure 

temperatures from -20°C to 400°C (-4°F to 752°F), making it 

adaptable to a variety of thermal inspection requirements. The 

C5 includes Wi-Fi capability, allowing for quick sharing of 

images and data via the FLIR Ignite™ cloud service, 

facilitating easy documentation and reporting. Alongside the 

thermal camera, the C5 has a 5-megapixel visual camera for 

capturing standard photos, useful for creating comprehensive 

inspection reports. The device features a 3.5-inch touchscreen 

for intuitive navigation and operation.  

 

 
 

Figure 4. FLIR C5 thermal imaging camera [34] 

 

Designed to withstand tough work environments, the FLIR 

C5 has an IP54 rating for protection against dust and water. Its 

pocket-sized design makes it convenient to carry around and 

use in tight spaces [25]. The dataset consists of videos 

featuring a single individual performing various actions such 

as walking, running, duck walking, and crawling. These 

videos were recorded under low-contrast lighting conditions, 

typically after sunset or at night, to simulate challenging 

environments. The backdrops in these videos are varied yet 

static, providing a consistent context for the actions being 

performed. A total of 1000 videos were captured from distance 

10 to 30 feet with different angles, with each action (walking, 

running, duckwalking, and crawling) represented by 250 

videos. Figure 4 shows the FLIR C5 thermal imaging camera 

used in this work. Each video clip captures approximately 15 

seconds of activity, ensuring sufficient data for training and 

analysis. This dataset includes four distinct activities, offering 

a diverse range of motion patterns for the study. Preprocessing 

involves cleaning the data by handling missing values, noise, 

and outliers; segmenting the continuous data into smaller 

segments or windows; and extracting meaningful features 

from each segment, such as mean, standard deviation, and 

entropy. Features include height to width ratio and the 

velocity. 

Figure 5 shows some captured images of FLIR C5 thermal 

imager camera. Once the features are extracted, they are used 

to represent the activities performed by individuals. The 

extracted features are then represented as vectors in a high-

dimensional feature space. Each vector represents a particular 

activity instance, and its dimensions correspond to the 

extracted features [26]. If the height to width ratio is less than 

the threshold value the person is either duck walking or 

crawling and if the height to width ratio is greater than 

threshold value person is standing. SVMs are trained using 
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labeled activity data, with each activity instance associated 

with a label indicating its activity class, and they aim to find 

the hyper plane that best separates the feature vectors of 

different activity classes in the feature space by exploiting the 

margin between the classes while minimizing classification 

errors. Kernel functions, such as linear, sigmoid, radial basis 

function (RBF) and polynomial are used to transfer the input 

feature space to a space with more dimensions where the data 

might be linearly separable, with the choice of kernel 

depending on the characteristics of the data and problem 

domain. Once trained, the SVM can classify new activity 

instances by determining which side of the hyperplane they 

fall on, with the decision boundary separating different activity 

classes. Metrics like accuracy, precision, recall, F1-score, and 

confusion matrix are used to assess the performance of the 

SVM model, while cross-validation methods like k-fold cross-

validation are frequently employed to prevent overfitting and 

gauge the model's capacity for generalization [27]. 

 

 
 

Figure 5. Captured images of FLIR C5 thermal imager 

camera 

2.2 Method 

 

This section provides an in-depth discussion on various 

object detection models employed for human detection in 

videos. One of the key components utilized is the NVIDIA 

GeForce RTX 3080, a high-performance graphics card from 

the RTX 30 series family, known for its exceptional 

processing power and speed, which significantly enhances the 

efficiency of object detection tasks [28]. Among the object 

detection models discussed is MobileNetV2. MobileNetV2 is 

highlighted for its lightweight architecture and speed, making 

it ideal for real-time applications. Additionally, the section 

covers the use of Support Vector Machine (SVM) for 

classification tasks within the detection process. SVM is a 

powerful algorithm that contributes to the precise 

classification of detected objects, enhancing the overall 

reliability of the detection system [29]. By integrating these 

advanced object detection models and CNNs, the section 

underscores the comprehensive approach taken to achieve 

high-accuracy human detection in videos. The combination of 

robust hardware like the NVIDIA GeForce RTX 3080 and 

sophisticated algorithms like MobileNetV2 illustrates the 

meticulous effort to optimize both detection speed and 

accuracy. This thorough examination provides a clear 

understanding of the methodologies and technologies 

employed in this research for effective human activity 

detection and classification. 

Thresholding Algorithm: Detection of human activity 

using a Thresholding algorithm involves setting specific 

thresholds to classify activities based on sensor data. This 

method is simpler compared to machine learning approaches 

and works well for distinguishing between different activities 

when the signal characteristics are distinct. Detecting human 

activity using a Thresholding algorithm involves setting 

specific thresholds based on sensor data characteristics to 

classify different activities.
 

 

 
 

Figure 6. Human detection (Example of duck/crawling) 
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Figure 7. Human detection (Example of walking) 

 

This method is straightforward and efficient for real-time 

applications but may struggle with complex activities and 

noisy data. Figure 6 shows human detection (Example of 

duck/crawing) by using Thresholding algorithm. 

Support Vector Machine (SVM): A popular supervised 

machine learning approach for both regression and 

classification applications is the Support Vector Machine 

(SVM). It is a strong and adaptable tool. Finding the best 

border or hyper-plane to divide data points into distinct classes 

within a dataset is the main goal of a Support Vector Machine 

(SVM). This optimal boundary maximizes the margin between 

the classes, thereby ensuring a clear distinction between them. 

To accurately categorize various physical activities from a set 

of data, Support Vector Machines (SVM) are used in human 

activity detection. This process entails multiple processes.  

The SVM classifier’s parameter settings are essential for 

optimizing human activity recognition. Key parameters 

include the kernel function, penalty factor (C), and gamma 

[30]. 

Kernel Function: The kernel transforms input data into a 

higher-dimensional space to enable linear separability. The 

linear kernel is ideal for high-dimensional, linearly separable 

data. The RBF kernel is preferred for non-linear data, 

capturing complex patterns well, making it popular for activity 

recognition. Polynomial and sigmoid kernels are less common 

due to higher complexity. The selection process typically starts 

with a linear kernel, progressing to RBF or polynomial if 

needed, with cross-validation to evaluate each. 

Penalty Factor (C): The C parameter balances low training 

error with a simple decision boundary. A high C narrows the 

margin and reduces misclassification but risks overfitting if 

there is noise. A low C creates a broader margin, promoting 

generalization. The tuning process begins with a moderate C 

value and uses grid search and cross-validation to find an 

optimal balance. 

Gamma (for RBF and Polynomial Kernels): Gamma 

influences individual training samples’ effect on the boundary. 

A low gamma gives a smoother boundary, fitting well for 

simple data. A high gamma allows the boundary to capture 

finer details, which may lead to overfitting. Cross-validation 

helps select a gamma that balances detail retention with 

generalization. 

General Principles: Cross-validation is essential for robust 

parameter tuning, along with grid or random search for 

systematic exploration. Accuracy, precision, recall, and F1-

score are standard metrics used to evaluate the model’s 

suitability for human activity recognition. These strategies 

allow SVM to adapt well to data features, achieving high 

recognition accuracy without overfitting. 

Figure 7 shows human detection (Example of walking) 

using SVM. The following are the main steps in this process: 

gathering data, extracting features, preprocessing the data, 

training the model, evaluating the model, and making 

predictions. The first stage in identifying human activity is 

data collection. Numerous sensors, including accelerometers, 

gyroscopes, cameras, and wearable technology, may provide 

this data. The sensors record the gestures and motions of 

people engaging in a variety of activities, including as 

walking, running, and duck walking and crawling. The next 

stage after data collection is to identify relevant features in the 

unprocessed sensor data. Time-domain, frequency-domain, 

and statistical features are all used in feature extraction. The 

following stage is data processing, which entails a number of 

procedures including labeling, segmentation, and 

normalization to get the data ready for SVM model training 

[26]. Following that, selecting a kernel function and splitting 

the data are steps in the training of an SVM model. After 

training, the SVM model's performance is evaluated on the 
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testing set. 

Figure 8 outlines a process for creating and evaluating a 

human activity classification model using video data. Here's a 

detailed explanation of each step is given. 

(1) Original Data Samples (200 videos): The process begins 

with a dataset consisting of 200 video samples. 

(2) Feature Extraction (h/w and Velocity): Features are 

extracted from the video samples. These features include 

height-to-width ratio (h/w) and velocity, which are key 

indicators of human activity. 

(3) Extracted Features: The extracted features are processed 

to make the data more manageable and improving the 

efficiency of the subsequent steps. 

(4) Division of Samples into Testing and Training Samples: 

There are two sections to the dataset: 

(5) Training Data Samples: A portion of the data is used to 

train the classification model. 

(6) Testing Data Samples: Another portion of the data is set 

aside to test the performance of the trained model. 

 

 
 

Figure 8. Flow Chart using SVM algorithm 

(7) SVM (Support Vector Machine): The training data 

samples are used to train a (SVM) Support Vector Machine, a 

type of machine learning algorithm that is effective for 

classification tasks. 

(8) Trained Classification Model: The output of the SVM 

training process is a trained classification model that can 

classify new data based on the learned features. 

(9) Comparative Analysis: By comparing the trained 

model's predictions, the model's performance is assessed on 

the testing data samples against the actual classifications. 

(10) Performance Evaluation: The results of the 

comparative analysis are used to evaluate the performance of 

the classification model. This step determines how well the 

model performs in terms of accuracy, precision, recall, and 

other metrics. 

(11) Desired Results (Class 1, 2, 3, 4): The ultimate goal is 

to achieve desired classification results, categorizing the 

human activities into predefined classes (e.g., Class 1, Class 2, 

Class 3, Class 4). 

MobileNET: Image segmentation is a fundamental task in 

computer vision, where images are divided into distinct, 

meaningful regions based on shared visual features like color, 

intensity, or texture. This method can identify damaged areas 

in CT scans by isolating specific regions through 

segmentation. The development of Convolutional Neural 

Networks (CNNs) has greatly advanced image segmentation 

capabilities, especially with architectures like MobileNetV2. 

MobileNetV2 begins with a fully convolutional layer 

containing 32 filters, followed by 19 residual bottleneck 

layers, which streamline feature extraction. To improve 

resilience in low-precision computations, ReLU6 is used as the 

activation function. This architecture maintains a consistent 

structure with a 3x3 kernel size, using dropout and batch 

normalization to optimize training. An expansion factor of 6 is 

applied in most layers, which increases the number of channels 

in the feature maps, enabling more expressive intermediate 

representations while keeping the network compact [31]. 

MobileNetV2 is particularly well-suited for human activity 

recognition (HAR) and similar applications due to its unique 

design components: inverted residuals, linear bottlenecks, and 

depthwise separable convolutions. Inverted residuals are a key 

feature that contrasts with traditional residual blocks by 

transforming the input through a “wide-to-narrow-to-wide” 

structure. The initial 1×1 convolution expands the feature 

space, a 3×3 depthwise convolution processes it while 

retaining spatial details, and a final 1×1 convolution 

compresses it back to its original size. This design allows 

MobileNetV2 to capture intricate spatial relationships and 

subtle motion patterns critical for differentiating between 

similar activities like walking and running. Linear bottlenecks 

enhance this design by preserving detailed information within 

compressed layers. Conventional convolutions apply non-

linear activations that can obscure low-dimensional 

information, which is especially problematic in applications 

requiring subtle distinctions, such as HAR. MobileNetV2 

replaces this with a linear activation at the end of bottleneck 

layers, preserving fine-grained details in motion and posture, 

ultimately improving recognition accuracy. Depthwise 

separable convolutions further enhance MobileNetV2's 

efficiency, a core element carried over from MobileNetV1 

[32]. 
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Figure 9. MobileNet computer vision model 

 

Here, each filter operates independently on input channels 

before combining the results in a separate 1x1 convolution. 

This significantly reduces computational costs and the number 

of parameters, making the network compact and suitable for 

real-time applications. 

Figure 9 gives the architectural structure of Mobilenet 

model. MobileNetV2, an open-source CNN developed by 

Google, is well-optimized for embedded applications with 

constrained resources. It combines speed and accuracy, 

making it highly effective for tasks like HAR, where it can 

accurately and efficiently process image data on mobile or 

low-power devices, ensuring that complex human activities 

are detected swiftly and reliably. 

 

2.3 Flow chart and algorithm of using human tracking and 

future location estimation 

 

Figure 10 illustrates the flowchart for a human tracking and 

future location estimation algorithm. This flowchart illustrates 

a process for analyzing video input to classify human motion 

based on certain criteria. Step-by-step explanation of each 

stage is presented here. 

(1) Input Video: The process begins with an input video that 

needs to be analyzed. 

(2) Video Deframing: The input video is divided into 

individual frames for further analysis. 

(3) Motion Estimation: Movement is estimated from the 

sequence of frames. This step involves detecting changes 

between consecutive frames to identify motion. 

(4) Plotting Bounding Box: A bounding box is plotted 

around the detected motion. The bounding box typically 

outlines the moving object (e.g., a person). 

(5) Centroid Locating: The centroid (center point) of the 

bounding box is located. This helps in tracking the movement 

of the object. 

(6) Height to Width Ratio: The height-to-width ratio of the 

bounding box is calculated to help distinguish between 

different types of motion: 

If the ratio is less than 1.4, the motion is classified as a crawl 

or duck. 

If the ratio is greater than 1.4, the motion is classified as a 

walk or run. 

 
 

Figure 10. Flow chart using human tracking and future 

location estimation algorithm 

 

(7) Spatial Displacement: For objects classified as crawling 

or ducking, spatial displacement is measured to further refine 

the classification: 

If the maximum velocity is less than 19, the motion is 

classified as a crawl or duck. 

For objects classified as walking or running, spatial 

displacement is also measured: 

If the maximum velocity is less than 22, the motion is 

classified as slow (walking). 

If the maximum velocity is 22 or more, the motion is 

classified as a run. 

The flowchart in Figure 10 uses these criteria (height-to-

width ratio and spatial displacement/velocity) to classify the 

detected motion into categories such as crawling, ducking, 

walking, and running. 
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For human tracking future location estimation algorithm. 

Location of object is detected in few initial consecutive 

frames.  

Consider that p1(x1,y1), p2(x2,y2), p3(x3,y3) are locations 

of object detected in consecutive frames F1,F2, and F3.  

S1 is line segment between point p1 and p2. And S2 is line 

segment between poin p2 and p3. These locations are 

connected together with straight lines.  

Suppose video is of n FPS (frames per second).  

Time difference between two frames (Eq.(1)) 

 

𝑇𝑓 =
1

𝐹𝑃𝑆
 (1) 

 

Length of each line signifies special distance travelled by 

object in between two consecutive frames. Velocity of object 

travelling can be detected by using mathematical formula. 

Differences between slope angles of line segments are also 

calculated and will be stored in arrays.  

Length of Segment S1 (as shown in Eq. (2)) 

 

L(S1)= √(x1-x2)2-(y1-y2)2 (2) 

 

Length of Segment S2 (as shown in Eq.3) 

 

𝐿(𝑆2)√(𝑥2 − 𝑥3)2 − (𝑦2 − 𝑦3)2 (3) 

 

Velocity of object travel between point p1 and p2 is Vs1 (as 

shown in Eq. (4)) and that for between point2 and point3 is 

Vs2 (as shown in Eq. (5)). 

 

Vs1 = L(S1) / Tf = FPS×√[(𝑥1 − 𝑥2)2 +(𝑦1 −
𝑦2)2 ] 

(4) 

 

𝐿Vs2 = L(S2) / Tf 

= FPS ∗ √[(𝑥2 − 𝑥3)2

+  (𝑦2 − 𝑦3)2] 
(5) 

 

Further angle can be estimated to predict future location: 

Angle of line segment S1 (as shown in Eq. (6)) 

 

A(S1) = tan−1[(𝑦2 − 𝑦1)/(𝑥2 − 𝑥1)] (6) 

 

Angle of line segment S2 (as shown in Eq. (7)) 

 

A(S2) = tan−1[(𝑦3 − 𝑦2)/(𝑥3 − 𝑥2)] (7) 
 

Angle difference is shown in Eq. (8). 

 

Angle difference = tan−1[(𝑦3 − 𝑦2)/(𝑥3 − 𝑥2)]- 

tan−1[(𝑦2 − 𝑦1)/(𝑥2 − 𝑥1)] 
(8) 

 

Due to motion inertia, angle difference found above is likely 

to be continued for line segment between frames F3 and F4.  

So, using angle difference and velocity of previous line 

segment’s new location of moving object can be predicted. 

Knowing velocity of object and radius of curvature of travel 

path of object, future locations of object will be estimated. 

MobileNetV2 demonstrates strong recognition performance 

in interference scenarios like occlusion and rapid motion due 

to its optimized architecture for handling complex patterns in 

real-time. The model’s depth wise separable convolutions 

allow it to capture fine details from spatial data, enabling 

accurate activity recognition even when parts of the body are 

obscured. Its inverted residual structure retains essential 

features from partially visible regions, allowing the network to 

infer activity based on available information without needing 

a complete view. This makes MobileNetV2 more effective 

than simpler models, such as Thresholding or SVM, which 

may miss or misclassify occluded activities due to limited 

feature extraction. 

The lightweight structure and efficient parameters of 

MobileNetV2 also make it ideal for handling rapid motion in 

real-time. Rapid movements can blur frames, creating 

challenges for detection algorithms. MobileNetV2’s layers 

process these frames quickly while capturing subtle spatial 

patterns, allowing it to keep up with fast activity changes. The 

model captures essential motion cues, balancing accuracy with 

speed, making it suitable for dynamic activities like running, 

jumping, or abrupt posture changes. 

Additionally, the linear bottleneck layers in MobileNetV2 

improve generalization, enabling the model to distinguish 

between the subject and complex backgrounds, which is 

essential during occlusion and high-speed movements. This 

architecture minimizes noise and adapts well to varying 

environments, enhancing accuracy under challenging 

conditions. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Experimental setup 

 

Using an NVIDIA GeForce RTX 3080, a high-performance 

graphics card from the RTX 30 series family, and Python with 

TensorFlow, Support Vector Machine (SVM), MobileNet V2, 

and OpenCV on Google Colaboratory, the trials for human 

detection and activity classification were carried out. 

While conducting this experiment, various samples were 

tested using different algorithms. Table 1 presents a 

comparative analysis of for human activity recognition in low 

contrast videos, the performance of three different 

algorithms—Thresholding, SVM (Support Vector Machine), 

and Mobilenet V2—across various activities. The activities 

include "Duck Walk," "Running," "Slow Walk," and "Crawl." 

Table 1 summarizes the results of these algorithms based on 

several parameters: the total number of videos, correct 

detections, wrong detections, and accuracy percentage. 

Table 1 illustrates the performance metrics of the three 

algorithms, revealing that MobileNet V2 consistently achieves 

the highest accuracy across various activities.  

Additionally, a confusion matrix was generated to offer a 

comprehensive analysis of the model's predictions for each 

activity class—walking, running, duck walking, and crawling. 

The matrix provided a clear view of the count of accurate and 

inaccurate classifications for each activity. It also highlighted 

specific areas where the model struggled, such as confusing 

two similar activities. This breakdown allowed for a deeper 

understanding of how well the model performed across 

different activities and where improvements could be made. 

Figure 11 illustrates a confusion matrix, a widely utilized 

tool for assessing the performance of a classification model. It 

offers a comprehensive comparison of the model's predictions 

against the true labels. Figure 12 further underscores the 

variability in effectiveness of the Thresholding algorithm, 

which demonstrates varying degrees of accuracy depending on 

the activity. 
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Table 1. Comparative analysis of for human activity recognition 

 

Activity Algorithm Total No. of Videos Correct Detection Wrong Detection Accuracy (%) 

Duck Walk 

 

Thresholding 125 105 10 99% 

SVM 125 115 10 92% 

Mobilenet V2 125 117.5 7.5 94% 

Running 

 

Thresholding 125 105 12.5 88% 

SVM 125 112.5 12.5 90% 

Mobilenet V2 125 110 15 88% 

Slow Walk 

Thresholding 125 107.5 10 90% 

SVM 125 115 10 92% 

Mobilenet V2 125 112.5 12.5 90% 

Crawl 

 

Thresholding 125 102.5 15 86% 

SVM 125 110 15 88% 

Mobilenet V2 125 122.5 2.5 98% 

Overall 

Thresholding 500 4250 47.5 88.5% 

SVM 500 452.5 47.5 90.5% 

Mobilenet V2 500 462.5 37.5 92.5% 

 

 
 

Figure 11. Confusion matrix 

 

 
 

Figure 12. Accuracy by Thresholding algorithm 

 

Specifically, the Thresholding algorithm performs most 

accurately with Duck Walk and exhibits its lowest accuracy 

with Crawl. Overall, the performance of the Thresholding 

algorithm is moderate, indicative of these discrepancies in 

activity detection accuracy. Figure 13 indicates that the SVM 

algorithm generally exhibits strong performance, particularly 

for activities such as Duck Walk and Slow Walk, where it 

achieves approximately 92% accuracy. 

However, its effectiveness diminishes for the Crawl 

activity, with accuracy falling to around 86%. The overall 

accuracy of 90.5% demonstrates the SVM algorithm's 

reliability, though its performance shows some variability 

across different activities. 

 

 
 

Figure 13. Accuracy by SVM Algorithm 

 

 
 

Figure 14. Results using Mobilenet V2 Algorithm 
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Table 2. Speeds in frames per second (FPS) 

 

Algorithm Processing Speed (FPS) Description 

Thresholding 50 FPS 
Basic algorithm, relies on pixel intensity values for segmentation, generally 

faster but less accurate for complex activities. 

SVM 30 FPS 
More computationally intensive than Thresholding, leverages feature extraction 

for classification, balancing speed and accuracy. 

MobileNetV2 60 FPS 
Optimized with depthwise separable convolutions, achieves high accuracy with 

efficient processing, ideal for real-time applications. 

 

Table 3. Results after tuning Parameters using MobileNet V2 

 

Parameters 
Increasing No. of Database from 200 to 

320 Videos 

Changing Max Pooling to Average 

Pooling 

Increasing No. of Epochs 

from 110 to 160 

Accuracy 87.87 0.9050 0.9328 

Specificity 0.9594 0.9000 0.9438 

Sensitivity 0.8781 0.9667 0.9812 

Precision 0.8792 0.9008 0.9443 

F1-Score 0.8782 0.9001 0.9438 

Matthews 

Correlation 

Function 

0.8380 0.8670 0.9252 

Theoretical 

Basis 

Increasing the number of training samples 

provides the model with more variations 

in human activities, enhancing 

generalization and accuracy. 

Switching to Average Pooling reduces 

overfitting and may improve 

generalization by giving equal emphasis 

to all features within each region. 

Increasing epochs allows the 

model to learn more 

thoroughly, improving 

performance metrics but 

potentially increasing 

overfitting if unchecked. 

Experimental 

Process 

Expanded the video dataset 

incrementally, observing changes in 

performance metrics to identify ideal 

database size. 

Replaced Max Pooling layers with 

Average Pooling, running experiments to 

compare generalization and overfitting 

reduction. 

Increased the number of 

epochs gradually and 

monitored performance to 

avoid overfitting and 

determine optimal training 

duration. 

 

Figure 14 demonstrates that MobileNet V2 consistently 

performs exceptionally well across different activities, with its 

highest accuracy observed in detecting the Crawl activity, 

achieving nearly 98%. The algorithm’s overall accuracy of 

92.5% highlights its strong and consistent performance, 

making it the most effective among the compared algorithms. 

This performance is particularly notable in areas where other 

algorithms, such as SVM and Thresholding, show lower 

accuracy. Although there is some room for improvement in the 

Running activity, MobileNet V2 remains the most reliable 

option in this context.  

Table 2 illustrates the impact of three distinct tuning 

approaches on the performance of the MobileNet V2 

algorithm, assessed across multiple metrics. The results 

indicate that increasing the number of epochs, in particular, 

substantially enhances the algorithm's performance on these 

metrics. Building on these findings, Table 3 summarizes the 

outcomes of experiments conducted with the MobileNet V2 

algorithm, emphasizing the effects of various parameter tuning 

strategies. This analysis provides valuable insights into 

optimizing the algorithm for improved performance. 

Table 2 comparing the processing speeds in frames per 

second (FPS) for Thresholding, Support Vector Machine 

(SVM), and MobileNetV2 algorithms for human activity 

recognition under identical hardware conditions. 

This Table 3 provides a quick reference for comparing the 

speed of each algorithm for real-time human activity 

recognition on the same hardware. Table 3 shows the results 

after tuning Parameters using MobileNet V2. 

Table 4 comparing the recognition accuracy of 

Thresholding, Support Vector Machine (SVM), and 

MobileNetV2 algorithms under different light intensities for 

human activity recognition, using identical hardware 

conditions. 
 

Table 4. Comparison of the recognition accuracy 

 
Light Intensity 

(Lux) 
Algorithm 

Recognition Accuracy 

(%) 

Low (100 Lux) Thresholding 60.5 

 SVM 70.2 

 MobileNetV2 85.6 

Medium (300 Lux) Thresholding 68.9 

 SVM 80.5 

 MobileNetV2 90.8 

High (500 Lux) Thresholding 72.3 

 SVM 85.1 

 MobileNetV2 93.4 
 

 

 
 

Figure 15. Tuning parameters using MobileNet V2 
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Table 5. Computational complexity and memory usage 

 

Algorithm 
Computational 

Complexity 
Memory Usage Description 

Thresholding Low Minimal 

Simple operations based on pixel intensity values require minimal 

computation and memory, making it suitable for basic tasks but 

limiting accuracy for complex patterns. 

SVM Moderate to High Moderate 

Computational complexity increases with dataset size and feature 

dimensions due to kernel computations, leading to moderate memory 

usage and making SVM slower than simpler methods. 

MobileNetV2 Moderate Efficient 

Depthwise separable convolutions and inverted residuals reduce 

parameter count, enabling efficient memory usage while maintaining a 

balance between computational demands and high accuracy. 

 

Figure 15 is anticipated to offer a visual comparison of the 

impact of various parameter tuning strategies on the 

performance of the MobileNet V2 algorithm. It is expected to 

illustrate that increasing the number of epochs produces the 

most significant improvements across multiple metrics, 

thereby emerging as the most effective tuning strategy relative 

to adjustments in dataset size or modifications to the pooling 

method.  

Table 4 highlights the performance of each algorithm at 

various light levels, showing that MobileNetV2 consistently 

outperforms Thresholding and SVM, especially under 

challenging low-light conditions, making it more robust for 

human activity recognition in variable lighting. 

Table 5 compares the computational complexity and 

memory usage of Thresholding, Support Vector Machine 

(SVM), and MobileNetV2 algorithms for human activity 

recognition under identical hardware conditions. 

The proposed MobileNetV2 method offers significant 

advantages over Thresholding and SVM in human activity 

recognition, especially in real-world conditions. MobileNetV2 

provides higher accuracy and robustness across varying 

lighting conditions, adapting well to complex environments 

where Thresholding and SVM often struggle due to reliance 

on static feature extraction. Its efficient feature extraction with 

depthwise separable convolutions and inverted residuals 

allows MobileNetV2 to capture intricate activity patterns, 

resulting in more precise recognition. Optimized for real-time 

processing on low-power devices, MobileNetV2 is faster and 

more resource-efficient, making it ideal for immediate 

applications. Its use of linear bottlenecks also improves 

generalization across datasets, supporting scalability and 

flexibility to accommodate larger datasets and complex tasks 

without substantial computational costs, unlike SVM and 

Thresholding, which lack this adaptability. 

 

 

4. CONCLUSION 

 

The comparative study highlights the strengths and 

limitations of using SVM, the Thresholding algorithm, and 

MobileNetV2 for Human Activity Recognition (HAR) in 

dynamic video environments. The findings indicate that while 

MobileNetV2 excels in accuracy and real-time processing, 

making it a robust choice for applications requiring high 

precision, SVM provides a simpler, more resource-efficient 

alternative. Four human activities Run, duck Walk, Crawl, 

Slow duck walk dataset taken using Thermal Imager for videos 

captured are classified using Thresholding, SVM classifier and 

MobileNet algorithm. In this work the comparison of 

Thresholding, SVM and MobileNet algorithm shows 

MobileNet is better for Human Activity Recognition. Overall 

accuracy achieved by MobileNet is 92.5% compared to SVM 

(90%) and Thresholding (85%). The ability of MobileNetV2 

to maintain a high accuracy of 92.9% across diverse and 

challenging conditions underscores its potential for practical 

implementation in scenarios involving varied altitudes, 

illumination changes, and camera movements. This study 

contributes valuable insights into the selection of appropriate 

models for HAR, emphasizing the importance of balancing 

performance and computational demands based on specific 

application requirements. 
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