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The proliferation of cybersecurity threats continues to challenge the resilience of 
information systems worldwide. An effective defense against such threats requires 
advanced detection methods that can predict and classify the severity of vulnerabilities with 
high precision. This paper proposes a sophisticated anomaly detection framework using a 
machine learning algorithm, aimed at identifying and categorizing cybersecurity 
vulnerabilities from the CISA Known Exploited Vulnerabilities catalog for 2022. The 
proposed model underwent a rigorous process of preprocessing and data cleaning to ensure 
the integrity and suitability of the data for machine learning analysis. It has demonstrated 
exceptional proficiency, achieving an accuracy rate of 0.9810, alongside high precision and 
recall values across various severity levels of vulnerabilities. The model's performance 
highlights its utility in enhancing cybersecurity measures. Therefore, the significance of this 
model lies in its potential to transform the field of cybersecurity, offering a scalable, 
efficient tool for proactive threat detection and contributing to the fortification of 
information systems against a broad spectrum of cyber threats. 
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1. INTRODUCTION

In today's digital age, cybersecurity has become paramount.
Organizations across the globe increasingly rely on digital 
infrastructures, and consequently, the potential impacts of 
cyber threats continue to grow. Cybersecurity is crucial not 
only for protecting information systems from unauthorized 
access and attacks but also for maintaining the functionality 
and trust that are foundational to modern organizations [1]. 
The importance of cybersecurity cannot be overstated, as its 
role extends beyond mere protection of data to safeguarding 
the very integrity of our digital way of life. As cyber threats 
have evolved, so too have the methods to combat them. 
Initially considered mere nuisances, cyber threats have 
progressively become more sophisticated, aimed at stealing 
data, extorting money, or disrupting services. This evolution 
from simple to complex threats has necessitated a 
corresponding shift in defence strategies. Traditional security 
measures often rely on establishing strong perimeters and 
defending known vulnerabilities with predefined rules. 
However, these methods are increasingly insufficient, 
primarily because they struggle to adapt to novel or evolving 
threats, often leading to significant security breaches [2]. 

The concept of anomaly detection has thus come to the fore 
as a critical component in cybersecurity strategies. Anomaly 
detection involves identifying patterns in data that do not 
conform to expected behaviour. In the context of cybersecurity, 
this means spotting potential threats that deviate from normal 
network or system activities [3]. The dynamic nature of cyber 

threats makes them particularly challenging to predict and 
manage, underscoring the importance of detecting anomalous 
behaviour as a clue to potential breaches. Machine learning 
has emerged as a powerful tool in enhancing the capabilities 
of anomaly detection systems. By leveraging historical data, 
machine learning models can detect subtle and complex 
patterns indicative of malicious activity. These models offer a 
significant improvement over traditional methods, particularly 
in their ability to adapt to new and unforeseen attack vectors. 
Despite these advantages, anomaly detection in cybersecurity 
is not without challenges, such as high false-positive rates and 
the need for large, labelled datasets [4]. 

The schoolers have responded to these challenges by 
proposing various innovative machine learning models to 
enhance the accuracy and efficiency of anomaly detection 
systems. For instance, Hernandez-Jaimes et al. [5] have 
explored the use of neural networks in anomaly-based 
intrusion detection, demonstrating a marked improvement in 
detection capabilities. Moreover, the advent of deep 
learning—a subset of machine learning that utilizes complex 
neural network architectures—has further advanced the field. 
Deep learning techniques, such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), 
have proven particularly effective in identifying intricate 
patterns that are typical of modern cyber-attacks. A 
compelling example of these advancements is the work by 
Delchevalerie et al. [6] who applied CNNs to detect 
Distributed Denial of Service (DDoS) attacks, one of the most 
prevalent threats in network security. Their findings illustrated 
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not only improved accuracy but also increased speed in 
detecting such attacks compared to traditional methods. 
However, integrating these sophisticated machine learning 
models into existing cybersecurity systems presents its own set 
of challenges, including computational demands and the need 
for real-time processing capabilities. 

Meanwhile, Unsupervised learning models, which do not 
require labelled data, offer promising solutions in scenarios 
where threat labels are scarce. Techniques such as clustering 
and autoencoders are being explored for their potential to 
autonomously detect unknown types of cyber threats [7]. 
Furthermore, hybrid models that combine various machine 
learning approaches can potentially lead to more robust 
anomaly detection systems by leveraging the strengths of both 
supervised and unsupervised learning methods. The practical 
implications of implementing these advanced machine 
learning models are profound. They have the potential to 
significantly reduce the time required to detect and respond to 
threats, minimize the occurrence of false positives, and 
optimize the allocation of human security resources. Looking 
forward, the future of anomaly detection in cybersecurity will 
likely focus on enhancing the adaptability and scalability of 
these models to keep pace with the continuously evolving 
landscape of cyber threats [8]. 

This research examines how the use of anomaly detection 
methods, combined with machine learning, may significantly 
improve the discovery of cybersecurity threats. It offers a 
comprehensive analysis of the present condition of these 
cutting-edge technologies, assessing their practicality and 
efficiency in real-world scenarios. The report also elucidates 
the auspicious prospects of these procedures, foreseeing their 
development and the consequent expansion of their 
capabilities. This paper highlights the innovative methods in 
machine learning that might revolutionize the field of 
cybersecurity threat identification. 

 
 

2. RELATED WORK 
 
The landscape of cybersecurity threat detection has seen 

substantial evolution over the past decades, marked by a shift 
from conventional heuristic-based methods to sophisticated 
anomaly detection systems underpinned by machine learning 
[9]. Early foundational work in this area, such as the 
comprehensive survey by Princz et al. [10] categorizes various 
anomaly detection techniques and highlights their 
applicability across different domains, including cybersecurity.  

Significant developments in statistical anomaly detection 
were initially explored in research by Tang et al. [11], who 
discussed the challenges of applying these techniques to high-
dimensional data—a common characteristic of modern cyber 
environments. As the complexity of cyber threats increased, 
the need for more adaptable and robust methods became 
apparent, leading to the adoption of machine learning 
techniques. For instance, Satheesh et al. [12] have investigated 
the efficacy of supervised learning algorithms, such as Support 
Vector Machines (SVM), in distinguishing between normal 
behaviour and anomalies in network traffic. The advent of 
unsupervised learning techniques marked a turning point in 
anomaly detection, offering the ability to detect patterns 
without prior labelling of data. He et al. [13] provided insight 
into various unsupervised methods, including clustering and 
outlier detection, which are particularly beneficial in scenarios 
where labelled data is scarce or non-existent. The exploration 

of semi-supervised learning techniques further bridged the gap 
between supervised and unsupervised learning, utilizing small 
amounts of labelled data alongside larger volumes of 
unlabelled data to improve learning accuracy and efficiency. 

Meanwhile, neural networks, particularly deep learning 
models like Autoencoders, have revolutionized anomaly 
detection by effectively learning to replicate normal behaviour 
and identifying deviations as potential threats. For instance, 
Wu et al. [14] utilized Convolutional Neural Networks (CNNs) 
for the detection of Distributed Denial of Service (DDoS) 
attacks, exemplifies the application of deep learning in real-
world cybersecurity scenarios. Their success in significantly 
enhancing detection speeds and accuracy underscores the 
potential of these models to address sophisticated cyber threats. 
Recurrent Neural Networks (RNNs) have also been tailored to 
tackle the nuances of sequential data analysis in network 
traffic, proving critical in understanding temporal patterns 
indicative of malicious activities [15]. Hybrid models, which 
combine multiple machine learning approaches, have been 
explored to harness the strengths of various learning 
paradigms, thereby reducing false positives and improving 
overall system robustness. The importance of feature selection 
in machine learning is emphasized in studies that focus on 
optimizing the input variables to improve model performance. 
Dimensionality reduction techniques, such as Principal 
Component Analysis (PCA), are frequently used to manage 
the computational complexity and enhance the scalability of 
these models. This aspect of model development is crucial for 
enabling real-time anomaly detection systems that can operate 
efficiently in dynamic cybersecurity environments [16]. 

On the other hand, benchmark datasets like the KDD Cup 
99 have played a pivotal role in evaluating the effectiveness of 
anomaly detection systems, allowing researchers to compare 
different approaches under standardized conditions. However, 
the reliance on such datasets has also drawn criticism for not 
fully encapsulating the complexity and evolving nature of real-
world data [17]. Consequently, recent studies have advocated 
for the development of more representative datasets and 
evaluation metrics that reflect the practical challenges faced in 
cybersecurity. Moreover, the integration of machine learning 
with other cutting-edge technologies such as blockchain and 
quantum computing is anticipated to further transform the 
cybersecurity landscape. These integrations not only promise 
enhanced security features but also raise important ethical 
considerations, particularly concerning data privacy and the 
potential biases inherent in algorithmic decision-making [18]. 

In order to effectively discuss the taxonomy of anomaly 
detection as related to cybersecurity, it's essential to examine 
into three primary classifications as it can be seen from Figure 
1: Graph-based Detection, Threat-based Detection, and 
Analysis-based Detection. Each of these categories has further 
subdivisions that provide to specific approaches in detecting 
anomalies, offering a structured way to understand the 
complexity and diversity of techniques used in this domain. 

 

 
 

Figure 1. Taxonomy of anomaly detection 
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2.1 Graph-based 

Graph-based anomaly detection techniques represent 
relationships and interactions in a networked environment 
through graphical structures, enabling the detection of 
irregular patterns that deviate from typical network behaviours. 
This approach can be further divided into community-based 
and user-based detection. 

2.1.1 Community-based detection 
Community-based detection is a significant approach within 

the broader scope of graph-based anomaly detection 
techniques in cybersecurity. This method leverages the 
concept of community structures within network graphs to 
identify deviations that could indicate malicious or anomalous 
behaviour [19]. In essence, a community in a network graph 
represents a group of nodes (such as individual users or 
computers) that are more densely connected to each other than 
to nodes in other parts of the network. These communities 
often reflect groups with common interests, behaviours, or 
roles within the network, making them a natural focal point for 
analysing typical and atypical patterns. The primary strength 
of community-based detection lies in its ability to discern 
irregularities at a macro level, which can be indicative of 
coordinated attacks, data breaches, or the spread of malware 
within a community. For instance, if a node suddenly starts 
interacting excessively outside its usual community, or if 
there's an unexpected formation of new edges that 
significantly alter the community's structure, these can be 
flagged as potential security incidents. Chen et al. [17] have 
developed algorithms that can effectively monitor and analyse 
these changes in community dynamics, using statistical 
metrics to quantify normal versus abnormal interactions 
within and between communities [20]. 

Implementing community-based detection involves 
complex challenges, primarily due to the dynamic nature of 
community formations and evolutions in real-world networks. 
Detecting communities and tracking their changes over time 
requires sophisticated algorithms that can adapt to the 
network’s evolving structure without compromising the speed 
or accuracy of detection. Additionally, the scalability of these 
detection systems becomes a critical issue in large-scale 
networks, where the sheer volume of data and the number of 
interactions can overwhelm traditional processing capabilities. 
Hence, ongoing research in this area focuses on developing 
more efficient algorithms that can handle large datasets and 
provide real-time anomaly detection to effectively mitigate 
potential cybersecurity threats [21]. 

2.1.2 User-based detection 
User-based detection is a targeted approach within the 

graph-based anomaly detection framework, which focuses on 
the activities and behaviours of individual users within a 
network. This method is particularly valuable in identifying 
anomalies that arise from specific user actions that deviate 
from established normal patterns. By analysing user behaviour 
on a granular level, this technique can pinpoint unusual or 
suspicious activities that might be overlooked by broader, 
community-focused methods. The core of user-based 
detection lies in constructing profiles for each user, which 
encapsulate typical behaviour patterns in terms of network 
usage, access patterns, transaction histories, and social 
interactions. These profiles are developed using historical data 
and continuously updated as new data becomes available. 

Anomalies are detected when current activities significantly 
deviate from the profile. For example, if a user suddenly 
accesses sensitive data at an unusual time or from an unusual 
location, or if there's a spike in data transfer that doesn't 
correlate with the user's typical behaviour, these actions could 
trigger alerts for further investigation [22]. 

Implementing user-based detection involves challenges 
related to privacy and data sensitivity, as it requires 
comprehensive monitoring and analysis of individual user 
behaviours. Ensuring the security and privacy of user data 
while conducting such detailed monitoring is crucial, as is 
maintaining the efficiency of the detection system. Moreover, 
this method must be capable of adapting to legitimate changes 
in user behaviour without generating excessive false positives, 
which could lead to "alert fatigue" and potentially overlook 
genuine threats. Effective user-based anomaly detection 
systems use advanced machine learning algorithms to learn 
from ongoing activities, enabling them to distinguish between 
benign anomalies resulting from natural changes in behaviour 
and those that signify potential security threats [23]. 

2.2 Threat-based 

Threat-based detection is categorized into Rule-based and 
Behaviour-based detection, focusing on identifying security 
threats either by predefined rules or observed behaviours. 

2.2.1 Rule-based detection 
Rule-based detection is a traditional and widely 

implemented method in the field of cybersecurity for 
identifying anomalies and potential threats. This approach 
relies on predefined rules or patterns that specify what 
constitutes normal or acceptable behaviour within a system or 
network. Any action that violates these rules is flagged as a 
potential threat. The strength of rule-based detection systems 
lies in their straightforward implementation and the clarity 
with which they can be configured to respond to known threats, 
making them especially effective in environments where 
security requirements are well-defined and stable [24]. 

The design of a rule-based detection system involves the 
careful formulation of rules, which are often based on 
historical data, expert knowledge, and industry standards. 
These rules might include conditions like unauthorized access 
attempts, the presence of certain malware signatures, unusual 
outbound traffic, or any unauthorized changes to system files 
or configurations. Administrators can customize these rules to 
be as broad or as specific as needed, depending on the security 
policies and the sensitivity of the assets being protected. The 
primary advantage of this method is its ability to provide 
immediate alerts based on specific criteria, enabling rapid 
response to prevent potential security breaches. However, 
rule-based detection systems also face significant limitations, 
primarily their inflexibility and high rate of false positives, 
especially in dynamic environments where user behaviours 
and legitimate system uses may evolve frequently. They are 
also inherently limited by their dependency on prior 
knowledge of attack vectors, which makes them less effective 
against zero-day exploits or novel attack methods that have not 
been previously identified and codified into rules. Moreover, 
the maintenance of rule-based systems can be labour-intensive, 
as it requires continuous updates and refinements to keep up 
with new threats and changing conditions in the IT 
environment. Despite these challenges, rule-based detection 
remains a fundamental component of comprehensive security 

2417



strategies, particularly when combined with other forms of 
anomaly detection to enhance overall security posture [25]. 

2.2.2 Behaviour-based detection 
Behaviour-based detection, in contrast to rule-based 

detection, does not rely on predefined rules or patterns to 
identify potential security threats. Instead, it focuses on 
understanding the normal behaviour of a system, network, or 
user and then detects anomalies by identifying activities that 
deviate from this established norm. This method is particularly 
effective for identifying previously unknown threats, 
including zero-day exploits and advanced persistent threats 
(APTs) that can evade traditional rule-based systems. To 
establish a baseline of normal behaviour, behaviour-based 
detection systems employ various models and algorithms that 
can process and learn from historical data. Over time, these 
systems develop a comprehensive profile of what is 
considered normal activity within the context in which they 
operate. This learning process can involve statistical 
modelling, machine learning techniques, or a combination of 
both. Once the baseline is established, the detection system 
continuously monitors for deviations from the norm. For 
example, a user who typically accesses a system during regular 
business hours might trigger an alert if there is an attempt to 
access the same system in the middle of the night or from a 
foreign country [26]. 

The challenge with behaviour-based detection is accurately 
distinguishing between legitimate variations in behaviour and 
genuine threats. This distinction is crucial to minimize false 
positives and ensure that normal business operations are not 
disrupted. Moreover, these systems require time and 
significant amounts of data to establish a reliable baseline, 
which might not be feasible in highly dynamic environments. 
Despite these challenges, behaviour-based detection remains a 
powerful tool in the cybersecurity arsenal, offering 
adaptability and the ability to respond to role of behaviour-
based detection will likely become increasingly prominent, 
necessitating ongoing research and development to enhance its 
capabilities and effectiveness [27]. 

2.3 Analysis-based 

The final category, Analysis-based Detection, includes 
Statistical-based and Machine Learning-based detection, both 
of which apply different analytical techniques to identify 
unusual patterns. 

2.3.1 Statistical-based detection 
Statistical-based detection is a traditional form of anomaly 

detection that utilizes statistical techniques to model the 
normal behaviour of data or systems and identify deviations 
from this model. This method rests on the assumption that 
normal data follows a particular distribution or pattern, which 
can be quantified using statistical metrics. Anomalies are then 
identified as observations that significantly deviate from the 
established statistical model, indicating potential 
cybersecurity threats or issues. The process begins with the 
collection and analysis of historical data to construct a profile 
of normal activity. This activity can range from network traffic 
patterns to user login frequencies. Statistical methods, such as 
mean, variance, and distribution curves, are applied to create 
this profile. Over time, these measures establish a baseline of 
expected activity. For example, if network traffic volume is 
known to follow a normal distribution during a certain time of 

day, activities that fall outside the high-probability areas of 
this distribution might be flagged as potential anomalies [28]. 

A key challenge in statistical-based detection is setting the 
thresholds for what constitutes an anomaly. If the threshold is 
too low, the system might generate too many false positives; 
if it’s too high, some genuine threats might not be detected. 
Additionally, the system must be adaptable to reflect genuine 
changes in behaviour patterns, such as those due to evolving 
business practices or the introduction of new technology. 
Despite these challenges, statistical-based detection remains a 
fundamental part of many anomaly detection systems, 
especially in well-understood environments where behaviours 
are expected to conform to specific statistical patterns. As such, 
it often serves as a first line of defence, which can be 
augmented with more complex techniques, such as machine 
learning, for enhanced detection capabilities [29]. 

2.3.2 Machine learning-based detection 
Machine Learning-Based Detection stands out as a cutting-

edge approach within the domain of anomaly detection, 
characterized by its ability to learn from data and identify 
patterns that may not be apparent to human analysts or through 
statistical methods alone [30]. This approach capitalizes on the 
prowess of machine learning algorithms to process vast 
amounts of data and detect complex behaviours indicative of 
cybersecurity threats. Machine learning models, both 
supervised and unsupervised, can be trained on a variety of 
features extracted from network traffic, system logs, and other 
relevant data sources to distinguish between normal and 
malicious activities. Supervised machine learning requires a 
labelled dataset, where the data points are tagged as either 
normal or anomalous. These labels allow the model to learn 
the characteristics of each class during the training phase [31]. 
Once the model is trained, it can then classify new data based 
on what it has learned. This method is highly effective for 
detecting known types of threats but can struggle with new, 
unseen anomalies. Unsupervised machine learning, on the 
other hand, does not require labelled data. It identifies 
anomalies by finding data points that do not fit well with the 
rest of the data distribution, which is beneficial for identifying 
novel or unknown types of attacks. Techniques like clustering 
and Principal Component Analysis (PCA) are commonly used 
to identify outliers that may represent security incidents [32]. 

One of the greatest strengths of machine learning-based 
detection is its adaptability. Models can be retrained regularly 
to incorporate the latest data, allowing them to evolve with 
changing patterns of normal behaviour and emerging threats. 
This dynamic nature is crucial in the fast-paced world of 
cybersecurity, where attackers continually develop new 
strategies to breach systems. However, machine learning 
models also come with challenges, such as the need for large 
and diverse training datasets, the risk of overfitting to the 
training data, and the interpretability of the models’ decisions. 
Despite these challenges, machine learning-based detection 
remains at the forefront of innovation in cybersecurity, 
offering the promise of more resilient and responsive defence 
mechanisms against a wide array of cyber threats [33]. The 
upcoming Table 1 shows the related work. 

The body of research on anomaly detection using machine 
learning in cybersecurity spans a variety of methodologies, 
each addressing different aspects of the detection process. For 
example, Inuwa and Das [1] conducted a comparative analysis 
of machine learning methods for anomaly detection in IoT 
environments. Their results highlighted the effectiveness of 
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Support Vector Machines (SVM) and Random Forest models 
in identifying anomalies with greater precision. However, the 
lack of application to real-world cybersecurity data leaves 
room for improvements in generalizability. 

Gancheva [2] applied machine learning techniques to 
software anomaly detection, with neural networks achieving 
high detection accuracy. While their results were promising, 
their methodology primarily focuses on software, overlooking 
network-based threats, which are a crucial component of 
comprehensive cybersecurity strategies. 

Similarly, Hernandez-Jaimes et al. [5] utilized locality-
sensitive hashing for anomaly detection in IoT networks, 
achieving fast detection with moderate accuracy. Although 
their approach is optimized for IoT environments, it is not 
necessarily adaptable to broader network applications, where 
threats are more diverse. 

In the manufacturing domain, Vibhute et al. [8] focused on 
detecting anomalies in magnetron sputtering processes using 
machine learning. Their work showcased high precision, but 
the applicability was limited to specific manufacturing 
scenarios, pointing to a need for adaptation to other industrial 
processes. 

Delchevalerie et al. [6] addressed network anomaly 
detection using deep learning on NSL-KDD datasets, 
achieving high accuracy for known threats. However, they 
lacked testing in real-time application environments, where 
speed and accuracy are both critical. 

As it can be seen each method has its strengths, but they 
often focus on specific niches, leaving room for development 
in comprehensive, scalable models that can be applied across 
different cybersecurity domains. 

Table 1. Related work 

Author(s) Proposed Methodology Findings and Results Research Gap 

[1] Comparative analysis of machine learning
methods for IoT anomaly detection

SVM and Random Forest models showed 
improved anomaly detection rates 

Lack of evaluation on real-world 
cybersecurity data 

[2] Application of ML techniques for software
anomaly detection

Neural networks achieved high accuracy 
in detecting software anomalies 

Focuses only on software and ignores 
network-level threats 

[5] Locality-sensitive hashing for anomaly
detection in IoT

Achieved fast detection rates with 
moderate accuracy 

Only evaluated on IoT environments, not 
applicable to broader networks 

[8] Detection of network anomalies using ML
on NSL-KDD datasets

High accuracy for known threats using 
deep learning methods Limited real-time application testing 

[6] Magnetron sputtering anomaly detection
using ML

Detected process anomalies with high 
precision 

Results limited to specific manufacturing 
processes 

3. METHODOLOGY

It is well known that cybersecurity anomaly detection has
become an increasingly critical task in protecting information 
systems from a wide array of sophisticated threats as 
mentioned before. Machine learning techniques, particularly 
probabilistic models like Naive Bayes, offer promising 
avenues for developing efficient and effective anomaly 
detection systems. This framework proposes a structured 
approach to employing the Naive Bayes classifier for 
multinomial models, aiming to capitalize on its simplicity and 
efficacy in handling large datasets with multiple categories. 
Our proposed framework consists different phases and it will 
be discussing in the upcoming sections. 

Phase 1: Data collection 
The initial phase in our proposed framework involves the 

aggregation of vulnerability data from the CISA Known 
Exploited Vulnerabilities catalog. This comprehensive dataset 
encompasses a myriad of details pertinent to cybersecurity 
vulnerabilities reported throughout 2022. Given the dataset's 
complexity, encompassing a variety of attributes such as 
vulnerability types, severity levels, Common Vulnerability 
Scoring System (CVSS) scores, vendor information, product 
names, and detailed technical information about each 
vulnerability, it is paramount to establish a systematic 
approach to gather and organize this data efficiently. Our aim 
is to ensure the dataset is compiled cohesively, enabling the 
Naive Bayes classifier to process the information effectively. 

Once collected, the dataset requires a rigorous vetting 
process to confirm its integrity and completeness. This 
scrutiny ensures that the subsequent stages of pre-processing 
and classification are based on reliable and comprehensive 

data. Any missing entries, especially in critical fields like 
CVSS scores or vulnerability types, must be identified and 
addressed. Where possible, missing data will be supplemented 
through interpolation or domain-specific estimation 
techniques, considering the nature of the data and the potential 
impact on the overall analysis. 

Phase 2: Data pre-processing 
Following the collection, the dataset undergoes a 

meticulous pre-processing phase. This phase involves 
converting the raw vulnerability data into a structured and 
consistent format that can be interpreted by our multinomial 
Naive Bayes classifier. Specific attention will be paid to 
timestamp normalization to align all entries on a standardized 
temporal scale, ensuring that time-sensitive analyses such as 
trend assessments are accurate. Parsing will be undertaken to 
extract relevant fields from the data entries, with a particular 
focus on categorical data such as attack vectors and 
complexity ratings. These will be encoded into numerical or 
binary formats suitable for machine learning algorithms, while 
preserving the essence and interpretability of the original data. 

Further, this pre-processing phase will involve the 
discretization of continuous variables, such as CVSS scores, 
into categorical bins if deemed appropriate for the Naive 
Bayes model. The granularity of these bins will be determined 
by the distribution of the scores and the need for maintaining 
sufficient detail for precise vulnerability assessment. The goal 
is to retain the predictive power of these variables while 
transforming them into a form that complements the 
multinomial nature of the chosen classifier. 

Phase 3: Data cleaning 
Data cleaning stands as an essential bridge between raw 
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data collection and the sophisticated analysis enabled by 
machine learning. In this phase, the dataset is methodically 
scoured for inconsistencies, redundancies, and anomalies that 
could otherwise skew the results of the anomaly detection 
process. Duplicates, which could artificially inflate the 
prevalence of certain vulnerabilities, are identified and excised. 
Noise reduction is also performed to streamline the dataset, 
focusing on the removal of irrelevant features that do not 
contribute to the predictive power of the model or might 
introduce bias. 

Once the dataset is pruned of extraneous information, we 
tackled missing values—a common issue in extensive datasets. 
Options such as removing records with missing values, 
imputing missing entries based on statistical measures, and 
employing predictive modelling to estimate missing values 
will be evaluated. The chosen approach will strike a balance 
between dataset completeness and the integrity of the analyses. 
Dimensionality reduction techniques also considered to 
concentrate the dataset further, highlighting the most 
informative features and thus enhancing the classifier's 
efficiency and performance. This meticulous data cleaning 
process ensures the creation of a refined, reliable dataset 
poised for effective machine learning classification. 

Phase 4: Feature selection 
The architecture of the Naive Bayes classifier begins with a 

critical feature selection phase. This step is fundamental in 
determining the efficacy of the classifier, as the chosen 
features directly influence the model's ability to learn and 
make accurate predictions as it can be seen from Figure 2. In 
this phase, each attribute of the dataset, such as vulnerability 
types, severity levels, and CVSS scores, is evaluated for its 
relevance and impact on the classification task. Statistical 
method, which is chi-squared test, is employed to assess the 
independence of the features relative to the vulnerability 
outcomes. This process ensures that only the most significant 
features that contribute to identifying security vulnerabilities 
are retained for model training. The focus is not only on 
individual feature performance but also on how combinations 
of features interact, aiming to capture the complex nature of 
cybersecurity threats. 

Figure 2. Architecture of naive bayes classifier for 
multinomial model 

After identifying the most predictive features, we proceed 
with their preparation for use in the multinomial model. Given 
the categorical nature of the Naive Bayes algorithm, 
continuous variables are discretized appropriately, and 
categorical variables are encoded. This phase involves 
transforming all the selected features into a multinomial-
friendly format, often leveraging techniques such as one-hot 
encoding or binning. Care is taken to maintain the 
interpretability of the features, ensuring that the 
transformations align with the underlying distribution and 
semantics of the data. This preparation is vital for harnessing 

the full potential of the Naive Bayes classifier and lays the 
groundwork for robust model training. 

Phase 5: Model training 
With the features prepared, we transition to the model 

training phase. The multinomial Naive Bayes classifier is 
selected for its appropriateness for classification tasks with 
features described by frequencies, such as the number of times 
a particular type of vulnerability is reported. The training 
involves feeding the selected and processed features into the 
classifier, allowing it to learn the probabilities associated with 
the features' occurrences in the context of different classes of 
vulnerabilities. The model’s parameters are adjusted based on 
the frequencies of the features in the context of the 
vulnerability labels, calculating the likelihood of each feature 
occurring in each class. 

The model is trained on a subset of the cleaned and 
processed dataset, reserving a portion for testing and 
validation. During training, we implement techniques such as 
k-fold cross-validation to ensure the model's generalizability
and to prevent overfitting. This approach involves dividing the
dataset into k subsets, using k-1 subsets for training, and the
remaining subset for testing, iteratively, until each subset has
been used for validation. This process allows for fine-tuning
the model's parameters and gaining insights into its
performance across various segments of the data, promoting a
robust and well-generalized classifier.

Here's a step-by-step breakdown of how the Naive Bayes 
classifier works within this methodology Prior Probability 
Calculation (P(Ck)) 

The first thing in the classification process is to calculate the 
prior probability of each class. In this case, classes correspond 
to different severity levels of vulnerabilities (e.g., CRITICAL, 
HIGH, MEDIUM). The prior probability for each class P(Ck) 
is calculated by dividing the number of vulnerabilities in class 
Ck by the total number of vulnerabilities in the dataset. 

( )k kP C .      C /Number of vulner abilities inclass= (1) 

Total number of vulnerabilities: 
For instance, if 30% of the vulnerabilities in the dataset are 

classified as "CRITICAL," then P(CRITICAL)=0.30 

Phase 6: Model optimization 
The final architectural phase revolves around model 

optimization. Here, we scrutinize the initial performance of 
our multinomial Naive Bayes classifier and refine it. 
Hyperparameters of the model, such as the prior probabilities 
of the classes, are fine-tuned to enhance the classifier’s 
predictive accuracy. Various optimization strategies, 
including grid search and Bayesian optimization, are evaluated 
to find the optimal set of parameters that minimize the model's 
error rates on the validation datasets. 

In addition to hyperparameter tuning, we explore various 
techniques to calibrate the classifier’s threshold for decision-
making. Since cybersecurity threat detection often deals with 
imbalanced classes where the cost of misclassification can be 
high, the decision threshold is adjusted to achieve an optimal 
balance between sensitivity (true positive rate) and specificity 
(true negative rate). This optimization is crucial to ensure that 
the classifier is not only accurate but also practical in a real-
world cybersecurity context where the precision of threat 
detection is paramount. The optimization phase is iterative and 
data-driven, aimed at delivering a classifier that is both finely 
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tuned to the nuances of the dataset and resilient in the face of 
evolving cybersecurity threats. 

 
 

4. REUSLTS AND DISCUSSION 
 
The use of the Naive Bayes multinomial classifier to protect 

digital infrastructures from hostile activities reveals exciting 
cybersecurity applications of machine learning. This section 
analyses the outcomes of applying the proposed technique to 
a carefully chosen dataset of identified vulnerabilities. The text 
assesses the classifier's accuracy and reliability in predicting 
and classifying cyber threat severity. The model's accuracy, 
recall, and F1-scores at different vulnerability levels are used 
to debate its subtle efficacy.  
 
4.1 Results 

 
After an extensive phase of data pre-processing and 

cleaning, the resulting dataset exhibits a structured and 
uniform format suitable for the application of our Naive Bayes 
multinomial model. Each record within the dataset, 

representing a unique vulnerability as identified by its CVE-
ID, includes standardized fields such as the vendor_project, 
product, vulnerability_name, and date_added, among others. 
This meticulous organization ensures that each attribute holds 
significant relevance to the vulnerability's nature and required 
response. For instance, 'Accellion FTA' under the product 
column is consistently associated with various types of 
vulnerabilities, such as 'OS Command Injection' and 'SQL 
Injection', facilitating a clear understanding of the product's 
susceptibility to different attack vectors as it can be seen from 
Table 2. 

The uniformity in the 'required_action' field across different 
vulnerabilities, with advisories such as 'Apply updates per 
vendor instructions', underscores the common remediation 
approach advised for a range of security issues. Moreover, the 
'due_date' column reflects the urgency associated with each 
identified vulnerability, providing a temporal dimension to the 
prioritization process within the threat management lifecycle. 
This consistency in data format and the comprehensive capture 
of vulnerability details post-cleaning signify a dataset that is 
primed for effective analysis by the classifier. 

 
Table 2. Cleaned dataset 

 
CVE ID Vendor/Proje

ct Product Vulnerability Name Date Added Short Description Required Action Due 
Date 

CVE-2021-
27104 Accellion FTA 

Accellion FTA OS 
Command Injection 

Vulnerability 
2021-11-03 Accellion FTA 9_12_370 

and earlier is affected. 
Apply updates per 
vendor instructions 

2021-11-
17 

CVE-2021-
27102 Accellion FTA 

Accellion FTA OS 
Command Injection 

Vulnerability 
2021-11-03 Accellion FTA 9_12_411 

and earlier is affected. 
Apply updates per 
vendor instructions 

2021-11-
17 

CVE-2021-
27101 Accellion FTA Accellion FTA SQL 

Injection Vulnerability 2021-11-03 Accellion FTA 9_12_370 
and earlier is affected. 

Apply updates per 
vendor instructions 

2021-11-
17 

CVE-2021-
27103 Accellion FTA Accellion FTA SSRF 

Vulnerability 2021-11-03 Accellion FTA 9_12_411 
and earlier is affected. 

Apply updates per 
vendor instructions 

2021-11-
17 

CVE-2021-
21017 Adobe Acrobat 

and Reader 

Adobe Acrobat and 
Reader Heap-Based 

Buffer Overflow 
2021-11-03 Acrobat Reader DC 

versions 2020.012. 
Apply updates per 
vendor instructions 

2021-11-
17 

4.2 Model performance evaluation 
 
The performance of the Naive Bayes multinomial model, as 

assessed by standard classification metrics, demonstrates 
exceptional accuracy in predicting the severity levels of 
cybersecurity vulnerabilities. With an accuracy score of 
0.9810, the model shows high proficiency in distinguishing 
between 'CRITICAL', 'HIGH', and 'MEDIUM' severity levels 
of vulnerabilities as it can be seen from Figure 3. This high 
degree of accuracy is pivotal in ensuring that the most severe 
vulnerabilities are promptly identified and addressed, 
minimizing potential damage to affected systems. 

 

 
 

Figure 3. Classification report  

 
 

Figure 4. Confusion matrix 
 
The confusion matrix and classification report reveal further 

details about the model's performance. A small number of 
critical vulnerabilities were misclassified as high (7 instances), 
and vice versa (5 instances), suggesting a minor challenge in 
differentiating between the highest levels of severity, which 
could stem from overlapping characteristics of vulnerabilities 
within these categories. Nevertheless, the precision and recall 
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scores for each category remain exceptionally high, with 
'CRITICAL' and 'HIGH' both achieving scores of 0.98, and 
'MEDIUM' achieving perfect precision and a 0.97 recall. The 
F1-scores, which balance precision and recall, consolidate the 
model's robustness, particularly in distinguishing the most 
detrimental vulnerabilities accurately as it can be seen from 
Figure 4. 

 
4.3 Severity level distribution 

 
On the other hand, the upcoming bar charts in Figure 5 

depicting the distribution of severity levels present insights 
into the dataset's composition. The first chart indicates a higher 
frequency of 'HIGH' severity vulnerabilities compared to 
'CRITICAL' and 'MEDIUM', suggesting a dataset skewed 
towards high-impact vulnerabilities. This skew could reflect 
the nature of reported vulnerabilities within the timeframe or 
an emphasis on more severe threats in the cybersecurity 
community's reporting practices. 

This also corroborates the distribution found in the first, 
reinforcing the predominance of 'HIGH' severity 
vulnerabilities. The relative scarcity of 'MEDIUM' and 
absence of 'LOW' severity vulnerabilities could have 
implications for the model training, potentially influencing the 
Naive Bayes classifier's ability to generalize across a more 
balanced dataset. Nevertheless, the model's high-performance 
metrics indicate its capacity to learn effectively from the given 
distribution, although future work could explore the impact of 
a more evenly distributed severity classification on the model's 
predictive performance. 

 

 
 

Figure 5. Distribution of severity levels 

4.4 Comparative analysis 
 
In this section, we compare the proposed anomaly detection 

model based on the multinomial Naive Bayes classifier with 
five other machine learning approaches used in the field of 
cybersecurity anomaly detection. The comparison focused on 
accuracy and scalability as it can see from Table 3. 

The proposed anomaly detection model utilizing a 
multinomial Naive Bayes classifier shows strong performance 
metrics compared to the selected methods, especially in the 
context of generalizability and scalability across diverse 
datasets. 

Inuwa and Das [1] used SVM and Random Forest for 
anomaly detection in IoT networks. While achieving high 
accuracy (0.95), their model is limited to IoT environments, 
whereas our proposed method is applicable to a wider range of 
cybersecurity vulnerabilities, including those identified by 
CISA. 

Gancheva [2] applied neural networks to software anomaly 
detection, focusing exclusively on software-based issues. 
While their accuracy (0.92) is competitive, the proposed 
method has the advantage of being applicable to both software 
and network-based vulnerabilities, thus enhancing its 
practicality across more domains. 

Hernandez-Jaimes et al. [5] focused on locality-sensitive 
hashing for IoT anomaly detection. Although their approach 
provides a fast detection mechanism, the performance metrics 
such as accuracy (0.89) and precision (0.87) are lower than 
those achieved by our Naive Bayes model. Additionally, the 
proposed method demonstrates greater versatility, being able 
to handle vulnerabilities beyond IoT networks. 

Meanwhile, Vibhute et al. [8] proposed a machine learning 
model for detecting anomalies in manufacturing processes. 
Their model achieves high accuracy (0.97), but its application 
is highly specific to the manufacturing industry. In contrast, 
our model, with an accuracy of 0.981, demonstrates broader 
adaptability across cybersecurity datasets, making it more 
versatile for real-world applications. 

Delchevalerie et al. [6] utilized deep learning techniques on 
the NSL-KDD dataset, achieving competitive results in terms 
of accuracy (0.98) and F1-score (0.96). However, their model's 
focus on known threats and the lack of real-time testing limits 
its applicability in dynamic environments. The proposed 
Naive Bayes model is not only competitive in terms of 
accuracy but also addresses broader types of vulnerabilities, 
providing more flexibility in real-world cybersecurity systems. 

 
Table 3. Comparative analysis 

 
Author(s) Method Acc (%) Precision Recall F1 Scalability 

[1] SVM 0.95 0.93 0.91 0.92 Moderate 
[2] Neural Networks 0.92 0.90 0.88 0.89 High 
[5] Locality-Sensitive Hashing 0.89 0.87 0.86 0.86 Low 
[8] Machine Learning 0.97 0.95 0.94 0.94 Low 
[6] NSL-KDD 0.98 0.96 0.95 0.96 Moderate 

Proposed Model Multinomial Naive Bayes 0.981 0.98 0.97 0.975 High 
 
 

5. CONCLUSION 
 
The implementation of the multinomial Naive Bayes 

classifier for cybersecurity threat classification, detailed in this 
study, highlights a significant advancement in the application 
of machine learning to enhance digital security measures. 
Leveraging the comprehensive dataset from the CISA Known 

Exploited Vulnerabilities catalog for 2022, the proposed 
model has demonstrated exceptional capability in detecting 
cybersecurity threats with an accuracy rate of 98.10%, coupled 
with high precision and recall values. The rigorous data 
preprocessing and meticulous feature selection phases have 
been pivotal in enabling the Naive Bayes classifier to 
effectively differentiate between various threat severities. 
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These steps ensured the development of a refined dataset that 
supports robust learning and accurate threat discrimination, 
leading to consistently high F1-scores. This showcases the 
model's utility in swiftly and reliably pinpointing potential 
vulnerabilities, significantly strengthening network security 
defences. 

For future work, the foundation set by this research offers 
numerous pathways for further enhancements and innovations. 
Integrating the Naive Bayes classifier into a real-time anomaly 
detection system represents a promising direction for future 
work, which could lead to even more dynamic and immediate 
responses to emerging threats. The potential for refinement 
includes the incorporation of additional data sources and 
adaptation to the evolving landscape of cybersecurity threats. 
Moreover, future research could explore the creation of hybrid 
models that merge various machine learning methodologies to 
augment the precision and adaptability of the threat detection 
mechanism. Such developments are crucial for staying ahead 
of sophisticated cyber adversaries, aiming to establish a 
proactive, dynamic, and predictive security framework that 
evolves in tandem with the fast-paced advancements in 
cyberattack strategies. 
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