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Early detection of health changes is important for the success of an aging population that 

prefers to live independently. Sleep is crucial for maintaining the cognitive and physical 

health of older adults. Poor sleep quality is common among the elderly with mild cognitive 

impairment (MCI), which is a transient state between healthy cognition and dementia. 

Monitoring sleep quality can provide valuable insights into the health trends of older 

adults, but current methods are uncomfortable and inconvenient. We instead use 

Ballistocardiography, an unobtrusive method of capturing time in bed, heart rate, 

respiration rate, and restlessness. We then propose a sleep quality index (SQI) that uses 

this data to assess the sleep health of older adults. This sleep index was evaluated on six 

residents with a total of 1165 days of sensor data. Our results demonstrate the effectiveness 

of the proposed method in capturing various health conditions, which are illustrated 

through detailed case studies. A comparative analysis further highlighted the relationship 

between health conditions and sleep quality, showing that residents with frequent health 

issues had a significantly lower SQI compared to healthier residents. This significant 

difference underscores the utility of the SQI as a sensitive measure for detecting and 

monitoring health-related changes in sleep quality among older adults.  
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1. INTRODUCTION

The elderly population aged 65 and older is increasing from 

13% in 2010 to 19% in 2030, whereas the population of age 

15-65 is decreasing [1]. Since older adults prefer to live

independently, many of the health changes go undetected,

such as dementia, frailty, and urinary tract infections (UTI)

[2]. Detecting health changes early is crucial for promoting

health and controlling healthcare costs. On the other hand, late

health assessments or unreported problems can lead to poor

quality of life [3]. Automatic health monitoring systems are a

possible solution to identify and assess problems in their early

stages, which provide more time for intervention to address the

problems before they become serious. Such systems can be

effective in supporting aging-in-place and allowing older

citizens to maintain their independent lifestyle for as long as

possible.

With the aging population increasing rapidly, the demand 

for innovative health monitoring solutions is more needed than 

ever. Sleep quality, in particular, has gained more attention 

from healthcare professionals. Poor sleep is recognized as a 

symptom of various health issues and can be the root cause the 

progression of serious conditions, such as cognitive decline 

and cardiovascular disease. Hence, integrating sleep quality 

monitoring into automatic health systems is essential for 

comprehensive eldercare. 

Sleep quality is an important aspect of elderly mental and 

physical health [4-9]. Sleep is crucial for maintaining the brain 

and cognitive functions [10-12]. Poor sleep quality is a 

common factor among older adults with mild cognitive 

impairment (MCI), which is a transition stage between normal 

cognition and dementia [13]. More importantly, older adults 

with MCI are more likely to experience poor sleep than 

healthy older adults [14], and poor sleep is associated with an 

increased risk of progression from MCI to dementia [15]. 

Studies on animal models suggest that chronic poor sleep leads 

to increased cortical amyloid-beta (Aβ)—a hallmark 

pathology of Alzheimer’s disease [16]. Sleep is therefore a 

critical aspect through which the brain maintains its cognitive 

health. When poor sleep becomes chronic, an acceleration of 

cognitive decline may occur [17]. 

In addition to the established links between poor sleep and 

cognitive decline, recent studies emphasize the role of sleep 

quality in overall health outcomes for older adults. Poor sleep 

is associated with a higher risk of falls, reduced immune 

function, and greater susceptibility to chronic conditions such 

as hypertension and diabetes [18, 19]. Addressing sleep 

disturbances through reliable monitoring and timely 

interventions could therefore play a pivotal role in preventing 

or delaying the onset of these conditions, thereby enhancing 

the quality of life for older adults. Furthermore, it is important 

to note that sleep disorders are often underdiagnosed in this 

population, which underscores the need for more effective 

monitoring solutions [20]. 
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Sleep quality can be measured subjectively through 

questionnaires [21, 22] such as the Pittsburgh sleep quality 

index (PSQI) [23]. Questionnaire-based methods are not 

practical for long-term monitoring of older adults due to the 

burden of self-reporting. There are multiple quantitative ways 

to monitor sleep quality. Polysomnography is one way to 

compute sleep quality through a comprehensive recording of 

physiological changes that occur during sleep [24]. It requires 

multiple sensors to be placed on the patient’s body, which 

makes it unsuitable for long-term sleep monitoring in the 

home. Actigraphy is another method to monitor sleep using 

nonobtrusive acceleration sensors that capture body 

movement data [25]. Wearable devices may have an 

accelerometer and heart rate monitoring, which may report 

sleep stages. The main drawback of these devices is the 

requirement to remember to charge them and wear them 

during sleep, which increases the burden on older adults who 

may have memory problems. Comfort is also a factor. Thus, 

the method is a sub-optimal solution for eldercare monitoring 

applications. The last technique is Ballistocardiography 

(BCG), which is an unobtrusive method for measuring heart 

rate, heart rate variability, respiration rate, and relative blood 

stroke volume based on the body movement induced by blood 

flow through the cardiovascular system, due to the heart’s 

pumping mechanism [26]. BCG sensors are usually installed 

on the bed or under the mattress, which makes them more 

suitable for longitudinal monitoring of older adults. 

While subjective measures like questionnaires provide 

valuable insights, they are not practical for continuous 

monitoring due to the reliance on self-reporting, which can be 

burdensome and less reliable in older adults. Objective 

methods, such as polysomnography, although comprehensive, 

are not suited for long-term use in home settings due to their 

invasive nature. On the other hand, actigraphy offers a less 

invasive alternative but still involves wearing devices that may 

not be ideal for older individuals who might find them 

uncomfortable or forget to use them. In contrast, BCG 

technology offers a promising solution by providing a non-

intrusive, reliable way to monitor sleep patterns over time. 

Recent advancements in BCG have improved its accuracy and 

reliability, making it an even more viable option for eldercare 

settings [27, 28]. 

In this paper, we investigate a sleep quality measure that 

uses BCG but does not require sleep stages because these are 

often not accurate for older adults with noisy cardiac signals 

due to reduced stroke volume and increased stiffness in the 

vessels. We also avoid wearable devices due to the reasons 

mentioned above. Hence, we introduce a sleep quality metric 

from a bed sensor that is placed under the mattress and 

captures heart rate, respiration rate, and restlessness. 

The contributions of this paper are: 1) a new sleep index that 

relies on a simple hydraulic-based bed sensor and does not 

require heart rate variability or sleep stages; 2) a penalty is 

applied to the sleep index if older adults do not meet the 

recommended sleep hours; and 3) a sleep normality score is 

introduced and incorporated to take into account unusual 

periods of sleep. 

The paper is organized as follows. In section 2, we describe 

the eldercare monitoring system architecture. Section 3 

describes the method, and Section 4 explains the sleep 

normality metric. Section 5 shows the dataset used in the 

study. Experimental results are displayed in section 6, and case 

studies are in section 7. Finally, section 8 provides 

conclusions.  

2. SYSTEM ARCHITECTURE  

 

TigerPlace is an eldercare facility that promotes aging-in-

place located in Columbia, Missouri [29]. Sensor technology 

is applied to help older adult residents manage their illness and 

stay as healthy and independent as possible. After focus 

groups with TigerPlace residents and other older adults in 

2004, a decision was made to use only non-wearable sensors 

in the monitoring process because they are unobtrusive and 

more acceptable to older adults [30, 31]. With the University 

of Missouri IRB approval, our monitoring system has been 

installed in over 200 TigerPlace apartments and assisted living 

apartments starting in 2005.  

The residents selected in this study are from TigerPlace and 

other Americare assisted living apartments that use the same 

monitoring technique. The monitoring sensor network 

contains various types of sensors mounted in the resident’s 

apartment including motion, bed, and depth-based sensors. 

Health alerts are automatically generated and sent to clinical 

staff [32].  In this study, we use bed sensor data which includes 

pulse, respiration rate, and restlessness. 

 

 
3. METHOD  

 
A sleep measure is needed for tracking the sleep health of 

older adult residents. Our sleep quality index (SQI) consists of 

three parts: sleep efficiency, time in bed, and sleep normality. 

Sleep efficiency is defined as the ratio between sleep time and 

total time in bed (TiB). As shown in Eq. (1), sleep efficiency 

is computed by taking the total amount of time spent in bed (in 

minutes) and subtracting the number of minutes it took to fall 

asleep plus the minutes spent awake. 

 

𝑠𝑙𝑒𝑒𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
total TiB (minutes)

total TiB (minutes)
 

−
(minutes to fall asleep +  minutes awake)

total TiB (minutes)
 

(1) 

 
As a proxy that does not require a classification of sleep 

versus wake time, we use restlessness in bed, as captured by 

the bed sensor. Specifically, we use the minutes of restlessness 

to account for the time when the older adult is in bed and not 

sleeping. Hence, Eq. (1) for sleep efficiency takes the form of 

Eq. (2), which we call SQIrestlessness. 

 

𝑆𝑄𝐼𝑟𝑒𝑠𝑡𝑙𝑒𝑠𝑠𝑛𝑒𝑠𝑠 = 1 −  
restlessness time (minutes)

total TiB (minutes)
 (2) 

 
The rationale behind using restlessness as a proxy for sleep 

efficiency lies in its ability to provide a non-intrusive measure 

of sleep quality. Traditional methods, such as 

polysomnography, often require the classification of sleep 

versus wake time, which can be cumbersome and less 

accurate, particularly in older adults with irregular sleep 

patterns [24]. By focusing on restlessness, our approach 

circumvents the need for extensive sensor setups while still 

delivering meaningful insights into sleep efficiency. 

However, using restlessness as a proxy has its limitations 

and edge cases. For instance, restlessness may not perfectly 

correlate with wakefulness in all cases; some individuals 

might experience minimal movement during wakeful periods, 

leading to an overestimation of sleep efficiency [33]. 
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Conversely, some sleep disturbances, like periodic limb 

movement disorder (PLMD), could cause significant 

restlessness without fully waking the individual, potentially 

leading to an underestimation of sleep quality [34]. 

Additionally, restlessness may not capture short, subtle 

awakenings that are typically recorded in polysomnography-

based methods [35]. These edge cases highlight the trade-off 

between the convenience and non-intrusiveness of using 

restlessness as a proxy and the detailed accuracy provided by 

direct sleep vs. wake classification. 

Note, however, that the SQIrestlessness percentage does not 

reflect if someone got enough total sleep. For example, 

someone who sleeps for 4 out of 5 hours in bed will have the 

same SQI as when he/she sleeps for 8 out of 10 hours in bed. 

To account for total sleeping time, we use a weight that 

penalizes the index value if the older adult sleeps fewer than 

the recommended number of hours for people in this age 

range. Based on the latest recommendations from the National 

Sleep Foundation’s updated report, people 65 or older are 

recommended to sleep seven to eight hours per day [36]. 

Residents who spend less than this amount of time in bed 

should expect to have a lower sleep quality. Therefore, for 

these residents, a penalty is applied to their sleep quality index 

as shown in Eqs. (3) and (4). 

 

𝑆𝑄𝐼𝑇𝑖𝐵=W𝑇𝑖𝐵 ∗ (1 −
total restlessness time (minutes)

total TiB (minutes)
)  (3) 

 

𝑊𝑇𝑖𝐵= {
− (

total TiB (hours)−8

8
)

2

+ 1     if total TiB (hours)<8

1                                                if total TiB (hours)≥8
}  (4) 

 

This formula penalizes residents who sleep fewer than 8 

hours, with greater weight given to less time in bed. We chose 

8 hours as a cutoff in order to balance the formula. For 

example, a time in bed of 7 hours gives a weight of 0.984, 

which is less than a 2% adjustment. Six hours gives a weight 

of 0.938, a more meaningful adjustment, 5 gives 0.859, 4 gives 

0.75, and so on to 0 hours giving a weight of 0. For any amount 

of time in bed at or greater than 8, WTiB is 1. This formula is 

represented graphically in Figure 1. 

By incorporating a time-in-bed adjustment, our method 

ensures that the sleep quality index more accurately reflects 

the total sleep duration, an essential factor in evaluating sleep 

health. The penalty applied for insufficient sleep hours helps 

highlight the importance of adequate sleep duration, which is 

particularly relevant for older adults who may struggle to 

achieve the recommended 7-8 hours of sleep. 

WTiB is one of two weights that are multiplied by the 

restlessness percentage in order to create our sleep quality 

index. The second weight is calculated by using ‘sleep 

normality,’ a metric that determines how typical a resident’s 

sleep looks compared to their prior sleep data. Detailed 

information on this metric is described in the sleep normality 

section. The sleep normality weight WSN is computed by 

taking the mean of a resident’s sleep normality scores from the 

previous two weeks and comparing it to the current date’s 

sleep normality as described in Eq. (5). 

 

𝑊𝑆𝑁= {

SN-SNBaseline

SNBaseline
, if exist (SN and SNBaseline)

1, otherwise
} 𝑓(𝑥)  (5) 

 

where, SN is sleep normality, and SNBaseline is the mean sleep 

normality from the previous two weeks. 

The inclusion of sleep normality as a metric allows the SQI 

to account for variations in sleep patterns over time. By 

comparing the current night's sleep to a baseline established 

over two weeks, our method can detect deviations that might 

indicate emerging health issues. This dynamic adjustment 

helps ensure that the sleep quality index remains sensitive to 

changes in sleep behavior, which could be crucial for early 

detection of health deterioration. 

Nights that appear more typical will give a weight greater 

than 1, while nights that look more unusual give a weight from 

0 to 1. Since the typical range of values for sleep normality in 

the test cases we examined is about 60 to 90 out of 100, this 

weight is typically no more than a 15% adjustment to SQITiB. 

In other words, the range of values for WSN was found to be 

between 0.85 and 1.15. 

The combination of both weights with the restlessness 

percentage gives us our new SQIFinal metric, as shown in Eq. 

(6). This is the metric that is used in the experimental results 

section. 

 
𝑆𝑄𝐼𝐹𝑖𝑛𝑎𝑙  = 𝑊𝑆𝑁 * SQI𝑇𝑖𝐵 (6) 

 
The final sleep quality index, SQIFinal, integrates both time 

in bed and sleep normality adjustments, offering a 

comprehensive measure of sleep health that is tailored to the 

specific needs of older adults. This approach not only captures 

the quantity and quality of sleep but also considers how 

consistent sleep patterns are over time, making it a powerful 

tool for long-term monitoring in eldercare settings. 

 

 
 

Figure 1. Visualization of the effect of time in bed on the selected weight (WTiB) 

Time in Bed (hours) 

W
e
ig

h
t 

(T
im

e
 i

n
 B

e
d

) 

433



4. SEEP NORMALITY  

 

Sleep normality is a metric we developed to capture how 

well a resident’s bed sensor data for restlessness (RST), heart 

rate (HR), and respiration (RSP) in a 24-hour period compares 

against a baseline taken from the previous two months (60 

days) of sensor data. A high sleep normality indicates that a 

resident’s RST, HR, and RSP were similar to the values of the 

previous 60 days. Conversely, a low sleep normality indicates 

that the resident had values for RST, HR, or RSP which were 

either abnormally high or abnormally low for a significant 

period of their sleep as compared to the resident’s baseline. A 

60-day window for the baseline was chosen because it 

provides enough data to accurately assess what ‘normal’ is for 

a resident while allowing for a gradual change in the baseline 

if the resident shifts to a ‘new normal’. 

First, a baseline is calculated from the resident’s previous 

two months’ bed data which is collected in 15-second intervals 

throughout the entire day. These 15-second intervals are 

grouped into 5-minute intervals which are only kept if bed data 

exists for the entire 5 minutes. This is done to reduce 

variability in the data from periods in which it is unlikely that 

the resident is sleeping, such as when a resident is getting in to 

or out of bed. Each of the 5-minute intervals has a mean RST, 

HR, and RSP calculated from the smaller 15-second intervals 

that the sensor system provides. Once all the 5-minute 

intervals from the previous 60 days are collected, they are split 

between day and night intervals with an adjusting window. 

This is done so that any differences in the resident’s typical 

RST, HR, and RSP for daytime sleep are not reflected in the 

baseline against which night sleep will be compared and vice 

versa. For example, the normal respiration of a napping 

resident may be significantly different than their normal 

respiration for overnight sleep. After night-time and daytime 

5-minute sleep intervals over the past 60 days are 

differentiated, the mean and standard deviation RST, HR, and 

RSP are calculated for both. With a baseline established, the 

sleep normality for a date can be calculated. 

 

𝑆𝑁𝑁𝑖𝑔ℎ𝑡 = (12 + 𝑅𝑆𝑇𝐹𝑎𝑐𝑡𝑜𝑟𝑁𝑖𝑔ℎ𝑡
+ 𝐻𝑅𝐹𝑎𝑐𝑡𝑜𝑟𝑁𝑖𝑔ℎ𝑡

+ 𝑅𝑆𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝑁𝑖𝑔ℎ𝑡
) ∗ (

25

3
) 

(7) 

 

The sleep normality equation consists of 3 factors, one for 

each data stream (RST, HR, and RSP). Each of the 3 factors is 

a value from -4 to 0 where -4 is completely abnormal data and 

0 is perfectly normal data for that measure. The calculation 

takes each of the factors and gives an overall sleep normality 

score on a scale from 0-100. Gathering each of the factors is 

more complex, so pseudocode for the calculation of one factor 

is presented below and explained. 

 

Pseudocode for calculating the RST factor for a night: 

 

RST_Factor_Accumulator = 0 

For each Interval in Night.Intervals: 

Interval.RST_Factor = | Baseline.Night_Mean_RST -

Interval.RST | / Baseline.Night_Std_RST 

Interval.RST_Factor = min(Interval.RST_Factor^2, 4) 

RST_Factor_Accumulator = RST_Factor_Accumulator + 

Interval.RST_Factor 

Night.RST_Factor = (-1)* (RST_Factor_Accumulator/ 

Night.NumIntervals) 

 

For each 5-minute interval in the night, the difference 

between its value and the mean value of the previous two 

months is taken and divided by the standard deviation. This 

gives a value for how different that particular 5-minute interval 

looks compared to all other 5-minute intervals over the past 

two months. Next, that value is squared to give greater weight 

to intervals with a larger deviation. A max value of 4 is applied 

so that extreme outliers do not have too much weight. The 

effect of these calculations is that for a resident to have low 

sleep normality they must have many 5-minute intervals in 

their sleep which deviate significantly from the baseline mean. 

Once this calculation has been done for every interval in the 

night/day, the mean of those calculations is taken and 

multiplied by -1 to give a final value between -4 and 0. A score 

of 0 indicates that every interval was exactly equal to the mean 

and a score of -4 indicates that every interval had an absolute 

difference of at least 2 standard deviations from the mean.  

These calculations are repeated 6 times for RST, HR, and 

RSP for both day and night sleep. Finally, SNDay and SNNight 

are averaged proportionally by time in bed. The end result is a 

single sleep normality score out of 100 for a given 24-hour 

period. 

 

 

5. DATASET  
 

In this section, we introduce the dataset used to evaluate our 

approach in computing the sleep quality for six older adults 

from our eldercare monitoring system. We use bed sensor data, 

which captures the resident’s heart rate, respiration, 

restlessness, and time in bed (TiB). Our goal is to develop a 

sleep quality index (SQI) that accurately reflects the quality of 

the resident’s sleep in terms of the number of sleeping hours, 

amount of restlessness, and the normality of the sleep 

compared to a baseline. 
 

Table 1. Dataset description 
 

Resident ID # Days with Sensor Data 

I 275 

II 275 

III 150 

IV 184 

V 99 

VI 182 
 

 

6. EXPERIMENTAL RESULTS  

 

We use the dataset described in the previous section to 

verify the effectiveness of the proposed SQI in capturing 

nights where the resident either does not sleep enough, has a 

high restlessness, and/or has highly unusual sleep. We also 

pull several case studies to show the effectiveness of the 

proposed measure in capturing trends in health conditions that 

affect the resident’s sleep quality.  

In each figure, we display the total time in bed, total 

restlessness, sleep normality, and the SQI. Due to the 

limitation of the manuscript size, we will display 3 months of 

data for each resident.  

Figure 2a shows data for resident I, who spends ample time 

in bed and has consistent sleep normality with low restlessness. 

As we expect, this combination of factors causes the resident 

to sustain a high overall SQI for the entire 3-month period. 

This is an ideal case that shows how the SQI behaves on a 

resident with a stable sleep pattern. 
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For each resident, the graphs from top to bottom are: Time in Bed (hours), Restlessness (hours), Sleep normality, and the final SQI. 

 

Figure 2. SQI for: a) resident I, b) resident II, c) resident III, and d) resident IV 

 

Figure 2b shows data for resident II, who has a high 

variability of total time in bed from 4 to 9 hours each 24 hours. 

This explains the volatility of the sleep quality index. In 

addition, around the 22nd of September 2020, the resident had 

a significant increase in restlessness compared to their total 

time in bed. This change was reflected in the sleep normality 

as it dropped for about a week after the change and then began 

to recover as this higher amount of restlessness became ‘the 

new normal’. Despite the volatility and subtlety of the change, 

an observer can tell that the average sleep quality was lower 

for a few weeks following the change seen on the 22nd. 

Figure 2c shows resident III, who has with a highly volatile 

sleep pattern as seen in their total time in bed ranging from 

around 8 hours down to just a couple hours. The wide range of 

time in bed values well below 8 hours means that WTiB has a 

large influence on the resident’s SQI. On August 26, 2019, an 

electronic health record (EHR) noted that the resident self-

reported that, “some days [they] can sleep well but other days 

[they] can’t sleep at all.” This would explain some of the 

volatility in sleep quality around that time and into the future. 

The data for this resident also captured a couple of uniquely 

sharp drops in sleep normality around October 14 and 

November 2 which correlated with health conditions found in 

the EHR data. One of these instances is discussed in the case 

studies section. 

Figure 2d shows resident IV who has a high overall time in 

bed and consistent restlessness compared to time in bed. 

Overall, these two factors lead to a relatively stable SQI with 

most variation coming as a direct result of variations in sleep 

normality. The variations in sleep for this resident seemed to 

correlate with EHR data, an example of which can be found in 

the case studies section.  

 

 

7. CASE STUDIES  

 

To investigate the effectiveness of the proposed SQI and 

sleep normality metric, we pull multiple case studies for the 

residents in Table 1. Each case study has a time span of about 

2 weeks and shows a general trend in our proposed metrics. 

Figure 3a shows the first case study for resident I in Table 

1. On November 21, 2019, this resident had a fall incident. It 

is expected that the sleep quality degrades prior to a fall. We 

can see in the figure the previous 14 days leading to the 

incident date, which shows a clear decreasing trend.  The trend 

slope is very sharp the week before the fall. This case study 

shows the effectiveness of the proposed index in correlating 

the reduction in the SQI and the possibility of fall. This could 

be used by our monitoring system to generate an alert any time 

there is a decreasing trend or reduction in the SQI, which can 

help in detecting early signs of illness. 
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Figure 3. SQI for: a) resident I, b) resident VI, c) resident II, and d) resident IV 

 

Figure 3b shows the second case study for resident VI in 

Table 1. Around August 06, 2019, the resident had to be taken 

to the ER. Also, the resident had lower back pain on that day. 

The SQI values are computed for 14 days leading to the event 

to check if there is a trend or noticeable change in the sleep 

quality. We can see that there is a clear decreasing trend 

captured by the SQI.  During these 14 days the resident also 

experienced multiple health conditions. On July 24, 2019, the 

resident experienced knee pain which might explain the 

reduction in SQI value on the following day. The resident was 

supplied with painkiller medications afterward, which might 

explain the improvement in the SQI for the next three days. It 

was reported in the notes that the resident was sleeping well 

on the nights of 27-28 of July, which showed up in the SQI 

value for July 27th.  The resident had a wound on July 30th 

and severe pain, which could help explain the reduction in SQI 

on that day leading to the night of the 31st. Then, a new 

medication for severe pain was ordered and used on the day of 

the 31st. After that, the resident was in bed and did not want 

to eat for some of the remaining days. Also, the resident was 

confused on the remaining days and was found on the floor 

multiple times which explains the poor SQI for the days 

leading to the ER visit. 

Figure 3c depicts data for Resident II from April 18 to April 

30, 2020. For about a week starting on April 18, we can see 

that the SQI dropped from around 0.7-0.75 down to around 0.6. 

On April 21, a note read, “Resident is c/o severe pain and is 

needing assistance getting in and out of the bed.” The note 

suggests that the resident could be having difficulty sleeping 

and the drop in the SQI reflects this. A few days later, on April 

27 a note read, “[Resident] stated [they] did feel somewhat 

better but still has quite a bit of pain in the thigh area of [their] 

right leg.” The increase that we see in the sleep quality index 

around this time reflects the improvement of the resident’s 

health as they continue to recover. 

The other case study shows sleep normality data for 

Resident IV in Figure 3d. From October 31 to November 2, 

2019, the resident had a significant drop in their sleep 

normality which coincides with EHR notes that give context 

to the chart. On November 2, the day with a local low for sleep 

normality at just over 40, an EHR note reads, “Resident 

running a fever this am 101.4 gave [them] some ibuprofen 

started [them] on [their] antibiotic fever broke after giving 

ibuprofen.” Along with this note, the resident’s bed sensors 

gave readings for RST, HR, and RSP which are highly unusual 

when compared to the previous 2 months of data for the 

resident. Later, on November 8, an EHR note read, “Resident’s 

temp is 95.4 [They are] feeling better.” At this point, the sleep 

normality has recovered to a stable level that seems to line up 

well with what we would expect from the EHR note. 

During a period of flu-like symptoms where resident III 

experienced a noticeable drop in their sleep quality index 
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(SQI), falling from the baseline average of 0.61 to around 0.5. 

According to an EHR note, the resident was "having a temp 

during night and cough worse. I requested nurse make SNV to 

assess him/her. He/she is up and dressed. States she/he had to 

sleep on three pillows last night to keep from coughing and 

had temperature. States had several coughing episodes that just 

couldn't stop coughing. L lung clear but has rhonchi and slight 

wheeze throughout R lung fields today which had been clear. 

SN called Dr. X office to try to get an appointment with 

Someone there today." After about a week of these symptoms, 

the resident's health began to improve, and a subsequent note 

stated, "Pt states he/she is feeling better." Correspondingly, the 

SQI gradually returned to the baseline level, reflecting the 

recovery of their sleep quality. 

In another instance, Resident V experienced a health issue 

where they "came to the nurse station wanting something for 

cough. Slept in chair because every time he/she laid down, 

he/she would have a coughing fit. I called Nurse and she said 

he/she can go to urgent care if he/she likes." Unlike Resident 

III, whose similar symptoms resulted in a clear drop in their 

sleep quality index (SQI), Resident V's SQI remained 

unaffected because the resident slept in a chair rather than in 

bed, where our sensors are placed. This case highlights a 

limitation of our current approach, which relies solely on bed 

sensors to monitor sleep quality. When residents sleep outside 

of bed, the system cannot capture changes in sleep quality, 

leading to gaps in the data and potentially missing important 

health events. 

As we can see, the proposed SQI is effective in capturing a 

variety of health issues that lead to a drop in sleep quality. 

However, a key limitation of this approach is its dependency 

on the resident being in bed. Since we do not use wearable 

sensors for continuous monitoring, any time spent outside of 

bed goes unrecorded. To enhance the robustness of our 

approach, integrating additional sensors, such as radar, depth 

imaging, or even passive infrared sensors, could allow for 

more comprehensive monitoring. These technologies would 

enable us to track the resident's activity and sleep patterns even 

when they are not confined to their bed, thereby improving the 

accuracy and reliability of the SQI in various health scenarios. 

 

 

8. COMPREHENSIVE QUANTITATIVE ANALYSIS 

 

To provide a broader perspective on the performance of the 

sleep quality index (SQI), we conducted a comprehensive 

quantitative analysis across the entire dataset. This analysis 

supplements the qualitative insights gained from individual 

case studies. 
 

8.1 Statistical summary of sleep metrics 
 

We calculated key sleep metrics, such as average SQI, 

average restlessness (in hours), average time in bed (TiB, in 

hours), and average sleep normality (SN) for each resident. 

Table 2 provides an overview of these metrics, presenting the 

mean values along with their standard deviations (SD). 

The dataset reveals significant differences in sleep 

behaviors among the residents. For example, Resident I spent 

an average of 16.03 hours in bed daily, with moderate 

restlessness (2.23 hours), leading to a high SQI of 0.8571, 

indicative of good sleep quality. In contrast, Resident III had a 

much lower average TiB of 5.69 hours and a lower SQI of 

0.6133, suggesting poorer sleep quality despite having less 

restlessness (1.36 hours). 

Resident V, who had the shortest average TiB (2.20 hours) 

and the lowest SQI (0.2887), highlights the importance of 

sufficient sleep duration in maintaining sleep quality, even 

though their restlessness was minimal (0.20 hours). On the 

other hand, Residents II and IV exhibited higher restlessness 

(3.02 hours and 2.73 hours, respectively) but still maintained 

reasonable sleep quality with SQIs of 0.7720 and 0.8096, 

respectively, due to longer times in bed (13.05 hours and 14.70 

hours). 

Resident VI, with an average TiB of 12.78 hours and 

moderate restlessness (2.10 hours), achieved an SQI of 0.8244, 

reflecting a balanced sleep pattern with consistent sleep 

quality. Their sleep normality score also suggests fewer 

deviations from their baseline, contributing to their relatively 

high SQI. 

 

8.2 Comparative analysis 

 

To further understand the relationship between health 

conditions and sleep quality, we performed a comparative 

analysis between Resident III, who has frequent health issues, 

and the other residents, excluding Resident V, who generally 

do not sleep on their bed and have unreliable SQI measure. 

Resident III's sleep quality index (SQI) was compared with the 

aggregated SQI of Residents I, II, IV, and VI. 

The results of the analysis revealed a significant difference 

in SQI between Resident III and the other residents. 

Specifically, Resident III had a mean SQI of 0.6133, while the 

average SQI for the group of residents with fewer health issues 

was 0.8158. The t-test yielded a t-statistic of -17.98 and a p-

value of 1.22e-40, indicating that this difference is highly 

statistically significant. This suggests that the health issues 

experienced by Resident III are strongly associated with a 

lower SQI compared to the other residents. 

These findings reinforce the earlier observations, 

highlighting the impact of frequent health problems on sleep 

quality. The significant decrease in SQI for Resident III 

compared to the healthier group underscores the utility of the 

SQI as a sensitive measure for detecting and monitoring 

health-related changes in sleep quality in older adults. 

 

Table 2. Dataset description and statistics 

 

Resident 

ID 

# Days with 

Sensor Data 

Average 

Restlessness 

(hours) 

std Restlessness 

(hours) 

Average TiB 

(hours) 

std TiB 

(hours) 

Average SN 

(hours) 

std SN 

(hours) 

Average 

SQI 

Std 

SQI 

I 275 2.2287 0.4194 16.0263 2.5995 78.1718 4.6428 0.8571 0.0750 

II 275 3.0199 0.7413 13.0455 2.3975 78.7580 5.1400 0.7720 0.0541 

III 150 1.3648 0.4672 5.6929 1.1600 75.9233 3.8199 0.6133 0.1346 

IV 184 2.7329 0.9299 14.7000 4.0417 77.6944 4.6526 0.8096 0.0838 

V 99 0.1990 0.1418 2.2005 1.4518 76.3866 8.0024 0.2887 0.1916 

VI 182 2.1029 0.5717 12.7788 3.3438 79.0739 3.1773 0.8244 0.0833 
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9. APPLICATIONS AND IMPLICATIONS FOR 

CLINICAL PRACTICE  

 

The sleep quality index (SQI) developed in this study offers 

several potential applications in clinical practice, particularly 

within the context of eldercare monitoring and early 

intervention. Its ability to provide continuous, non-intrusive 

monitoring of sleep quality makes it a valuable tool for 

enhancing patient care and detecting early signs of health 

deterioration. 

One significant application of the SQI is its integration into 

existing eldercare monitoring systems. By continuously 

tracking changes in sleep quality, the SQI can serve as an early 

warning tool for healthcare providers. This capability allows 

clinicians to identify residents who may be experiencing 

health decline, enabling timely interventions before health 

issues become critical. The early detection of such changes can 

lead to more proactive care and potentially prevent the 

escalation of health problems. 

Furthermore, the SQI's ability to facilitate remote 

monitoring presents substantial opportunities for telehealth 

applications. Clinicians can utilize the SQI to monitor patients 

from a distance, thereby reducing the need for frequent in-

person visits while still ensuring that any concerning trends in 

sleep quality are promptly addressed. This remote capability is 

especially valuable in managing the health of older adults, 

where regular in-person check-ups might be challenging. 

In addition to monitoring, the SQI can play a crucial role in 

preventative care and early intervention strategies. By 

incorporating the SQI into routine care protocols, healthcare 

providers can enhance the early detection of health issues, 

such as sleep disorders or the initial stages of cognitive decline. 

The continuous monitoring offered by the SQI allows for early 

identification of sleep disruptions, enabling healthcare 

providers to initiate interventions at the earliest signs of 

potential health problems, ultimately improving patient 

outcomes and quality of life. 

 

 

10. CONCLUSION  

 

In our assisted living facilities, older adults are monitored 

using unobtrusive sensors. Bed sensors are placed under the 

mattress, which capture time in bed, heart rate, respiration rate, 

and restlessness in bed. Sleep is an important aspect of the 

mental and physical health of older adults. Therefore, in this 

paper, we introduce a new way to capture sleep quality using 

a Ballistocardiography sensor, which does not require explicit 

sleep stages. We avoided using wearable devices existing in 

the market for monitoring because of the extra burden on older 

adults to remember to charge the device and wear it during 

sleep. 

We evaluated the proposed index on six residents with bed 

sensor data. The index was able to capture days where the 

resident did not sleep enough or had highly unusual sleep. We 

also pulled multiple case studies from our Electronic Health 

Record (EHR). Our preliminary findings suggest a correlation 

between the EHR data and the sleep index value, where a 

decreasing trend in the index may relate to declining health. 

A comparative analysis demonstrated the relationship 

between health conditions and sleep quality by comparing 

Resident III, who has frequent health issues, with the other 

residents (excluding Resident V). The analysis revealed a 

significant difference in SQI between Resident III and the 

other residents, with Resident III showing a lower mean SQI 

of 0.6133 compared to the healthier group’s average of 0.8158. 

The statistical significance of this difference underscores the 

utility of the SQI as a sensitive measure for detecting and 

monitoring health-related changes in sleep quality among 

older adults. 

While the proposed SQI effectively captures variations in 

sleep quality, a key limitation of our approach is its reliance 

on the resident being in bed. When residents are not sleeping 

in their beds due to illness, hospitalization, or other health 

conditions, the system cannot monitor their sleep quality. This 

limitation highlights the need for integrating additional 

sensors, such as radar, depth imaging, or passive infrared 

sensors, to ensure continuous monitoring regardless of the 

resident's location. 

The SQI developed in this study also presents several 

potential applications in clinical practice. It can be integrated 

into eldercare monitoring systems as an early warning tool, 

helping healthcare providers to identify and address declining 

health in residents. The ability to remotely monitor sleep 

quality via the SQI further enhances telehealth applications, 

allowing clinicians to track patients’ well-being without 

requiring frequent in-person visits. Moreover, incorporating 

the SQI into preventative care strategies can improve early 

detection of health issues, such as sleep disorders or the onset 

of cognitive decline, leading to timely interventions and better 

patient outcomes. 

In future work, we plan to investigate the effectiveness of 

incorporating sleep stages into the sleep quality index. We also 

plan to compare the proposed measures (with and without 

sleep stages) to Polysomnography data collected in a sleep lab. 
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