
Analysis of the MapReduce Performance in Hadoop

Nour-Eddine Bakni 1* , Ismail Assayad 2

1 LIS Lab, Faculty of Sciences, University Hassan II of Casablanca, Casablanca 20100, Morocco
2 LIS Lab, Faculty of Sciences, ENSEM, University Hassan II of Casablanca, Casablanca 20100, Morocco

Corresponding Author Email: ne.bk.info@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380601 ABSTRACT

Received: 22 June 2024

Revised: 12 October 2024

Accepted: 1 November 2024

Available online: 21 December 2024

The need for Big Data platforms in recent years is increasing steadily, given the amount of

data produced or consumed every second by millions of users and machines, and this huge

volume of data has to be processed, managed, or stored. Several constraints must be taken

into consideration when allocating this data and processing it on big data platforms, and

among the major concerns of big data clients who are always looking to reduce their costs

remains time and budget. We can say that time is among the major factors that determine

the performance of a processing model of a big data platform and which has a direct effect

on other allocation constraints. In this paper, we conducted an analytical study of the

performance of MapReduce which is the processing model of the Hadoop platform. Our

study shows that the estimation of MapReduce performance remains difficult and depends

not only on the scheduler used but also on other factors including the type of workload

itself.

Keywords:

big data, job scheduling, Hadoop,

MapReduce

1. INTRODUCTION

Big data includes all the technologies and utilities that

constitute a solution for huge data and an alternative to the

traditional database. It refers to processing and analyzing a

complex and large data set to uncover valuable information

that can be useful for businesses and organizations. It is an IT

solution that offers big data management, processing and

storage, distributed computing, analytic tools, and data

infrastructure, it further promotes custom development,

queries, and systems scalability. The use of big data is

widespread in many fields due to its advantages compared to

traditional databases, especially for large amounts of data

which put more pressure on clusters and data management

systems. A major concern for the clients of big data platforms

in general is how to estimate the processing time of their

workloads, which allows them to predict an approximate

allocation budget on a particular platform, and helps them to

make a good decision by selecting the most suitable platform

for their workloads based on the time/budget ratio, or in

another sense, knowing in advance the execution time of the

workloads will allow the clients to deduce an approximate

allocation budget on a given platform, and to make cost

comparisons between platforms to choose the one that

provides a reduced allocation cost or the one offering the best

cost/performance compromise. However, scheduler

performance may be subject to various factors that may have

an effect on the processing time of workloads.

Given the importance of big data and the need for it,

especially in recent years, if we take into account the large

volumes of data that need to be processed or stored, and also

the difficulty of managing data of this magnitude via

traditional systems, the number of studies and research

conducted in this field is constantly increasing, the objective

is always to provide studies or solutions that can contribute to

improve the data processing and storage at the Big Data

platform level, and to increase systems effectiveness in

different sides.

In this context, our work is an analytical study of the

performance of MapReduce in processing different types of

workloads on Hadoop Framework, and how the following

factors can have an effect on the performance of schedulers in

Hadoop MapReduce:

• The scheduler used.

• The nature of workloads.

• The setup configuration (CPU speed, Memory Size,

Number of slots, …).

The objective of our work is to give a performance study of

MapReduce and the factors that affect it, the contributions of

the study can be summarized as follows:

• Identify the main factors that affect the processing time of

workloads on Hadoop MapReduce, and being aware of

these factors that can affect the efficiency of the

processing model can help to improve the performance of

Big Data platforms.

• Show that the adaptation between the scheduler used and

the workloads can have an impact on the processing time,

and therefore on the necessary allocation budget, which

can be useful to big data clients to make good decisions

regarding the allocation of their workloads.

• Provide a study that can be useful to researchers in this

field of big data or that can serve as a basis for further

studies, the aim of which is always to improve the

performance of the Hadoop system.

Revue d'Intelligence Artificielle
Vol. 38, No. 6, December, 2024, pp. 1391-1397

Journal homepage: http://iieta.org/journals/ria

1391

https://orcid.org/0009-0001-0437-3694
https://orcid.org/0000-0002-6939-6125
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380601&domain=pdf

The results of our study have shown that the accurate

estimation of the actual processing time for a given workload

remains apparently difficult and depends not only on the

scheduler used, but it differs according to many factors

including the type of the workload itself.

The organization of the remaining sections is as follows. In

Section 2, we reveal the background and present the related

work. In Section 3, we introduce our experiments and detail

their environment. In Section 4, we present and discuss the

results obtained. Finally, in Section 5, we conclude the paper

and highlight some future work.

2. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the Hadoop

Framework, and MapReduce processing model, and discuss

the related work.

2.1 Hadoop

Apache Hadoop is an open-source software framework for

distributed processing and data intensive management based

on Java, used to process and analyze huge amounts of data. It

allows big data analytical processing tasks to be divided into

smaller tasks that can be executed in parallel mode using a

processing model (such as the MapReduce model) and

distributed across a Hadoop cluster. Knowing that this kind of

cluster is a collection of computing machines called nodes,

networked to perform parallel calculations on large sets of data.

Unlike other computing clusters, Hadoop clusters are

specifically designed to host and analyze massive volumes of

structured and unstructured data in a distributed computing

environment.

Hadoop ecosystems include open-source software

frameworks and a range of complementary tools for big data.

They are also distinguished from other types of computing

clusters by their specific structure and architecture. Hadoop

clusters consist of a network of master and subordinate nodes

that leverage high-availability, low-cost generic hardware, as

well as linear scalability, so that it is easy to add or remove

nodes depending on demand. The master nodes orchestrate

and manage the resources, worker nodes are dedicated to

processing tasks and storing data. Master nodes include a

NameNode, a secondary NameNode, and a JobTracker.

Worker nodes that offer the DataNode and TaskTracker

services that store data and process tasks. The Hadoop

architecture is described in Figure 1.

Hadoop is popular because it is both accessible and easy to

learn. Economical and practical, it offers modules with many

options. Hadoop can easily scale and be deployed across

multiple machines to accommodate virtually any dataset size.

Additionally, its method of storing and processing data

presents an attractive enterprise solution in the context of

growing storage, and also for its accessibility and flexibility in

the use of the Hardware, especially when we are talking about

the storage of a large volume of data which constitutes a real

problem, because it entails high maintenance costs in terms of

resources and hardware in order to be able to manage the

workload. The Hadoop framework is resilient to failures. Data

stored on one server is automatically replicated to other nodes.

When one node in the Hadoop cluster fails, others take over to

perform calculations or data analysis. Hadoop has various

applications including data warehousing, big data analytics

and cloud computing.

Figure 1. Hadoop architecture

2.2 MapReduce

MapReduce is a model for parallel processing of large

quantities of data on multiple machines organized into a

cluster, it’s designed and deployed by Apache Foundation, it

is a component of the Hadoop framework along with HDFS,

the storage system, and YARN, the resource management

module, and Hadoop Common, which includes utilities and

libraries used and shared by other Hadoop modules.

MapReduce contains two main phases, named map and

reduce. The mappers take a set of data and convert it to a series

of key-value pairs. Those intermediate data will then be sorted

and merged. The reducers receive them as input and combine

them into a smaller set of tuple pairs as the final output, and

store it in the HDFS system. Among the advantages of

MapReduce are its flexibility, security, fault tolerance, and its

scalability in data processing.

Data processing in the MapReduce model goes in general

through several successive stages one after another, and these

phases are shown in Figure 2, which explains as an example

the process of treating the WordCount application by

MapReduce.

Figure 2. MapReduce processing example for Hadoop

WordCount

• Input Phase: reading and translating a block of data

to an input for the mappers.

As shown in the example in Figure 2, which allows us to

count the number of occurrences of each word in the input file,

we divide the input into three parts (Green, Yellow, Blue);

(Yellow, Green, Green); (Blue, Yellow, Blue, Green).

• Mapping Phase: processing the input data by a

mapper function and generating a sequence of key-value pairs.

1392

Assign a hard-coded value (1) to each of the tokens or words.

The reason we assign a hard-coded value of 1 is that each word,

by itself, will appear once, and so for example, for the first line

(Green, Yellow, Blue) we get 3 key-value pairs (Green, 1);

(Yellow, 1); (Blue, 1).

• Shuffling Phase: It consists of merging and sorting

the output of the mapping, and it produces a sequence of

combined key-value pairs.

So, each reducer will receive a unique key and a sequence

of values corresponding to that same key: Green, (1,1,1,1);

Yellow, (1,1,1); Blue, (1,1,1).

• Reducing Phase: applying a Reducer function to the

output of the shuffling phase, and returning a single output

value. This result is stored in the HDFS system.

In this phase, each reducer counts the number of ones in the

list it received, as shown in the figure, the first reducer for

example receives the list green, (1,1,1,1) and returns the

key/value green, 4.

YARN has greatly increased the potential use cases of the

Hadoop framework by decoupling resource management and

scheduling from MapReduce's data processing component. It

also allowed Hadoop to support more applications and

different types of processing. YARN architecture consists of

two daemon services: the Resource Manager (Master) which

is the master daemon (main program), It manages the

allocation of resources such as CPU, memory and network

bandwidth, and the Node Manager (Slave) which is the slave

daemon (secondary program), and it reports the resource usage

to the resource manager. These two daemons are responsible

for negotiating resources and working jointly to execute and

monitor tasks, and they also manage the parallel processing

and fault tolerance components of all MapReduce tasks.

Resource Manager and Node Manager combine together to

form a data-computation framework.

Both HDFS and MapReduce run on the same set of nodes,

resulting in very high overall bandwidth across the entire

cluster. All Hadoop components are synchronized to enable

improved utilization of the cluster.

2.3 Related work

Time is one of the important criteria that evaluates the

performance of MapReduce and determines its efficiency, and

has a significant influence on other allocation constraints

including budget, and as we know, the budget remains a

criterion of utmost importance to big data clients when

allocating their workloads. Generally, in the domain of Big

Data, being aware of the job timespan remains essential for

later decisions, here are some researches that were done in this

context:

In the study [1], the proposed model allows for predicting

the processing time of a job and estimating the number of

resources that a job requires to be finished within a deadline,

the task execution history is the basis of this model which aims

to estimate the job runtime using the locally weighted linear

regression (LWLR) technique.

Paper [2] proposes a two-phase regression (TPR) method to

estimate precisely the completion time of the executed tasks,

an analysis report is used to give detailed data of each job. The

TPR algorithm is based on the following steps: data

preprocessing, data smoothing, data regression, and data

estimation.

The research study given by Gohil et al. [3] shows

experimental results of MapReduce performance with some

applications in Cloud based Hadoop.

In the study [4], we present a new method that can predict

the job runtime in the case where the job starts running for the

first time with no history about it, by using mathematical

expressions to formulate each stage of MapReduce process

and calculate the job runtime, or when the job has previous

running and its profile or history becomes available, in this

case, we refer to the job’s profile or history in the database in

processing time estimation.

The model presented in the study [5] can estimate the total

job runtime by using Amdahl’s law regression method with

respect to input size variation, this model requires code instead

of a trace-base simulator. Also, the paper evaluates and

analyzes the performance of WordCount application under

variant types of processors.

Paper [6] presents a model for predicting the performance

of Hadoop MapReduce, this model consists of two modules, a

job analyzer and a prediction module, the first one collects

information around processed jobs to serve the prediction

module, and the second one will use this data to predict the job

performance.

In the research [7], we give a benchmarking approach that

allows us to build a MapReduce performance model which

will attempt to estimate the procession time for a MapReduce

workload by combining the job profiling and the derived

platform performance model.

Paper [8] compares different job scheduling techniques and

discusses their performance impact on Hadoop multi-cluster

environment, and their efficiency in terms of certain hardware

specifications.

In the study [9], we present a simulator called MRPerf that

facilitates performance analysis for the MapReduce model,

and it can be used as a planning tool for evaluation and fine-

tuning Hadoop systems.

The performance study conducted by Jiang et al. [10]

allowed us to determine the main factors that can impact the

performance of MapReduce, and showed that by a careful

setting of those factors we can improve the performance.

Paper [11] presents an analytical model to estimate the

performance of MapReduce for a Hadoop workload, through

a combination of a priority graph model and a queuing

network model with the aim of predicting the processing time

of tasks.

The benchmark suite for Hadoop called HiBench

introduced by Huang et al. [12] brings together a set of Hadoop

programs encompassing both synthetic microbenchmarks and

real-world applications, it is used to assess and identify the

performance of Hadoop workloads.

Paper [13] provides a detailed analytical study and

performance characterization for Hadoop K-means using a set

of processors.

In the study [14], we present a comprehensive analytical

study of the impact of configuration settings on Hadoop

performance in query processing.

We conducted an experimental study of the Hadoop system

[15] using a set of input files. The study included the volume

of data bytes read and written by Hadoop and MapReduce, and

analyzed the behavior of the map and reduce functions as the

number of files and the volume of bytes read and written

increased.

In the research [16], we provide an analysis of Hadoop

performance of the Hadoop and the issues that affect it on

heterogeneous clusters, and suggest some guidelines to

overcome these obstacles, the aim of which is to improve the

1393

performance of Hadoop framework.

The previous studies aimed to provide an analysis of

Hadoop MapReduce performance or to study some operational

shortcomings, especially those affecting the processing time,

but most of them did not give a global view of MapReduce

performance and the different factors that impact it, they

focused on a specific factor or parameter, they also ignored to

study the effect of workload and its adaptability with the

scheduler on the performance of the MapReduce model.

3. EXPERIMENTS

In the current section, we introduce the environment setup,

and reveal the objective of the experiments and their

conditions.

In our experiments, we used a Hadoop cluster containing 1

master node and 10 slave nodes (homogenous machines with

the same hardware and software specifications), all nodes are

in the same rack. The configuration of the cluster is detailed in

Table 1, the installed version of Hadoop in the system is 3.3.1,

the data block size in HDFS system was set to 64 MB and the

replication factor was set to 3, each node as a Task Tracker

was configured with 2 maps and 2 reduce slots. In the runtimes,

we use typical MapReduce applications such as WordCount,

Grep, and QuasiMonteCarlo, with different dataset sizes of 5,

10, 15, and 20 GB respectively. The results of each experiment

are averages of 10 to 15 executions for each application with

each dataset size, in order to accurately measure the execution

time of each application. The total number of executions is

about 700 for all experiments.

Table 1. Cluster configuration

Nodes Quantity Configuration

Master Node 1
2 single-core 2.6Ghz

4GB RAM

Slave Node 10
2 single-core 2.6Ghz

4GB RAM

Table 2. Specifications of schedulers

Scheduler Advantages Disadvantages

FIFO

Scheduler

- Easy implementation

- simple to execute

- Long wait for jobs

- Starvation

Fair

Scheduler

- Resource allocation

according to jobs priority

- Reduced waiting time

for small jobs

- Complex

configuration

Capacity

Scheduler

- Good for working with

multiple users

- Maximizing the

throughput and the

utilization of the cluster

- Not easy to

configure

- Complexity

The purpose of our analysis is to study how certain factors

can affect the performance and efficiency of the schedulers in

Hadoop MapReduce, by benchmarking the performance of

these schedulers in processing different types of workloads

and under various conditions. These factors may be related to

hardware configuration, software, or the workload itself. The

schedulers studied in these experiments are: the FIFO

scheduler, the Fair scheduler and the Capacity scheduler

(Some specifications of the schedulers used are shown in

Table 2). We would add more schedulers to the study in future

work.

For workloads, we chose the usual applications

(WordCount, Grep, QuasiMonteCarlo) to calculate and

compare the processing time under the studied schedulers.

Table 3 shows the descriptions of the applications. Each

application on Hadoop has typically its own characteristics

and resource requirements. For example, some applications

are CPU-bound, memory-bound, etc. CPU-bound applications

are those that require a significant amount of computing

resources, they involve performing complex calculations, data

processing and CPU-intensive algorithmic operations.

Memory-bound applications require a lot of data in memory,

so most of their execution time is spent reading and writing

data. The data processing in MapReduce as shown in Figure 2,

goes through several stages, in order to simplify the

calculations in this study, we will only consider the three main

stages (mapping phase, shuffling phase, and reducing phase),

the total job processing time can be calculated using the

following equation:

𝑇𝑗
𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑚

𝑇𝑜𝑡𝑎𝑙 + 𝑇𝑠ℎ
𝑇𝑜𝑡𝑎𝑙 + 𝑇𝑟

𝑇𝑜𝑡𝑎𝑙 (1)

where,

• 𝑇𝑗
𝑇𝑜𝑡𝑎𝑙: the total processing time of the entire job.

• 𝑇𝑚
𝑇𝑜𝑡𝑎𝑙: the total processing time of the mapping phase.

• 𝑇𝑠ℎ
𝑇𝑜𝑡𝑎𝑙: the total processing time of the shuffling phase.

• 𝑇𝑟
𝑇𝑜𝑡𝑎𝑙: the total processing time of the reducing phase.

Table 3. Applications description

Application Description

WordCount

A simple application which is used to

count the number of occurrences of

each word in a given input file.

Grep

a function that extracts matching

strings from text files and counts how

many times they occurred.

QuasiMonteCaro

It is a program that estimates the

value of pi using a quasi-Monte Carlo

method.

4. RESULTS AND DISCUSS

In this section, we try to analyze and discuss the different

results of the experiments and come up with some

interpretations and conclusions.

As part of our analytical study of the MapReduce

performance and in order to identify factors that influence it,

we started our experiments by comparing the schedulers'

performance in terms of processing the applications

(WordCount, Grep, QuasiMonteCarlo) to find out how well

they handle different types of workloads, the results of this

experiment are shown in Figure 3.

According to the output in Figure 3, it appears clearly that

there is a variation in the results of schedulers in job processing

time, and they do not always perform with all workloads in the

same way, but their performance depends on the type of the

workloads and differs from one job to another. For example, if

we observe in Figure 3, the results of the Fair scheduler in

processing WordCount and Grep applications, it performs

better than the Capacity scheduler in processing the same

applications, but in the case of the QuasiMonteCarlo job, we

notice that the Capacity scheduler is much better than the Fair

1394

scheduler, with more than 40% difference between the results

of the two schedulers in terms of processing time. These

outcomes lead us to question the existence of a certain

relationship of influence between the performance of

schedulers and the type of workload, according to the results

of Figure 3, which shows that the performance of schedulers

is not all the time stable and that it changes depending on the

type of workload.

To answer this question and to have a clearer idea of how

workload itself impacts the performance of the schedulers, and

to validate the interpretation of the results obtained in Figure

3, we conducted a performance comparison of the previous

schedulers, this time by running a single WordCount

application per each scheduler with different types of datasets.

The results of comparing schedulers in terms of processing

time are shown in Figure 3. The goal of these experiments is

to see how each scheduler handles a specific type of workload

each time.

Figure 3. Comparing jobs processing time by every

scheduler

Figure 4. Processing time of WordCount application with

different datasets

From the result in Figure 3, we can clearly observe that there

is a variation in the performance of the schedulers, for example,

fair scheduler performs well for the job 1 and 2 compared to

the Capacity scheduler, but if we take jobs 3 and 4, Capacity

scheduler was better than Fair scheduler. From the result of

Figures 3 and 4, it can be deduced that scheduler can perform

well for certain types of workloads but this is not always the

case with other types, which makes it difficult to accurately

estimate the timespan for a given workload in Hadoop

MapReduce. We can infer that the performance of MapReduce

depends not only on the scheduler used, but also on the type

of workload itself which becomes like an impact factor.

The variation in scheduler performance under different

workloads may also be related to the design of these

schedulers, for example for a FIFO scheduler where the

processing order of jobs is consistent with their arrival order,

small jobs will remain pending for a long time, which may lead

to system performance degradation, and as a solution to this

shortcoming, the fair scheduler proposes to share cluster slots

fairly among jobs, but in the case where sequences of small

jobs dominate the workloads, the FIFO scheduler may

outperform the fair scheduler [17].

When we talk about big data, we are talking about enormous

quantities of data to be processed, and the processing time

becomes a critical criterion in this case, especially if we take

into account its impact on allocation costs, and hence as shown

in the results, selecting the most appropriate scheduler for a

given workload, not just the highest performer, remains very

important when allocating data across Hadoop platforms to

improve data processing time results. In another sense, having

some sort of adaptation between the scheduler used and the

workload to be executed guarantees better performance of

MapReduce.

As mentioned before, workloads are of different types:

CPU-bound, memory-bound, I/O-bound, ..., and hence

processing CPU-bound workloads like WordCount

application which depends on CPU speed will definitely be

different from processing memory-bound workloads where

memory speed or size becomes an important factor, or

processing I/O-bound workloads which are limited by I/O

speed (like reading/writing from storage device, or from

network,), and these differences in characteristics between

different workloads can lead to variation in Hadoop

MapReduce performance.

Among the factors that can affect the performance of

MapReduce is the Hardware it runs on, particularly the CPU

and memory which are considered as the main hardware

components, and also the number of map and reduce slots per

node. To assess the impact of the hardware configuration on

MapReduce performance, we conducted experiments to find

out the effect of the processor frequency and memory size and

the number of slots on the data processing time results, firstly,

by examining the schedulers’ performance with another CPU

frequency, the results are shown in Figure 5, secondly, by

testing the performance of MapReduce in processing the

WordCount application under different memory sizes. The

results obtained are shown in Figure 6, and finally, by

changing each time the number of map and reduce slots and

comparing the MapReduce performance, the results are

presented in Figure 7.

As shown in Figure 5, increasing the CPU frequency

optimized the processing time results, which proves that CPU

speed can impact the performance of schedulers, and the

performance increase rate exceeds 12% from the results

obtained.

We can clearly notice from Figure 6, that as the memory

size increases, the processing time decreases, if we take the

increase in memory size from 4 GB to 8 GB or from 8 GB to

16 GB, we obtain an important performance increase value,

1395

which ranges between 16% and 21%. This suggests that

memory is one of the hardware resources that has a remarkable

effect on task execution time.

Figure 5. Jobs processing time relative to processor

frequency

Figure 6. Processing time of WordCount relative to available

memory

Figure 7. Processing time of WordCount relative to number

of slots

According to the results in Figure 7, we see two aspects for

the performance of MapReduce in terms of processing time,

the case where the number of slots is less than 2, we notice that

the more this number increases, the more the processing time

decreases, but when the number of slots exceeds 2, we observe

that the increase in the number of slots implies a slowdown in

processing time. We can say that choosing the optimal number

of map and reduce slots can improve the processing time

results.

As a summary of this section, what can be concluded from

these experiments and the analysis of the results obtained is

that the type of workload itself and the hardware configuration

of the cluster nodes have an inherent impact on MapReduce

performance especially in job processing time. There are other

factors that have not been addressed in this study that can

affect the performance of the schedulers, such as (network

bandwidth, concurrent workload, data locality, data skew, ...).

Among the factors, we also find the heterogeneity of the

clusters, since we can observe some variation in the

performance of the MapReduce processing model, due to

differences between nodes in the cluster in terms of

configuration, performance, and computing capacity. This

variation makes the estimation of the execution time of the

workloads a bit more difficult in this type of system. So, we

can say that heterogeneity of the cluster can also be one of the

factors impacting the performance of Hadoop MapReduce.

The obtained results generally give a clearer idea about the

performance of MapReduce in executing applications. They

show that MapReduce performance can be affected by several

factors, including the adopted architecture (physical

configuration), the scheduler used, but also the level of

adaptation between the scheduler and the workloads. This can

be useful for big data platforms and their clients to choose the

best architectures and also to look for some adaptation

between the scheduler and the workloads in order to obtain

better processing time values and good performance of

MapReduce in general. These results can also be exploited by

big data researchers for further studies.

5. CONCLUSIONS

In order to identify some factors that can affect the

performance of Hadoop MapReduce, we presented in this

paper a performance analytical study carried out using certain

types of schedulers and with different types of workloads, our

analysis also studied the impact of hardware configuration on

MapReduce performance. The results obtained showed that

the accurate runtime estimation is still difficult, because the

MapReduce performance in processing a given workload

depends not only on the scheduler used, but also on other

factors, notably the nature of the workloads themselves, and

the hardware on which they operate such as CPU speed or

Memory capacity, or the number of map and reduce slots, as

proven by experiments. In conclusion, we can say that the

choice of the scheduler should not only depend only on its

performance, but also on its adaptation to our workload,

certainly with a good hardware configuration to optimize the

results of data processing time, which can contribute to

improving the performance of MapReduce and increasing the

efficiency of the Hadoop framework.

For future work, we aspire to expand our analysis by

studying more hardware components and more schedulers,

with other types of workloads, and also under other types of

constraints, in order to get a clearer idea of the different factors

that can affect the data processing to improve the performance

of Hadoop MapReduce.

1396

REFERENCES

[1] Khan, M., Jin, Y., Li, M., Xiang, Y., Jiang, C.J. (2016).

Hadoop performance modeling for job estimation and

resource provisioning. IEEE Transactions on Parallel and

Distributed Systems, 27(2), 441-454.

https://doi.org/10.1109/tpds.2015.2405552

[2] Liu, Q., Cai, W.D., Jin, D., Shen, J., Fu, Z., Liu, X., Linge,

N. (2016). Estimation accuracy on execution time of run-

time tasks in a heterogeneous distributed environment.

Sensors, 16(9): 1386. https://doi.org/10.3390/s16091386

[3] Gohil, P., Garg, D., Panchal, B. (2014). A performance

analysis of MapReduce applications on big data in cloud-

based Hadoop. International Conference on Information

Communication and Embedded Systems (ICICES2014),

Chennai, India, pp. 1-6.

https://doi.org/10.1109/icices.2014.7033791

[4] Peyravi, N., Moeini, A. (2020). Estimating runtime of a

job in Hadoop MapReduce. Journal of Big Data, 7(1): 44.

https://doi.org/10.1186/s40537-020-00319-4

[5] Issa, J. A. (2015). Performance evaluation and estimation

model using regression method for Hadoop WordCount.

IEEE Access, 3: 2784-2793.

https://doi.org/10.1109/access.2015.2509598

[6] Song, G., Meng, Z., Huet, F., Magoules, F., Yu, L., Lin,

X.L. (2013). A Hadoop MapReduce performance

prediction method. In 2013 IEEE 10th International

Conference on High Performance Computing and

Communications & 2013 IEEE International

Conference on Embedded and Ubiquitous Computing,

Zhangjiajie, China, pp. 820-825.

https://doi.org/10.1109/hpcc.and.euc.2013.118

[7] Zhang, Z.Y., Cherkasova, L., Loo, B.T. (2013).

Benchmarking approach for designing a mapreduce

performance model. In Proceedings of the 4th

ACM/SPEC International Conference on Performance

Engineering, pp. 253-258.

https://doi.org/10.1145/2479871.2479906

[8] Dhulavvagol, P.M., Totad, S.G., Sourabh, S. (2019).

Performance analysis of job scheduling algorithms on

Hadoop multi-cluster environment. Emerging Research

in Electronics, Computer Science and Technology, 457-

470. https://doi.org/10.1007/978-981-13-5802-9_42

[9] Wang, G., Butt, A. R., Pandey, P., Gupta, K. (2009).

Using realistic simulation for performance analysis of

MapReduce setups. In Proceedings of the 1st ACM

Workshop on Large-Scale System and Application

Performance, pp. 19-26.

https://doi.org/10.1145/1552272.1552278

[10] Jiang, D., Ooi, B.C., Shi, L., Wu, S. (2010). The

performance of MapReduce. Proceedings of the VLDB

Endowment, 3(1-2): 472-483.

https://doi.org/10.14778/1920841.1920903

[11] Vianna, E., Comarela, G., Pontes, T., Almeida, J.,

Almeida, V., Wilkinson, K., Kuno, H., Dayal, U. (2013).

Analytical performance models for MapReduce

workloads. International Journal of Parallel

Programming, 41(4): 495-525.

https://doi.org/10.1007/s10766-012-0227-4

[12] Huang, S., Huang, J., Dai, J., Xie, T., Huang, B. (2010).

The HiBench benchmark suite: Characterization of the

MapReduce-based data analysis. In 2010 IEEE 26th

International Conference on Data Engineering

Workshops (ICDEW 2010), Long Beach, CA, USA, pp.

41-51. https://doi.org/10.1109/icdew.2010.5452747

[13] Issa, J. (2016). Performance characterization and

analysis for Hadoop K-means iteration. Journal of Cloud

Computing, 5(1). https://doi.org/10.1186/s13677-016-

0053-0

[14] Wlodarczyk, T.W., Han, Y., Rong, C. (2011).

Performance analysis of Hadoop for query processing. In

2011 IEEE Workshops of International Conference on

Advanced Information Networking and Applications, pp.

507-513. https://doi.org/10.1109/waina.2011.130

[15] Pal, A., Jain, K., Agrawal, P., Agrawal, S. (2014). A

performance analysis of MapReduce task with large

number of files dataset in big data using Hadoop. In 2014

Fourth International Conference on Communication

Systems and Network Technologies, Bhopal, India, pp.

587-591. https://doi.org/10.1109/csnt.2014.124

[16] Rao, B.T., Sridevi, N.V., Reddy, V.K., Reddy, L.S.S.

(2012). Performance issues of heterogeneous hadoop

clusters in cloud computing. arXiv preprint arXiv:1207.

0894. https://doi.org/10.48550/arXiv.1207.0894

[17] Chen, Y., Ganapathi, A., Griffith, R., Katz, R. (2011).

The case for evaluating MapReduce performance using

workload suites. In 2011 IEEE 19th Annual International

Symposium on Modelling, Analysis, and Simulation of

Computer and Telecommunication Systems, Singapore,

pp. 390-399. https://doi.org/10.1109/mascots.2011.12

1397

