
 
 
 

 
 

 
1. INTRODUCTION 

 

Several real life applications involve free convection 

through media which can be represented as equivalent porous 

ones, such as heat insulating materials, chemical reactors, 

petroleum reservoirs, geothermal heat exchangers, etc. For this 

reason, the analysis of heat and mass transfer inside a porous 

medium has been extensively studied during the last decades 

and relevant dissertations on the subject can be found in ref. 

[1-2]. In the scientific literature, steady-state natural 

convection in vertical porous annuli has been widely 

investigated; in particular, experimental data-sets have been 

provided by Reda [3] and Prasad et al [4-5] whereas numerical 

studies based on the assumption of the Darcy model have been 

presented in ref. [6-12]. Among them, notable are the works of 

Badruddin et al. [10-12], which analyze the influence of the 

thermal radiation on the steady free convection in fully porous 

vertical annuli, taking into account viscous effects [10] and 

adopting a non-local thermal equilibrium model [12]. A hybrid 

solution has been developed by Hasnaoui et al. [13]; moreover, 

several models have been developed in order to consider non-

Darcian effects. In particular, a Brinkman-extended model has 

been presented in ref. [14-16], the only Forchheimer term is 

introduced in [17] whereas both terms are taken into account 

by Marpu [18].  

Moreover, transient natural convection in porous vertical 

annuli has not been extensively investigated: only Sankar et al. 

[19] and Jha and Yusuf [20] derived numerical [19] and semi-

analytical [20] solutions for time-dependent problems. 

Few numerical works are available for the analysis of both 

steady [21-24] and transient [25-27] natural convection in 

partially porous annuli; the available time dependent solutions 

deal with open-ended [25], and with closed [26-27] vertical 

partially porous annuli with vertical porous inserts with 

variable properties and positions. These works focused on the 

stability of the flow in the cavity for high values of Darcy 

number, without providing any detailed sensitivity analysis of 

the influence of the porous layer on the transient heat transfer 

for low values of Da. 

 Therefore, this work focuses on this topic: several analyses 

are presented by changing both the geometrical features of the 

cavity and of the porous insert, both the properties of the 

porous medium.  

 

 

2. MATHEMATICAL MODEL 
 

In the present paper, the authors employ the generalized 

porous medium model, taking into account Whitaker's volume 

averaging method for the derivation of the dimensionless 
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ABSTRACT  
 

This paper provides a sensitivity analysis on the influence of one porous layer insert on the transient behavior 

of natural convection in a tall annular enclosure in presence of large source terms. The porous medium which 

partially fills the cavity is characterized by a low value of the Darcy number, typical of insulating materials and 

metallic foams, often employed in heat exchangers and other engineering applications. A stabilized, fully 

explicit version of the Compressibility Based Scheme is here employed and validated against experimental data 

available in the scientific literature for steady and unsteady convection in vertical cylindrical enclosures. Several 

analyses are presented here by changing both the geometrical features of the cavity and the properties of the 

porous domain. The results of these analyses demonstrate that not only the thermo-physical properties of the 

porous medium but also the position and the thickness of the porous layer strongly affect the transient behavior 

of the convective phenomena occurring in the cavity. 
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governing equations, and the hypothesis of local thermal 

equilibrium for the porous medium modeling [27]. Under 

these hypotheses, the governing equations of the generalized 

porous medium model, written in a cylindrical coordinate 

system, are the following: 
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The Boussinesq approximation is introduced to take into 

account the buoyancy effects and the thermo-physical 

parameters of the porous medium are calculated as 

geometrical mean values of fluid and solid phase. For the 

definition of the scales and parameters used to derive the 

dimensionless eqs. (1)-(4), the reader can refer to [26]. 

 

 

3. NUMERICAL MODEL 
 

The set of governing Partial Differential Equations (PDEs) 

has been here discretized employing the fully explicit version 

of the Characteristic-Based Split (CBS) algorithm, known as 

Artificial Compressibility (AC) CBS. In this scheme, the time 

discretization is based on the Characteristic Galerkin; in order 

to apply this stabilization technique to the momentum 

equations, a projection strategy is introduced in the CBS 

scheme by dividing the calculation into two stages. In the first 

one, the pressure term is dropped from the momentum 

equation and an intermediate velocity field is calculated by 

introducing the artificial compressibility parameter in the mass 

conservation equation: so, the pressure calculated at this step 

is an artificial quantity. In the second one, the intermediate 

velocities are corrected.  

The standard Galerkin finite element method with linear 

triangular elements is employed for the spatial discretization.  

Here, it is not reported the fully discretized form of the 

governing equations for the sake of brevity; the reader can 

refer to reference [26] for the detailed description of the 

numerical model. Further details on code validation, stability 

conditions and the derivation of the algorithm are available in 

references [28-31]. 

 

 

4. RESULTS 

 

In this section, the numerical results, obtained for unsteady 

free convection in a tall annulus with the Aspect Ratio (AR) 

equal to 4:1, partially filled by a porous layer with variable 

properties and positions, are presented.  

Several analyses have been performed considering three 

different geometrical configurations: a first one, in which the 

porous layer is located near the inner wall of the annulus (case 

A), a second one where the porous domain is at the center of 

the annulus (case B) and a last one, in which the porous 

medium is located near the outer wall of the annulus (case C).  

The different computational domains are shown in Figure 1, 

which also reports the thermal boundary conditions employed. 

For the velocity field, no-slip condition is applied to all 

boundaries, except to the interfaces between the porous 

medium and the free fluid, where the continuity of all physical 

quantities is imposed as a matching condition.  

 

 
 

Figure 1. Reference geometries and boundary conditions employed 

 

Two different computational grids have been employed for 

the simulations: a first one, for case A and C, composed of 

18000 triangular elements and 9231 nodes, while the second 

one, employed for case B, consists of 19800 triangular 

elements and 10117 nodes. Both meshes, selected after an 

accurate grid sensitivity analysis, have been refined near all 

the boundaries to catch the local variations of the quantities of 

interest. 

The following input parameters have been considered for all 

the simulations: Pr=0.71, Ra=3.4∙106, ε=0.5, Da ranging from 

10-3 to 10-5. First, several simulations have been performed 

assuming a fixed thickness of the porous domain, rp=0.5, and 

adopting a fixed annular reference geometry with a radii ratio 

ro/ri=2. 

The final results in terms of temperature contours are shown 

in Figure 2 for all the geometrical configurations examined 
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and the different values of Da employed: it is quite interesting 

to notice that for Da=10-3, the isotherms show similar trends 

for all the different cases under study, while for Da≤10-4, the 

temperature fields are strongly influenced by the properties 

and the position of the porous layer.  

In order to analyze the transient behavior of the 

phenomenon, six probe points have been selected; their 

coordinates are reported in Table 1. 

 

Table 1. Non dimensional coordinates of probe points 

 
Point r z 

1 ri + 0.091 3.685 

2 ri + 0.910 0.315 

3 ri + 0.091 0.315 

4 ri + 0.910 3.685 

5 ri + 0.091 2.000 

6 ri + 0.910 2.000 

 

 
 

Figure 2. Temperature contours at τ=500 for different values 

of Da for: a) case A, b) case B, c) case C 

(Ra=3.4∙106,rp=0.5,ro/ri=2) 

 

 

 

Figure 3 analyzes the transient evolution of temperature at 

probe points from 1 to 6 (see Table 1) for all three 

configurations and for two different values of Darcy: Da=10-3 

(on the left) and Da=10-5 (on the right). The analysis of the 

results highlights that both the position and the permeability of 

the porous insert affect significantly the thermal transient 

behavior of the cavity: for Da=10-5 no transient oscillations of 

temperature field are observed for all the cases under study; 

whereas for Da=10-3 transient oscillations rises at different 

points of the cavity, depending on the different position of the 

porous insert into the cavity, but dampen with the time in all 

the cases.  

 

 

Figure 3. Transient evolution of temperature for Da=10-3 (on 

the left) and Da=10-5 (on the right) at six probe points (see 

Table 1) for Ra=3.6∙106 for the different cases under study 

(rp=0.5, ro/ri=2 

 

Moreover, several simulations have been performed 

assuming a fixed thickness of porous layer (rp=0.5) for the 

three configurations A, B and C, and a cavity radii ratio ro/ri 

variable into the range 1.5÷5, considering different values of 

Da ranging from 10-3 to 10-5. Transient evolution of 

temperature at the six probe points has been represented in 

Figures 4-6: in particular, Figures 4, 5 and 6 represent the 

results related to case A, B and C, respectively, for Da=10-3 
(on 

the left) and for Da=10-5 (on the right). For high values of Da, 

the value of the radii ratio affects the time evolution of 

temperature, as the amplitude of the transient oscillations 

decreases with the increase of the radii ratio for all the 

configuration studied; for low values of Da, the radii ratio 

affects the transient temperature distribution into the cavity but 

has not a strong influence on the transient evolution of the fluid 

flow at the six probe points examined. 
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Figure 4. Transient evolution of temperature for Da=10-3 

(on the left) and Da=10-5 (on the right) at probe points from 1 

to 6 for several values of ro/ri (Ra=3.4∙106,rp=0.5,case A) 

 

 
 

Figure 5. Transient evolution of temperature for Da=10-3 

(on the left) and Da=10-5 (on the right) at probe points from 1 

to 6 for several values of ro/ri (Ra=3.4∙106,rp=0.5,case B) 

 

 
 

Figure 6. Transient evolution of temperature for Da=10-3 

(on the left) and Da=10-5 (on the right) at probe points from 1 

to 6 for several values of ro/ri (Ra=3.4∙106,rp=0.5,case C) 

 

 
 

Figure 7. Transient evolution of temperature at probe points 

from 1 to 6 in a 4:1 partially porous annulus (case A) for Da 

ranging from 10-3 to 10-5, for: a) rp=0.25 and b) rp=0.75 

(Ra=3.4 ∙106,ro/ri=2) 
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Figure 8. Transient evolution of temperature at probe points 

from 1 to 6 in a 4:1 partially porous annulus (case B) for Da 

ranging from 10-3 to 10-5, for: a) rp=0.25 and b) rp=0.75 

(Ra=3.4 ∙106, ro/ri=2) 

 

 
 

Figure 9. Transient evolution of temperature at probe points 

from 1 to 6 in a 4:1 partially porous annulus (case C) for Da 

ranging from 10-3 to 10-5, for: a) rp=0.25 and b) rp=0.75 

(Ra=3.4 ∙106,ro/ri=2) 

Finally, several analyses have been conducted by assuming 

a fixed value of radii ratio, ro/ri=2 for the three configurations 

shown in Fig. 1, and a variable thickness of the porous layer, 

rp, considering different values of Da numbers, ranging from 

10-3 to 10-5. Figures 7-9 show the variation of the temperature 

over the time at the probe points from 1 to 6, for case A (Figure 

7), case B (Figure 8) and case C (Figure 9). All the Figures 

report on the left side the results related to rp=0.25, whereas on 

the right side are represented the transient evolution observed 

for rp=0.75. The analyses of the results highlight that the 

porous layer thickness strongly affects the transient evolution 

of the temperature into the cavity for Da=10-3; this is true for 

all the configurations examined here, as transient oscillations 

of different amplitude characterize the temporal evolution of 

the convective phenomenon for variable values of rp. In 

particular, the amplitude of these oscillations rises with the 

increase of rp; moreover, the configuration B is the one that is 

more affected by the porous layer thickness, as a periodic 

oscillating behavior with respect to time characterizes the 

transient evolution of the convection into the cavity only for 

rp=0.75. 
 

 

5. CONCLUSIONS 

 

In this paper, a fully explicit version of the CBS scheme has 

been applied to the analysis of the transient evolution of 

natural convection in partially porous annuli in presence of 

large source terms. 

The generalized porous medium model has been applied 

and several analyses have been conducted by changing both 

the position and the thickness of the porous layer, both its 

physical properties and the cavity geometry, by considering a 

Da number variable into the range 10-3-10-5 and a value of 

Rayleigh number equal to 3.4 ∙106. 

The numerical results underline that the insertion of a 

porous layer strongly affects the transient evolution of the 

convective phenomena into the enclosure. In fact, a transient 

oscillating behavior of different amplitude and length appears 

in the cavity depending on both geometrical and physical 

properties of the porous medium. For all the cases analyzed, 

the amplitude of the oscillating phenomenon decreases with 

the Da number. 
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NOMENCLATURE 

 

AR aspect ratio 

Bf     isobaric compressibility of fluid K-1 
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cp     specific heat, J ∙ kg-1∙ K-1 

Da     Darcy number, Da = κ ∙ L-2  

Fo     Forchheimer coefficient, 

 
1

3/2
1.75 150 




  Fo  

g      gravitational acceleration, m∙s-2 

J      viscosity ratio, 1 
 eff fJ  

L      characteristic length  

p      pressure, Pa 

Pr     Prandtl number 1
Pr  
 f f

    

r      radial coordinate, m 

Ra     Rayleigh number, 

 * * 3 1 1  
      f h c f fRa g B T T L  

t      real time, s 

T     temperature, °C 

u      velocity vector, m∙ s-1 

ui seepage velocity components, m∙ s-1 

z      vertical coordinate 

  

Greek symbols 

 

 thermal diffusivity, m2∙ s-1 

ε porosity 

κ 

λ 

intrinsic permeability, m2 

thermal conductivity, W∙ m-1∙K-1 

µ 

ν 

ρ 

dynamic viscosity, kg ∙ m-1∙s-1 

kinematic viscosity, m2 ∙ s-1 

density, kg ∙ m-3  

 thermal diffusivity, m2∙ s-1 

 

 

Subscripts 

 

c 

eff 

cold 

effective 

f 

h 

r 

fluid  

hot 

radial component 

z vertical component 

 

Superscripts 

 

* dimensional quantities 
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