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In mechanical engineering, monitoring steel surface defects is crucial for ensuring the 

quality of industrial products, as these defects account for over 90% of flaws in steel 

items. Traditional manual inspection methods are time-consuming and may overlook 

some defects. To address these challenges, this study introduces an automated deep 

learning (DL) model for continuous monitoring of steel surface defects using real-world 

images from the Industrial Machine Tool Component Surface Defect (IMTCSD) 

dataset, which includes 1,104 three-channel images, 394 of which are categorized as 

exhibiting "pitting" damage. This study evaluated several Convolutional Neural 

Network (CNN) classifiers: EfficientNetB3, ResNet-50, and MobileNetV2, to 

determine the most effective model for defect detection. EfficientNetB3 is distinguished 

by its scalable architecture that adapts efficiently across various image dimensions, 

making it ideal for high-accuracy applications on limited computational resources. 

ResNet-50 uses residual connections to maintain performance in deeper networks by 

facilitating smooth gradient flow, yet it requires more computational power. 

MobileNetV2, designed for real-time applications on devices with limited resources, 

uses lightweight depthwise separable convolutions. The performance of these models 

was assessed using accuracy, recall, precision, specificity, F1-score, and AUC metrics. 

EfficientNetB3 emerged as the best performing model, achieving an accuracy of 0.981, 

specificity of 0.975, recall of 0.987, precision of 0.975, and an F1-score of 0.982. This 

model proved effective in detecting defects even on dirty surfaces, demonstrating its 

potential to significantly enhance quality control in industrial settings. 
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1. INTRODUCTION

Steel manufacturing plays a vital role in the quality of 

industrial production. However, steel defects could go 

unnoticed and could cause problems in the quality of the end 

product. The surface defect issue is responsible for over 90% 

of the defects found in steel products [1]. Recently, steel 

surface defect detection is increasingly attracting interest and 

has been proven to ensure products meet the industry’s quality 

standards [2]. A defect can be described as the blemish 

deficiency of an area compared to a regular sample. The 

process of surface defect detection can be explained as finding 

color impurity, scratches, apertures, or damage spots on a test 

sample [3, 4]. In addition, several environmental factors can 

hinder the surface defect detection process, such as the 

reflection of lights and illumination, leading to increased 

difficulty in the detection process [5]. Typically, defects in 

steel are identified manually. However, this approach is 

cumbersome and may not identify all defects. Moreover, 

manual process suffers from numerous disadvantages 

including low accuracy, efficiency, and sampling rate, as well 

as high labor intensity [6]. Also worth mentioning, some 

defects may go unnoticed, leading to companies losing their 

customers’ trust [2]. In contrast, the use of an automated 

image-based model for surface defect detection can alleviate 

the drawbacks of manual examination such as poor resource 

utilization, low accuracy, and its time-consuming nature [6, 7]. 

Furthermore, it provides a faster and more detailed inspection 

than current approaches. Automated surface defect detection 

models typically have two functionalities: defects 

segmentation and defects processing which involves features 

extraction and defect classification [8].  

Multiple image processing approaches for surface defect 

detection in images have been proposed, namely segmentation 
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and thresholding-based techniques utilizing some operators 

like the Sobel filter and the canny edge detector. Nevertheless, 

these are considered to be pure image processing techniques 

that can handle only a limited number of simple instances. In 

recent years, feature-based techniques in addition to machine 

learning (ML) specifically CNN models have gained increased 

attention in the field of surface defect detection, through the 

use of image processing methods for feature extraction. 

Initially some studies only focused on ML algorithms in this 

field, such as Support Vector Machine (SVM) and Logistic 

Regression (LR) [6]. However, most research has shifted to 

CNN which is now widely implemented in surface defect 

detection.  

Several review-based studies analyzed current research 

directions and highlighted the challenges faced when dealing 

with steel images. Luo et al. [9] reviewed the existing surface 

defect detection technologies and categorized them with 

respect to the image features and nature of algorithms into four 

groups which are statistical, spectral, model-based, and ML. 

Moreover, Neogi et al. [10] aimed to cover the different issues 

regarding automatic steel surface defect detection and 

classification systems. Their findings suggest that steel surface 

images are difficult to handle due to many factors including 

vibration, highly variant illumination, large amounts of noise 

due to surface scale, etc. Finally, Qi et al. [11] discussed the 

current applications of CNNs in a range of industrial settings 

for surface defect detection tasks. Their findings include the 

expected future challenges that will be faced which include the 

need for autonomous system that that can detect small defects, 

and future trends such as the use of transfer learning, 

lightweight networks, and generalized defect detection 

models. 

The motivation and contribution of our study can be 

summarized as: 

-The increased attention to automating manual procedures 

in industrial production such as steel surface defect detection. 

-Developing a model that detects defects even in polluted 

surfaces in order to speed up defect detection. 

-The development of a model that can detect and classify 

defects with relatively high accuracy for better product quality 

and less cost.  

-Finally, exploring a dataset that possesses great potential 

and developing the model with enhanced results compared 

with the baseline models. As per the authors knowledge the 

dataset used in the current hasn’t been used before for the 

classification task. 

The remainder of this paper is structured as follows: Section 

2 discusses the literature review of related work. Section 3 

covers the materials and methods including dataset 

description, preprocessing techniques, and classifiers applied. 

Section 4 contains the experimental setup, optimization, and 

results. Section 5 presents further results and discussion while 

Section 6 contains the conclusion and recommendation. 

 

 

2. LITERATURE REVIEW 

 

Numerous studies have been performed to propose different 

surface defect detection techniques to find the best method. 

Initially, few studies used Machine Learning (ML) algorithms 

for surface defects. However, due to the significance of CNN 

models in automated analysis of the images, recent studies 

have shifted towards CNN models.  

One of the studies that utilized ML algorithms and achieved 

a relatively high performance was conducted by Gong et al. 

[12]. The dataset that was used contained 4,120 images which 

included six types of defects. They proposed a method for 

multi-class steel defect detection and classification based on 

Multiple Hyperspheres Support Vector Machine with 

additional information (MHSVM+). The MHSVM+ model 

utilizes additional information to identify hidden information 

in the defect dataset. The classifier achieved an overall 

accuracy of 0.973. 

Recent studies have utilized DL models and the most 

commonly used dataset is the NEU dataset which contains 

1,800 images of six different types of defects with 300 images 

for each type. He et al. [13] used this dataset to build an end-

to-end Defect Detection Network (EDDN). The main features 

of the model include the integration of a ResNet that is robust 

in defect classification, a Region Proposal Network (RPN) for 

specific defect classification and localization, and a 

Multilevel-feature Fusion Network (MFN) for fusing features 

to support providing defect localization details. The 

experiments conducted using the EDDN with a mean Average 

Precision (mAP) of 0.823 and an accuracy of 0.996 for defect 

classification.  

Furthermore, Lee et al. [1] used the same dataset and 

proposed a method for steel defect detection using deep 

structured learning with class activation maps. In their work, 

they built a Convolutional Neural Network (CNN) model to 

localize and analyze defect areas in images and compared its 

performance against the performance of SVM and Logistic 

Regression (LR) models. They concluded that the CNN model 

outperformed the two other ML algorithms and obtained an 

accuracy and F1-score of 0.994 and 0.99 respectively.  

Likewise, Huang et al. [14] developed multiple models 

including one that is tested and trained using the NEU dataset. 

They proposed a CNN-based model that can inspect very small 

defects and does not require high-frequency CPUs to run. 

They used lightweight bottleneck a pyramid of lightweight 

kernels to generate powerful features without being 

computationally exhaustive. Moreover, the decoder was 

designed using a similar lightweight approach. Furthermore, 

the model includes Atrous Spatial Pyramid Pooling (ASPP) 

and depth-wise separable convolution layers. Using these 

lightweight designs greatly reduced redundant calculations 

and weights. The proposed model achieved an accuracy of 1.  

In a similar study by Hao et al. [15], an advanced object 

detection approach was used to develop a steel surface Defect 

Inspection Network (DIN). A Deformable Convolution 

Network (DCN) was designed to enhance feature extraction 

quality and adapt to different defect shapes. In addition, a 

feature fusion network using balanced feature pyramids was 

used to create feature maps capable of inspecting multiple-size 

defects. Their proposed model achieved a mAP of 0.805. 

Moreover Boudiaf et al. [16] developed a model for defect 

recognition based on the AlexNet CNN and SVM using NUE 

dataset. By using the FC7 layer of the AlexNet, they reduced 

the number of attributes to only 7% of the extracted features 

from each image. The model reached an accuracy of 0.997. 

Conversely, some studies used NEU dataset along with 

other datasets to build their models. Fu et al. [17] used the 

NEU dataset for training. However, for testing, they used the 

NEU dataset along with a diversity-enhanced dataset they 

presented. They developed a CNN model to classify steel 

surface defects with a backbone architecture of SqueezeNet. 

Their aim was to reach a high performance using only a few 

training samples. Two techniques were introduced to enhance 
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the proposed model’s accuracy in defect recognition. First, the 

fine-tuning of the pre-trained model was applied to accurately 

characterize defects. Second, a Multi-Receptive Field (MRF) 

module was incorporated to yield scale-dependent high-level 

features for more precise classification. The proposed method 

reached an accuracy of 1.  

In a study by Lv et al. [5], they used two datasets, i.e., NEU 

dataset and their GC10-DET dataset. The GC10-DET dataset 

contains 3,570 images covering ten types of defects. They 

developed a model using an EDDN that is based on the Single 

Shot MultiBox Detector. In this approach, for every location 

found on the feature map, the model divides the defect 

bounding boxes into a group of default boxes. These default 

boxes have a range of scales and aspect ratios. The model 

reached a mAP of 0.724 for the NEU dataset and 0.651 for the 

GC10-DET dataset.  

Similarly, Arikan et al. [18] used the NEU dataset for 

testing. However, they used their own dataset consisting of 

22,000 images to build their models. They developed three 

CNN models specifically to handle real-time processing speed 

and capacity in surface defect detection systems. The best 

achieved accuracy was 0.98 using their dataset and 0.995 using 

the NEU dataset. 

Recently Ibrahim and Tapamo [19] have proposed the deep 

learning model for the surface defect detection using NEU 

dataset. They have integrated transfer learning model and the 

CNN model. For the feature extraction VGG16 was used while 

for the classification CNN model was used. The study has 

achieved very significant results with an overall accuracy of 

0.994 and F1 score of 0.994.  

Additionally, another study was performed using NEU 

dataset [20]. The study has used several deep parallel attention 

CNN model for the surface defect detection. They have 

achieved results similar to the previous study [19] with 0.995 

accuracy, 0.996 precision, and 0.998 accuracy. The study has 

also included the thermal maps to visualize the defects detect 

by the proposed model.  

Recently, Li et al. [21] have used NUE-DET dataset to find 

the defects using two modules. First the DL model has been 

used for feature extraction and then the second module was 

used to optimize the extracted feature fusion. The model 

achieved an accuracy of 0.731 and mAP@0.5. 

Another commonly used dataset is the Severstal dataset 

which contains 12,568 images of steel sheets. Wang et al. [22] 

used the Severstal dataset to develop a method that combines 

an object detection and a classification model. The improved 

Region-CNN model was used to detect a range of defects by 

including Spatial Pyramid Pooling (SPP) and Feature Pyramid 

Networks (FPN). In addition, the improved ResNet50-vd 

model was used to detect multiple shapes of defects using a 

DCN and enhanced cutouts. Finally, the best accuracy 

achieved by the proposed method was 0.982. 

Similarly, Konovalenko et al. [23] also used the Severstal 

dataset combined with more images to obtain a total of 87,704 

images. They developed a method for classifying three types 

of rolled metal surface defects using residual CNN based on 

the ResNet50 NN and Stochastic Gradient Descent (SGD) for 

optimization and a binary loss function. This model reached a 

general accuracy of 0.969. 

Another study by Abu et al. [2], used both the Severstal and 

NEU datasets. They used four types of transfer learning 

models, namely VGG16, MobileNet, DenseNet121, and 

ResNet101, to develop a model for steel surface detection. 

These models were tested for binary classification, using the 

Severstal dataset, and for multiclass classification, using the 

NEU dataset. Their results demonstrated that the MobileNet 

approach achieved the highest results of 0.804 for the binary 

classification and 0.969 for the multiclass classification. 
 

Table 1. Summary of the literature review 
 

Ref. Technique Dataset Result 

[12] MHSVM+ 4,120 images Accuracy= 0.973 

[13] EDDN NEU dataset 
mAP= 0.823 for defect detection 

Accuracy= 0.996 

[1] CNN NEU dataset 
Accuracy= 0.994 

F1-score= 0.99 

[14] CNN NEU dataset Accuracy = 1 

[15] DIN NEU dataset mAP = 0.805 

[16] AlexNet CNN and SVM NEU dataset Accuracy = 0.997 

[17] CNN 
NEU dataset, 1,800 images 

diversity-enhanced dataset, 5,400 images 
Accuracy = 1 

[5] EDDN 
NEU dataset, 1,800 images 

GC10-DET dataset, 3,570 images 

mAP = 0.724 for the NEU dataset 

mAP = 0.651 for the GC10-DET 

[18] CNN 
NEU dataset, 1,800 images 

Private dataset, 22,000 images 

Accuracy = 0.98 using their dataset 

Accuracy = 0.995 using NEU dataset 

[19] CNN + VGG16 NEU dataset 
Accuracy=0.994 

F1 score=0.994 

[20] CNN NEU dataset 
Accuracy=0.995 

Precision=0.996 AUC=0.998 

[21] DL NEU dataset accuracy =0.731 and mAP@0.5 

[22] Region-CNN2, ResNet50-vd Severstal dataset, 12,568 images Accuracy = 0.982 

[23] Residual CNN 
Severstal dataset combined with more images 

87,704 images 
Accuracy = 0.969 

[2] MobileNet Severstal and NEU dataset 
Accuracy = 0.804 for binary classification 

Accuracy = 0.969 for multiclass classification 

[24] CNN 22,408 rail track images Accuracy= 0.92 

[25] CASAE, compact CNN 50 images Accuracy= 0.868 

[26] CAE-SGAN 21,000 images Accuracy = 0.986 

[6] Regression-based model 

AigleRN dataset, 38 images 

DAGM2007 dataset, 11,500 images 

Capacitor dataset, 3,839 images 

F1-score= 0.938 for the AigleRN dataset 

F1-score= 0.915 for the DAGM2007 dataset 

Accuracy= 0.92 for the capacitor dataset 
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[27] CNN 
RSDDs,NRSD-MN 

NEU-DET,BSData 

mAP = 0.985 for the private dataset 

mAP = 0.867 for the RSDDs dataset 

mAP = 0.82 for the BSData dataset 

mAP = 0.810 for the NRSD-MN dataset 

mAP = 0.746 for the NEU-DET 

 

Comparatively, some studies used other datasets to develop 

their models. Faghih-Roohi et al. [24] proposed a deep CNN 

to automate the detection of defects in rail surfaces. The 

dataset used to develop the model contains 22,408 rail track 

images that were manually labeled as normal or categorized 

into 1 of 5 types of defects. Furthermore, a mini-batch gradient 

descent method was used to optimize the entire network. They 

performed a comparative analysis of three deep CNN 

architectures and concluded that the largest architectures 

outperformed the two smaller ones by achieving an accuracy 

of 0.92. 

Another approach was introduced by Tao et al. [25], which 

is a two-step approach to automatically detect metallic defects 

by segmenting and classifying them. The dataset that was used 

in this study consisted of 50 metallic defect images. For 

segmenting defects, the Cascaded Autoencoder (CASAE) 

architecture was developed. Classification of the defected 

areas of the segmented images into their distinct classes was 

performed using compact CNN. The proposed method 

achieved an accuracy of 0.868. 

Similarly, semi-supervised learning method was proposed 

by Di et al. [26] to classify the defects. The proposed method 

is CAE-SGAN which is based on Convolutional Autoencoder 

(CAE) and semi-supervised Generative Adversarial Networks 

(SGAN). A passthrough layer was used to assist the CAE in 

extracting features. The dataset used in this study which 

contains around 21,000 images part of which were randomly 

generated using the SGAN. The highest classification rate 

reached was 0.986.  

In another approach, He and Liu [6] aimed to detect and 

classify industrial defects using a four-stage framework. The 

proposed method is a regression-based model which uses 

CNN to predict the severity of the defects. Furthermore, the 

model classifies the defects into their respective types and 

reduces false positive rate. They tested their model on three 

datasets, AigleRN dataset containing 38 images, DAGM2007 

dataset containing 11,500 images, and an in-house capacitor 

dataset containing about 3,839 images. The model achieved an 

F1-score of 0.938 using the AigleRN dataset, and 0.915 using 

the DAGM2007 dataset. As for the capacitor dataset, the 

model achieved an overall accuracy of 0.92. 

Recently, Li et al. [27] have used path aggregation network 

(PANet) to identify the defects in the steel surface. The study 

has utilized augmentation techniques for model 

generalization. They models were trained and tested using five 

datasets such as RSDDs, NRSD-MN, NEU-DET, BSData and 

one private dataset. The aim of the study was detection, and 

the highest mAP@.5 of 0.985 was achieved using their own 

dataset, 0.82 mAP was BSData. 

In this study we aim to latest open-source dataset. 

Therefore, we have used IMTCSD dataset provided by 

Schlagenhauf and Landwehr [28]. This dataset provides 

images collected under real-world conditions. Furthermore, 

the dataset will enable us to perform classification without the 

need to collect different datasets or perform manual labeling 

on the images. To further enhance defect detection systems, 

we aim to enable detection even on polluted surfaces to allow 

early detection. Table 1 contains the summary of the previous 

related studies. 

 

 

3. MATERIALS AND METHODS 

 

CNN is the most widely used neural network model in the 

field of image classification, as with CNN. Presently, there are 

numerous types of CNN architectures such as ResNet, 

AlexNet, EfficientNet, DenseNet, MobileNet, U-Net, etc. In 

this paper, we aim to perform a comparative analysis among 

three CNN-based classifiers, namely EfficientNetB3, ResNet-

50, and MobileNetV2, to find and construct an enhanced 

classifier for component surface defect detection. The CNN 

model will go through several steps, starting with filtering or 

convolution, nonlinearity using ReLU function, pooling to 

reduce the size of the activation cards, and finally 

classification [16]. To achieve this, we will use the Industrial 

Machine Tool Component Surface Defect (IMTCSD) dataset 

that provides an updated dataset of real-world defect images 

to enable building a reliable and robust model. 
 

 
 

Figure 1. Proposed methodology pipeline 

 

The proposed method to build a component surface defect 

detection model will be achieved in three steps: preprocessing 

the IMTCSD using the necessary procedures, developing, and 

training the models, and model testing as demonstrated in 

Figure 1. The dataset will be divided into 80-20% holdout split 

for training and testing, respectively. Furthermore, the model’s 
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performance will be evaluated in terms of accuracy, F1-score, 

recall, precision, specificity, and Area Under the Curve 

(AUC). 

 

3.1 Description of the dataset 

 

The IMTCSD dataset [28] was produced under a real-world 

setup consisting of real-world examples that are hard to 

classify. The dataset includes 1,104 channel-3 images with 

394 images categorized as “pitting” surface damage type. 

Moreover, it contains labeled images, to prevent the need for 

substantial domain knowledge. Furthermore, the dataset 

reflects a small interclass variance as well as a large intraclass 

variance. One of the unique features of this dataset is that it 

includes data depicting various failure stages, making it 

possible to use it for wear prognosis and to detect defects at an 

early stage. Hence, the dataset could be employed as a 

benchmark dataset to develop defect classification and 

prognostic models for the industrial setting. Consequently, this 

is the first practical dataset that allows segmentation, 

classification, and defect prediction from a single source. One 

common problem in ML is data imbalance when one class has 

a larger number of observation than the other. To address this 

issue This issue can be solved using several techniques, the 

most common is data under-sampling. Undersampling was 

performed using State of the Art (SOTA) approach. In this 

approach clustering was used to find the highly similar images. 

Highly similar images were removed from the majority class 

[29]. Before applying under-sampling, the dataset consisted of 

1,104 samples and after the under-sampling, the number of 

samples decreased to 788 samples with 394 samples in each 

class. Figure 2 demonstrates the number of samples per 

category before and after applying the data undersampling. 

 

 
 

Figure 2. Dataset statistics before and after applying SOTA 

undersampling 

 

3.2 Description of the classifiers 

 

The section below presents the description of the proposed 

techniques. 

 

3.2.1 EfficientNetB3 

EfficientNet is a family of models based on the CNN 

architecture with the base model EfficientNet-B0 which was 

developed using a multi-objective neural architecture search 

that aims to increase accuracy and floating-point operations. 

The full family scales from B1 to B7, we employed 

EfficientNetB3 for this study. The EfficientNetB3 model is a 

more powerful scaling method that is based on uniformly 

scaling the depth, width, and resolution dimensions in a 

standard way instead of the traditional arbitrary scaling. A set 

of fixed scaling coefficients, ø, is used to perform compound 

scaling of the three dimensions as shown in Eq. (1). This 

compound coefficient represents the number of more 

computational resources that can still be used for model 

scaling.  

Depth: 𝑑 = 𝛼ø , Width: 𝑤 = 𝛽ø , Resolution: 𝑤 = 𝛽ø, 𝑟 =
𝛾ø. 

 

𝛼 ∙ 𝛽2 ∙ 𝛾2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1 (1) 

 

Hence, if the aim is to use 2N times high computational 

resources, the network depth, width, and resolution are 

increased. The scaling is rationalized based on the perception 

that the bigger the input image is the more layers needed in the 

network to boost the receptive field and the more channels 

needed to secure more clear patterns.  

Moreover, EfficientNetB3 utilizes transfer learning to save 

time and resources. Thus, it often outperforms other 

Convolutional Neural Networks (ConvNets) such as AlexNet, 

ResNet, and DenseNet [30].  

 

3.2.2 ResNet-50 

The Residual Network (ResNet-50) is one of the most 

popular neural network architectures. Its main advantage is its 

ability to overcome the vanishing gradient problem that has 

led to the failure of many previous CNN architectures as they 

unnecessarily keep learning deeper and deeper while the 

gradients are close to zero meaning the network isn’t learning 

anymore. The vanishing gradient problem is overcome by 

ResNet-50 by using the skip connection technique also known 

as identity mapping. 

This technique basically adds the output from a preceding 

layer, x, with a desirable accuracy to the following layer and 

adds only one layer. However, sometimes the dimensions in 

one layer, x, do not match the dimensions of the following 

layer, F(x). In this case, as in Eq. (2) the identity mapping is 

multiplied by a W, a linear projection, to expand the channels 

of shortcuts to match the residual. Hence, the network learns 

at a more rapid rate. In addition, this technique enables 

combining the input from x and the input from F(x) into a 

single input to the following layer and allows the network to 

explore larger feature spaces [31].  

 

𝑦 = 𝐹(𝑥, {𝑊𝑖} + 𝑊𝑠𝑥) (2) 

 

3.2.3 MobileNetV2 

Considering the complexity and the large number of 

parameters used in CNN models, it demands powerful 

hardware availability to run smoothly, which limits their 

application area. The MobileNetV2 is a lightweight deep 

neural network proposed by Tan et al. [32] from Google’s 

research team with the aim to allow DL models to run on 

mobile and embedded devices. It was the first mobile-friendly 

computer vision family of models for TensorFlow, as it 

acknowledges the limitation in resources in these devices yet 

still aims to achieve high accuracy rates. Moreover, this 

model's main aim is to minimize resource usage as it requires 

less space, power, and time. Hence, it reduces latency and 

amplifies learning speed. In addition, the model uses depth-
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wise separable convolutions which reduces the number of 

parameters needed, making the model a lighter deep neural 

network compared to other ConvNets with regular 

convolutions. Hence, it is a popular large-scale model 

designed to fit a vast range of applications, e.g., segmentation, 

detection, and classification [32]. 

 

 

4. EXPERIMENTAL SETUP AND RESULTS 

 

The proposed models were built using Google Colab’s GPU 

using Python 3.8.0. We applied holdout method for 

partitioning the dataset into 80% for training and 20% for 

testing. In addition to the classifiers, some of the additional 

layers were added to the classifiers are shown in Table 2. The 

final classification model architecture is shown in Figure 3, 

and the classifiers parameters are shown in Table 3. 

Experiments were performed in the original dataset and the 

undersampled dataset. Table 4 represents the performance 

metrics of all classifiers before and after applying data under-

sampling. The accuracy values of EfficientNetB3 increased 

after undersampling the data. However, ResNet-50 and 

MobileNetV2 accuracy slightly decreased. As shown in the 

Table 4, the highest obtained accuracy is 0.991, which was 

achieved by the ResNet-50 and MobileNetV2 classifiers 

before applying undersampling. As for after applying 

undersampling, all three classifiers achieved the highest 

accuracy of 0.981.  
 

Table 2. Layers parameters in the three proposed classifiers 

 
Layer Number of Neurons Activation Function 

Dense 128 ReLu 

Dense 64 ReLu 

Dense 1 Sigmoid 

 

 
 

Figure 3. Deep learning model for defect detection 

 

Table 3. Parameters for the three proposed classifiers 

 
Model Parameters Value 

EfficientNetB3 

Batch Size 

Loss Function 

Optimizer 

16 

Binary cross-entropy 

Adam 

ResNet-50 Epochs 200 

MobileNetV2 ReduceLROnPlateau 

monitor = 'val_accuracy' 

factor = 0.3 

patience = 3 

min_lr = 0.000001 

Table 4. Classifier performance comparison before and after applying data undersampling 

 

Sampling Classifier Accuracy Precision Specificity Recall F1 AUC 

Without 

Sampling 

EfficientNetB3 0.968 0.986 0.993 0.923 0.956 0.989 

ResNet-50 0.991 0.986 0.992 0.986 0.989 0.992 

MobileNetV2 0.991 0.989 0.988 0.989 0.991 0.999 

With 

Sampling 

EfficientNetB3 0.981 0.975 0.975 0.987 0.982 0.992 

ResNet-50 0.981 0.985 0.990 0.985 0.975 0.998 

MobileNet V2 0.981 0.977 0.960 0.988 0.980 0.985 

 

 
 

Figure 4. Classifiers' performance before and after applying 

data undersampling 

 

Figure 4 shows the difference in performance before and 

after data sampling for all the three classifiers. Before applying 

data sampling, the EfficientNetB3 recall was notably lower. A 

low recall score implies that the false-negative rate is high, 

which means the model classified many instances belonging 

to the ‘with pitting’ class as ‘without pitting’. In an industrial 

setting, this would cause an increase in the financial costs 

because many defective surfaces would go unnoticed and 

therefore would not solve our initial problem of identifying 

defective surfaces. However, the EfficientNetB3 performance 

significantly improved after data sampling. The accuracy and 

AUC slightly increased whereas the recall and F1-score 

showed a significant increase. On the other hand, the precision 

and specificity slightly decreased. Moreover, the ResNet-50 

classifier maintained similarly excellent performance through 

the two scenarios, in which the AUC increased after applying 

data sampling, and reached a value of 0.9984. After applying 

data sampling, all classifiers obtained the same accuracy of 

0.981 where EfficientNetB3 and ResNet-50 achieved 

competitive performance with regard to the rest of the 

evaluation metrics. However, the MobileNetV2 classifier’s 

specificity decreased after sampling, which might cause 

unnecessary costs for manufacturers since the classifier will 
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predict some undamaged metals as damaged. In addition, the 

ResNet-50 performance slightly surpasses the EfficientNetB3 

classifier regarding the precision, specificity, and AUC. 

However, EfficientNetB3 achieved a slightly higher recall of 

0.987 and since a higher recall value will provide fewer missed 

defected metals, we can conclude that the EfficientNetB3 

classifier can be employed in industrial settings and contribute 

significantly to identifying metallic surface defects. 

 

 

5. DISCUSSION 

 

Deep Learning (DL) has been widely used for the visual 

data [33, 34]. Nowadays, technology plays an essential role in 

determining product quality in industrial production. In steel 

manufacturing, defects can go unnoticed which can lead to a 

decline in product quality. A defect can be defined as an 

imperfection in a specific area when compared to an 

undamaged sample [3]. The typical practice is to identify these 

defects manually, which is a tiresome and error-prone task. 

However, by using intelligent autonomous methods we can 

avoid most of the manual inspection’s disadvantages such as 

low accuracy, efficiency, and sampling rate [6].  

Table 4 shows the EfficientNetB3 model achieved the best 

overall performance after applying undersampling and 

obtained an accuracy of 0.981.  

The issue of undetected metal defects can lead to severe 

consequences, including substantial financial costs. Therefore, 

it is critical that classifiers minimize the false negative rate, 

ideally aiming for zero to ensure no defects go unnoticed. 

Figure 5 presents the confusion matrices for the three 

classifiers—EfficientNetB3, MobileNetV2, and ResNet-50—

after applying undersampling techniques. Both MobileNetV2 

and EfficientNetB3 recorded only one false negative and two 

false positives, whereas ResNet-50 registered two false 

negatives and one false positive. The former scenario is 

preferable, as missing fewer defects is crucial to avoid 

increasing manufacturing costs. 

 

 
 

Figure 5. (a) MobileNetV2 confusion matrix, (b) ResNet-50 confusion matrix, (c) EfficientNetB3 confusion matrix 

 

The IMTCSD dataset, recently utilized for a detection task, 

achieved a mean Average Precision (mAP) of 0.82 [27]. 

Unlike previous studies that focused on detection, this study 

has performed classification and achieved significant results. 

A key advantage of the current dataset is its versatility, 

supporting not just classification but also detection and 

segmentation tasks, enhancing its utility in addressing 

industrial quality control challenges.  

 

 

6. CONCLUSION 

 

In this paper, a comparative analysis was conducted among 

three CNN-based classifiers, namely EfficientNetB3, ResNet-

50, and MobileNetV2, to construct an enhanced classifier for 

defect detection on industrial machine tools. The IMTCSD 

dataset was used to develop the models to enable them to 

detect defects even on polluted surfaces. The proposed method 

is composed mainly of three basic steps: preprocessing the 

IMTCSD dataset using the necessary techniques, initiating the 

experiments, and training the models, and model testing. Data 

undersampling was applied to eliminate the data imbalance. 

The effectiveness of the proposed method is evaluated in terms 

of accuracy, F1-score, recall, precision, specificity, and AUC. 

The best performing model was EfficientNetB3 which 

achieved an accuracy of 0.981, recall of 0.987, precision of 

0.975, and F1-score of 0.982. Nevertheless, the study has 

achieved significant results but there is still room for further 

improvement. In future, we hope to apply the vision 

transformers and also investigate the performance of the 
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proposed algorithms on other real dataset for predicting the 

remaining lifetime of the components based on the 

classification of its defect severity stages. 

 

 

REFERENCES  

 

[1] Lee, S.Y., Tama, B.A., Moon, S.J., Lee, S. (2019). Steel 

surface defect diagnostics using deep convolutional 

neural network and class activation map. Applied 

Sciences, 9(24): 5449. 

https://doi.org/10.3390/app9245449 

[2] Abu, M., Amir, A., Lean, Y.H., Zahri, N.A.H., Azemi, 

S.A. (2021). The performance analysis of transfer 

learning for steel defect detection by using deep learning. 

Journal of Physics: Conference Series, 1755(1): 012041. 

https://doi.org/10.1088/1742-6596/1755/1/012041 

[3] Chen, Y., Ding, Y., Zhao, F., Zhang, E., Wu, Z., Shao, L. 

(2021). Surface defect detection methods for industrial 

products: A review. Applied Sciences, 11(16): 7657. 

https://doi.org/10.3390/app11167657 

[4] Saberironaghi, A., Ren, J., El-Gindy, M. (2023). Defect 

detection methods for industrial products using deep 

learning techniques: A review. Algorithms, 16(2): 95. 

https://doi.org/10.3390/a16020095. 

[5] Lv, X., Duan, F., Jiang, J.J., Fu, X., Gan, L. (2020). Deep 

metallic surface defect detection: The new benchmark 

and detection network. Sensors, 20(6): 1562. 

https://doi.org/10.3390/s20061562. 

[6] He, Z., Liu, Q. (2020). Deep regression neural network 

for industrial surface defect detection. IEEE Access, 8: 

35583-35591. 

https://doi.org/10.1109/ACCESS.2020.2975030 

[7] Ibrahim, A.A.M., Tapamo, J.R. (2024). A survey of 

vision-based methods for surface defects’ detection and 

classification in steel products. Informatics, 11(2): 25. 

https://doi.org/10.3390/informatics11020025 

[8] Xiao, M., Jiang, M., Li, G., Xie, L., Yi, L. (2017). An 

evolutionary classifier for steel surface defects with 

small sample set. EURASIP Journal on Image and Video 

Processing, 2017(1): 1-13. 

https://doi.org/10.1186/s13640-017-0197-y 

[9] Luo, Q., Fang, X., Liu, L., Yang, C., Sun, Y. (2020). 

Automated visual defect detection for flat steel surface: 

A survey. IEEE Transactions on Instrumentation and 

Measurement, 69(3): 626-644. 

https://doi.org/10.1109/TIM.2019.2963555 

[10] Neogi, N., Mohanta, D.K., Dutta, P.K. (2014). Review of 

vision-based steel surface inspection systems. EURASIP 

Journal on Image and Video Processing, 2014: 1-19. 

https://doi.org/10.1186/1687-5281-2014-50 

[11] Qi, S., Yang, J., Zhong, Z. (2020). A review on industrial 

surface defect detection based on deep learning 

technology. In Proceedings of the 2020 3rd International 

Conference on Machine Learning and Machine 

Intelligence, Hangzhou, China, pp. 24-30. 

https://doi.org/10.1145/3426826.3426832 

[12] Gong, R., Wu, C., Chu, M. (2018). Steel surface defect 

classification using multiple hyper-spheres support 

vector machine with additional information. 

Chemometrics and Intelligent Laboratory Systems, 172: 

109-117. 

https://doi.org/10.1016/j.chemolab.2017.11.018. 

[13] He, Y., Song, K., Meng, Q., Yan, Y. (2019). An end-to-

end steel surface defect detection approach via fusing 

multiple hierarchical features. IEEE Transactions on 

Instrumentation and Measurement, 69(4): 1493-1504. 

https://doi.org/10.1109/TIM.2019.2915404 

[14] Huang, Y., Qiu, C., Wang, X., Wang, S., Yuan, K. 

(2020). A compact convolutional neural network for 

surface defect inspection. Sensors, 20(7): 1974. 

https://doi.org/10.3390/s20071974. 

[15] Hao, R., Lu, B., Cheng, Y., Li, X., Huang, B. (2021). A 

steel surface defect inspection approach towards smart 

industrial monitoring. Journal of Intelligent 

Manufacturing, 32: 1833-1843. 

https://doi.org/10.1007/s10845-020-01670-2 

[16] Boudiaf, A., Benlahmidi, S., Harrar, K., Zaghdoudi, R. 

(2022). Classification of surface defects on steel strip 

images using convolution neural network and support 

vector machine. Journal of Failure Analysis and 

Prevention, 22(2): 531-541. 

https://doi.org/10.1007/s11668-022-01344-6 

[17] Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M.Y., 

Cao, Y. (2019). A deep-learning-based approach for fast 

and robust steel surface defects classification. Optics and 

Lasers in Engineering, 121: 397-405. 

https://doi.org/10.1016/j.optlaseng.2019.05.005 

[18] Arikan, S., Varanasi, K., Stricker, D. (2019). Surface 

defect classification in real-time using convolutional 

neural networks. arXiv preprint arXiv:1904.04671. 

https://doi.org/10.48550/arXiv.1904.04671 

[19] Ibrahim, A.A.M., Tapamo, J.R. (2024). Transfer 

learning-based approach using new convolutional neural 

network classifier for steel surface defects classification. 

Scientific African, 23: e02066. 

https://doi.org/10.1016/j.sciaf.2024.e02066. 

[20] Zhao, Y., Sun, X., Yang, J. (2023). Automatic 

recognition of surface defects of hot rolled strip steel 

based on deep parallel attention convolution neural 

network. Materials Letters, 353: 135313. 

https://doi.org/10.1016/j.matlet.2023.135313 

[21] Li, Z., Wei, X., Hassaballah, M., Li, Y., Jiang, X. (2024). 

A deep learning model for steel surface defect detection. 

Complex & Intelligent Systems, 10(1): 885-897. 

https://doi.org/10.1007/s40747-023-01180-7 

[22] Wang, S., Xia, X., Ye, L., Yang, B. (2021). Automatic 

detection and classification of steel surface defect using 

deep convolutional neural networks. Metals, 11(3): 388. 

https://doi.org/10.3390/met11030388 

[23] Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J., 

Brezina, J. (2020). Steel surface defect classification 

using deep residual neural network. Metals, 10(6): 846. 

https://doi.org/10.3390/met10060846 

[24] Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., 

De Schutter, B. (2016). Deep convolutional neural 

networks for detection of rail surface defects. In 2016 

International Joint Conference on Neural Networks 

(IJCNN): Vancouver, BC, Canada, pp. 2584-2589. 

https://doi.org/10.1109/IJCNN.2016.7727522 

[25] Tao, X., Zhang, D., Ma, W., Liu, X., Xu, D. (2018). 

Automatic metallic surface defect detection and 

recognition with convolutional neural networks. Applied 

Sciences, 8(9): 1575. 

https://doi.org/10.3390/app8091575. 

[26] Di, H., Ke, X., Peng, Z., Dongdong, Z. (2019). Surface 

defect classification of steels with a new semi-supervised 

learning method. Optics and Lasers in Engineering, 117: 

3013



 

40-48. https://doi.org/10.1016/j.optlaseng.2019.01.011 

[27] Li, G., Shao, R., Wan, H., Zhou, M., Li, M. (2022). A 

model for surface defect detection of industrial products 

based on attention augmentation. Computational 

Intelligence and Neuroscience, 2022(1): 9577096. 

https://doi.org/10.1155/2022/9577096 

[28] Schlagenhauf, T., Landwehr, M. (2021). Industrial 

machine tool component surface defect dataset. Data in 

Brief, 39: 107643. 

https://doi.org/10.1016/j.dib.2021.107643 

[29] Lehmann, D., Ebner, M. (2022). Subclass-based 

undersampling for class-imbalanced image 

classification. In Proceedings of the 17th International 

Joint Conference on Computer Vision, Imaging and 

Computer Graphics Theory and Applications 

(VISIGRAPP 2022), pp. 493-500. 

https://doi.org/10.5220/0010841100003124 

[30] Tan, M., Le, Q.V. (2019). EfficientNet: Rethinking 

model scaling for convolutional neural networks. arXiv 

preprint arXiv:1905.11946. 

https://doi.org/10.48550/arXiv.1905.11946 

[31] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual 

learning for image recognition. In 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 

Las Vegas, NV, USA, 2016, pp. 770-778. 

https://doi.org/10.1109/CVPR.2016.90 

[32] Tan, M.X., Le, Q.V. (2017). Mobilenets: Efficient 

convolutional neural networks for mobile vision 

applications. arXiv preprint arXiv:1704.04861. 

https://doi.org/10.48550/arXiv.1905.11946 

[33] Mbilong, P.M., Aarab, Z., Belouadha, F.Z., Kabbaj, M.I. 

(2023). Enhancing fault detection in CNC machinery: A 

deep learning and genetic algorithm approach. Ingénierie 

des Systèmes d’Information, 28(5): 1361-1375. 

https://doi.org/10.18280/isi.280525 

[34] Aslam, N., Khan, I.U., Albahussain, T.I., Almousa, N.F., 

Alolayan, M.O., Almousa, S.A., Alwhebi, M.E. (2022). 

MEDeep: A deep learning based model for memotion 

analysis. Mathematical Modelling of Engineering 

Problems, 9(2): 533-538. 

https://doi.org/10.18280/mmep.090232 

 

3014




