
Adaptive Compression Techniques for Lightweight Object Detection in Edge Devices

Nguyen Duc Toan , Long Ho Le , Hoanh Nguyen*

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

Corresponding Author Email: nguyenhoanh@iuh.edu.vn

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.111119 ABSTRACT

Received: 1 August 2024

Revised: 30 September 2024

Accepted: 5 October 2024

Available online: 29 November 2024

In this paper, we propose a novel lightweight object detection model tailored for edge

devices, built upon the YOLOv5 architecture. Our model introduces three key

innovations to enhance both efficiency and accuracy. First, we present an Improved

Spatial Pyramid Pooling Fast (SPPF) layer that combines 1×1 convolutions with dilated

convolutions to expand the receptive field while minimizing computational costs,

thereby improving multi-scale feature extraction. Second, we refine the model’s neck

by integrating Ghost and Partial Convolutions (PGhostNetV2), significantly reducing

the computational load while preserving fine-grained spatial details essential for

accurate detection. Finally, we enhance the Cross Stage Partial (CSP) Bottleneck by

incorporating Ghost and Shuffle Convolutions (GSConv), optimizing feature

representation while maintaining a lightweight structure. These enhancements result in

a model that achieves competitive performance in terms of detection accuracy while

significantly reducing inference time and computational demands, making it highly

suitable for real-time applications on resource-constrained edge devices.

Keywords:

lightweight object detection, edge devices, ghost

convolution, spatial pyramid pooling

1. INTRODUCTION

Object detection stands as a critical task in the field of

computer vision, with wide-ranging applications from

autonomous driving to surveillance systems [1-6]. The advent

of deep learning has significantly propelled the field of object

detection, leading to substantial improvements in both

accuracy and speed of detection. Advances in neural network

architectures and learning algorithms have opened up new

possibilities for robust detection mechanisms that can handle

complex visual data in various conditions.

Object detection methodologies based on deep learning are

generally categorized into two main types: one-stage and two-

stage approaches. One-stage detectors, such as YOLO (You

Only Look Once) [7-12], SSD (Single Shot MultiBox

Detector) [13], FCOS [14], and CenterNet [15] are designed

for speed and efficiency, processing the entire image in a

single pass to predict both bounding boxes and class

probabilities. Two-stage detectors, like R-CNN [16] and its

variants (Fast R-CNN, Faster R-CNN) [17, 18], focus on

achieving higher accuracy by first proposing candidate object

regions and then classifying each region into object categories.

Among the numerous models developed for object

detection, the YOLO family has established itself as a

dominant framework for real-time detection due to its high-

speed performance and strong accuracy. YOLOv5, in

particular, has achieved a balance between precision and

speed, making it a widely adopted model for a variety of real-

time applications. However, there remain challenges in

deploying such models on resource-constrained environments,

such as edge devices, where computational and memory

efficiency are paramount. This presents a need for further

refinements to enhance both the efficiency and accuracy of

object detection models specifically optimized for these

environments.

In this work, we address these challenges by proposing a

novel lightweight object detection model that builds upon the

YOLOv5 architecture with specific enhancements aimed at

improving performance in resource-constrained

environments, such as edge devices. The novelty of our

approach lies in three key architectural innovations that

significantly improve the model’s efficiency while

maintaining competitive detection accuracy:

⚫ Improved Spatial Pyramid Pooling Fast (SPPF) Layer:

We introduce an enhanced SPPF layer that combines

1×1 convolutions with dilated convolutions, thereby

expanding the receptive field without increasing

computational overhead. This novel configuration

enhances multi-scale feature extraction and contributes

to faster inference.

⚫ Refined Neck Architecture with Ghost and Partial

Convolutions (PGhostNetV2): Our model incorporates a

refined neck design that integrates Ghost and Partial

Convolutions to drastically reduce the computational

burden while preserving the fine-grained spatial details

essential for accurate object detection. This allows the

model to operate efficiently on devices with limited

processing power.

⚫ Enhanced Cross Stage Partial (CSP) Bottleneck with

GSConv: We further optimize the Cross Stage Partial

(CSP) layer by replacing standard convolutional

operations with Ghost and Shuffle Convolutions

Mathematical Modelling of Engineering Problems
Vol. 11, No. 11, November, 2024, pp. 3071-3081

Journal homepage: http://iieta.org/journals/mmep

3071

https://orcid.org/0000-0002-8705-0937
https://orcid.org/0000-0001-9871-106X
https://orcid.org/0000-0002-5798-7446
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.111119&domain=pdf

(GSConv). This enhancement improves feature

extraction and representation while keeping the

computational demands minimal.

These innovations make significant advances over the state-

of-the-art by improving the balance between speed and

accuracy in real-time object detection on edge devices. The

proposed model is designed to be highly adaptable to resource-

constrained environments, providing a practical solution for

applications such as autonomous driving, surveillance, and

mobile devices where computational efficiency is critical. Our

experimental results, conducted on the BDD100K dataset,

demonstrate that the proposed model not only achieves

competitive accuracy but also significantly reduces inference

time and computational demands, making it a state-of-the-art

solution for lightweight object detection.

2. RELATED WORK

Object detection has seen significant advancements over the

past decade, primarily driven by the rise of deep learning and

convolutional neural networks (CNNs). Early approaches such

as R-CNN, Fast R-CNN, and Faster R-CNN [16-18] focused

on a two-stage process to achieve high accuracy. However,

their computational complexity made them unsuitable for real-

time applications on resource-constrained devices. This led to

the development of one-stage detectors like YOLO [7-12],

SSD [13], FCOS [14], and CenterNet [15], which balance

speed and accuracy by predicting bounding boxes and class

probabilities in a single pass. Among these, YOLO has gained

widespread use for its efficiency and high detection speed.

Recently, several lightweight object detection models

specifically optimized for edge devices have emerged to

address the limitations of traditional models. MobileNet [19]

and its variants, including MobileNetV2 [20] and

MobileNetV3 [21], introduced depthwise separable

convolutions to reduce computational cost, making them

highly suitable for mobile and embedded systems. However,

these models sometimes suffer from reduced accuracy due to

the simplified network structure. EfficientDet [22] leveraged

compound scaling to balance the network’s depth, width, and

resolution, allowing for scalable detection across different

device capacities. Although EfficientDet achieved strong

results in terms of accuracy and speed, its architecture is more

complex and can become computationally expensive for very

resource-limited devices. Another prominent lightweight

approach is GhostNet [23], which introduced Ghost

Convolutions to generate more feature maps from fewer

operations, reducing redundancy in CNNs. GhostNetV2 [24]

further refined this by improving the efficiency of feature

extraction. However, while GhostNet reduces computation, its

use of depthwise convolutions limits its ability to capture

global context, making it less effective in scenarios where

fine-grained spatial information is crucial for accurate object

detection.

Another approach to enhance efficiency involves improving

specific components within existing architectures. For

example, the Spatial Pyramid Pooling (SPP) layer, introduced

in early CNN models [25], has been adapted and optimized in

various forms, including in YOLOv4 and YOLOv5, to

improve multi-scale feature extraction. The introduction of

techniques like dilated convolutions has further helped in

capturing contextual information without increasing the

computational cost [26].

Our approach builds upon the strengths of these models

while addressing their limitations. Specifically, we incorporate

Partial Convolutions (PConv) into GhostNetV2 to form

PGhostNetV2, which overcomes the limitations of depthwise

convolutions by better preserving spatial information through

a split-and-convolve approach. This refinement not only

reduces the computational load but also improves detection

accuracy, particularly for small objects and complex

environments. Further, techniques such as the Improved SPPF

layer in our model are designed to improve multi-scale feature

extraction, a feature shared by EfficientDet but achieved more

efficiently in our architecture through the combination of

dilated convolutions and 1×1 convolutions. Moreover, our

Enhanced CSP Bottleneck with GSConv further optimizes

feature extraction, reducing complexity without sacrificing

detection performance, particularly in real-time applications

on edge devices.

3. METHODOLOGY

3.1 YOLOv5 structure

The YOLOv5 architecture is widely recognized for its

balance between detection accuracy and computational

efficiency, making it a popular choice for real-time object

detection tasks. YOLOv5 is part of the broader YOLO family,

known for pioneering a one-stage detection approach where

the model predicts both bounding boxes and class probabilities

directly from the full image in a single pass. This design

significantly reduces inference time compared to two-stage

models such as R-CNN, Fast R-CNN, and Faster R-CNN,

where region proposals are generated first and classified later.

Figure 1. YOLOv5 architecture

The YOLOv5 architecture, as depicted in Figure 1, is

structured into three main components: the backbone, the neck,

and the head. The backbone of YOLOv5 begins with an Input

layer where the input image is fed into the network. The first

notable layer is the Focus layer, which helps in reducing the

input dimensionality and concentrates on the most informative

parts of the image for detection. This is followed by a series of

Convolutional (Conv) layers and C3 (Cross Stage Partial

networks) layers. The Conv layers are standard convolutional

3072

layers used for feature extraction. The C3 layers, which are a

modified version of the residual networks, enable the flow of

information and gradients through the network, helping in

learning more complex patterns without increasing the

computational cost. The architecture also incorporates a

Spatial Pyramid Pooling-Fast (SPPF) layer towards the end of

the backbone. The SPPF layer pools features at different scales

and concatenates them to maintain spatial hierarchies between

features, enhancing the network's ability to recognize objects

at various scales. The neck of YOLOv5 features a series of

additional convolutional layers and upsampling layers

combined with concatenation operations. This structure is

crucial for constructing a rich feature pyramid which is

beneficial for detecting objects at different scales. The use of

upsampling layers and concatenations helps in merging the

low-level feature information from earlier layers with high-

level features from deeper layers, which enhances the feature

representation for different object sizes. The C3 layers in the

neck further help in refining these features, ensuring that the

features are robust and contain useful spatial and contextual

information. The head of the network consists mainly of

Conv2d layers. These layers are tasked with converting the

rich, multi-scale feature maps produced by the backbone and

neck into the final output predictions. The head processes

these features to produce the bounding boxes, object class

probabilities, and objectness scores which indicate the

presence of objects within the boxes.

In this work, YOLOv5 was selected as the base architecture

due to its inherent advantages over other detection models. Its

architecture is both computationally efficient and highly

accurate, making it a prime candidate for adaptation in edge

computing environments where processing power and

memory are limited. Additionally, YOLOv5’s modularity

allows for straightforward integration of improvements such

as our proposed enhancements to the Spatial Pyramid Pooling,

neck structure, and Cross Stage Partial Bottleneck, which

further optimize the model for lightweight detection on edge

devices.

Building upon YOLOv5, we introduce several

modifications designed to enhance both efficiency and

detection accuracy. These include the Improved SPPF layer

that expands the receptive field while reducing computational

overhead, the PGhostNetV2 architecture in the neck that

reduces the model's computational complexity, and the

Enhanced CSP Bottleneck with GSConv for more efficient

feature extraction. Together, these innovations build on

YOLOv5's strengths and push the boundaries of lightweight,

real-time object detection in resource-constrained

environments.

3.2 Improved SPPF layer

In YOLOv5, the SPPF layer is an adaptation of the

traditional Spatial Pyramid Pooling (SPP) layer [25], designed

to be more efficient while maintaining similar benefits. The

SPPF layer in YOLOv5 aims to enhance the receptive field of

the network, allowing it to handle input of varying sizes and

capture contextual information at different scales more

efficiently. The detailed structure of the SPPF layer is shown

in Figure 2(a). The SPPF layer utilizes a single max pooling

operation with a large kernel size (i.e., 5×5) and performs max

pooling with different strides to aggregate spatial features at

varying scales efficiently. Mathematically, this can be

expressed as:

𝑃𝑘(𝑥) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙
(𝑥, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 5 × 5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑘)

(1)

where, Pk(x) represents the max pooling operation with stride

sk, applied to the input x. The outputs of these pooling

operations are concatenated along the channel dimension:

𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃1(𝑥), 𝑃2(𝑥), 𝑃3(𝑥), …) (2)

This concatenated output maintains a rich representation of

both local and more global features, effectively combining

them to enhance the network’s ability to detect objects at

different scales. The main advantage of the SPPF layer over

the traditional SPP is its efficiency. By using fewer pooling

operations and leveraging varying strides, the SPPF layer

reduces the computational overhead while still enhancing the

receptive field. This makes it particularly suitable for real-time

applications where both speed and accuracy are crucial.

Figure 2. The structure of SPPF (a) and improved SPPF (b)

To optimize inference speed while aiming to maintain

accuracy, we propose an improved SPPF layer which

integrates a 1×1 convolution layer and 3×3 dilated

convolutions, as shown in Figure 2(b). The Improved SPPF

layer in our model is a significant enhancement aimed at

capturing multi-scale context more efficiently, particularly for

real-time object detection on resource-constrained edge

devices. This improvement is based on integrating 1×1

convolutions with dilated convolutions to optimize both

feature extraction and computational efficiency. The 1×1

convolution acts as a bottleneck layer that effectively reduces

the number of input channels (i.e., feature maps):

𝑦1 = 𝐶𝑜𝑛𝑣1×1(𝑥) (3)

This operation plays a critical role in decreasing the overall

computational cost by minimizing the number of parameters

that need to be processed in the subsequent layers. Despite

reducing dimensionality, the 1×1 convolution preserves the

essential features, ensuring that the most relevant information

is passed through the network. By acting as a bottleneck, the

1×1 convolution prepares the feature maps for more efficient

processing through dilated convolutions.

After the 1×1 convolution, the resulting feature maps are

processed by dilated convolutions (3×3 convolutions with

varying dilation rates):

𝑦2 = 𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑣3×3(𝑦1, 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑑) (4)

where, the dilation rate d increases the receptive field without

3073

increasing the kernel size.

Dilated convolutions are effective in expanding the

receptive field without increasing the kernel size, meaning the

network can capture more contextual information from the

input data while keeping the number of parameters low. This

is particularly beneficial for object detection tasks where

understanding the spatial relationships between objects at

different scales is crucial. The dilation rate controls the

spacing between the kernel weights, allowing the network to

gather information from a broader area of the image. By

combining multiple dilated convolutions with varying dilation

rates, the SPPF layer can aggregate features at multiple scales,

ensuring that both local and global context is captured without

increasing the computational load. This multi-scale feature

extraction is crucial for detecting objects of varying sizes

within the same image.

This approach allows the network to capture more

contextual and spatial information from the input, which is

crucial for tasks like object detection where understanding the

broader scene context improves accuracy. The sequence

includes multiple max pooling layers, each designed to

aggregate features from varying spatial extents:

𝑃𝑘(𝑦2) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙
(𝑦2, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 5 × 5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑘)

(5)

The outputs of these pooling operations are then

concatenated:

𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃1(𝑦2), 𝑃2(𝑦2), 𝑃3(𝑦2), …) (6)

Supporting these layers are SiLU activation functions and

batch normalization, which promote better gradient flow and

faster model convergence by standardizing the activations

from the convolutional layers. This structured approach

enhances inference speed without compromising the model's

ability to perform accurately, making it particularly effective

for real-time applications where computational resources are

limited. Through these improvements, the architecture is

optimized for performance on diverse hardware platforms,

balancing the demands of speed and precision adeptly.

3.3 Improve the neck by ghost and partial convolutions

GhostNetV2 [24] is an evolution of the GhostNet

architecture [23], designed to enhance the efficiency of

convolutional neural networks by reducing the redundancy

present in feature maps. In GhostNetV2, as depicted in Figure

3, the basic building block is the Ghost module. This module

generates more feature maps from the intrinsic features of the

original feature maps, which allows for a reduction in the

number of convolutional operations required. Specifically, the

Ghost module applies depthwise convolution (DWConv) to

create a large number of feature maps with minimal

computational overhead. This structure enhances the model's

efficiency, making it particularly suitable for deployment on

edge devices with limited computational resources.

Despite its advantages, the use of DWConv in the

GhostNetV2 structure has some limitations. DWConv is

known for its ability to reduce computational complexity

compared to standard convolutions, but it also has inherent

drawbacks. One of the key limitations is that DWConv can

struggle with capturing global context and may be less

effective in scenarios where fine-grained spatial information is

crucial. This limitation can lead to a degradation in the quality

of feature representations, particularly in the context of

complex object detection tasks where capturing intricate

details is necessary for accurate predictions.

Figure 3. The architecture of GhostNetV2

Figure 4. Partial convolution structure

To address the limitations of DWConv, we introduce Partial

Convolution (PConv) into the GhostNetV2 architecture to

create PGhostNetV2 module. As illustrated in Figure 4, PConv

works by splitting the input feature map into two parts. One

part undergoes standard convolution operations, while the

other part remains untouched. This design balances the

computational savings of depthwise convolutions with the

spatial feature-preserving qualities of standard convolutions.

Specifically, partial convolutions apply convolution only to a

subset of the input feature channels while the remaining

channels pass through unchanged. This selective processing

allows the network to retain critical spatial information across

the feature map, which is essential for accurate object

detection, particularly for small objects or in scenarios where

object boundaries are complex. In contrast to depthwise

convolutions, where each feature map is processed

independently, partial convolutions enable the model to retain

both local and global spatial dependencies by processing a

portion of the feature maps through regular convolutions. This

approach ensures that important spatial details are preserved

without a significant increase in computational cost.

The primary motivation for replacing DWConv with PConv

in the GhostNetV2 structure is to overcome the

aforementioned limitations of DWConv while maintaining the

lightweight nature of the model. PConv, with its split-and-

convolve approach, allows the model to capture more detailed

spatial information without significantly increasing the

computational cost. This is particularly beneficial for object

detection tasks, where precise localization and recognition of

objects are critical. By integrating PConv into the GhostNetV2

architecture to generate PGhostNetV2, we aim to enhance the

quality of feature maps generated by the Ghost module,

leading to better performance in object detection tasks,

especially in edge device scenarios.

We use three PGhostNetV2 modules at the end of the neck

to generate output feature maps, ensuring that they are both

rich in detail and computationally efficient. The use of

PGhostNetV2 modules at the end of the neck enhances the

3074

model's ability to produce detailed and efficient feature maps,

leading to improved performance on lightweight object

detection tasks.

3.4 Enhanced C3 layer

The C3 layer is a critical component in YOLOv5's

architecture, designed to enhance the learning capability and

efficiency of the model. This layer incorporates several key

features that optimize both the computational cost and the

effectiveness of the neural network in processing spatial

features for object detection tasks. The structure of the C3

layer begins with splitting the input feature map into two

separate paths, as shown in Figure 5(a). One path processes the

features directly, typically through a series of convolutional

operations, while the other path is subjected to a sequence of

transformations intended to refine and enhance the feature

representation. The transformations generally include multiple

convolutional layers; the first layer often uses a smaller

number of filters to reduce dimensionality and computational

load, followed by a batch normalization layer and an activation

function like Leaky ReLU or SiLU to introduce non-linearity

and stabilize the network learning. After processing through

these convolutional blocks, the two paths are recombined. This

recombination is a distinctive aspect of the C3 layer, where the

feature maps from both paths are concatenated along the

channel axis. This concatenation helps in enriching the feature

space with both processed and bypassed features, enhancing

the model's ability to capture and utilize more complex

patterns and dependencies within the data. Moreover, the C3

layer includes skip connections, similar to those used in

residual networks, which help in mitigating the vanishing

gradient problem by allowing gradients to flow directly

through the network layers during backpropagation. This is

particularly beneficial for the training of deep networks,

ensuring more stable and faster convergence.

Figure 5. The structure of C3 layer (a) and enhanced C3

layer (b)

To optimize processing and improve the network's

capability to handle complex object detection tasks, we design

an Enhanced C3 layer, which is used to replace the standard

C3 layer in YOLOv5 architecture, specifically aimed at

increasing the model's efficiency and effectiveness in feature

extraction and representation. The core innovation in this

Enhanced C3 layer lies in the replacement of standard

convolutional operations in the bottleneck structure with

GSConv (Ghost and Shuffle Convolution) [27], as shown in

Figure 5(b). Ghost Convolutions are designed to reduce the

redundancy in feature maps by generating a portion of the

output feature maps through cheaper transformations. Rather

than applying full convolutions to every feature map, Ghost

Convolutions apply standard convolutions to only a portion of

the input features, generating the remaining feature maps

through inexpensive linear operations. This drastically reduces

the number of operations required, leading to a more efficient

convolutional layer. The intuition behind this is that many

feature maps in deep convolutional networks contain a high

degree of redundancy, and Ghost Convolutions eliminate this

inefficiency by learning fewer but more meaningful feature

maps. Shuffle Convolutions complement Ghost Convolutions

by introducing an additional mechanism that enhances the

network’s ability to mix and propagate information across

feature channels. Shuffle Convolutions achieve this by

dividing the input feature maps into groups, performing

grouped convolutions on these subsets, and then shuffling the

output channels to improve interaction between feature groups.

This channel shuffling increases the diversity of features and

allows the model to capture a wider range of spatial

dependencies across the input image. The intuition here is that

simply reducing the computational load, as Ghost

Convolutions do, can sometimes limit the representational

power of the network. Shuffle Convolutions counteract this

limitation by ensuring that information from different feature

maps is mixed and spread across the network, increasing the

ability of the model to represent complex patterns and fine

details.

The GSConv approach segments the convolutional

processing into groups, allowing the network to reduce

computational overhead significantly while still capturing

spatial dependencies effectively. Each GSConv operates on a

subset of input features, thereby focusing on extracting more

nuanced and localized feature representations which can be

crucial for tasks requiring high-detail perception, such as in

autonomous vehicle navigation or intricate object detection

scenarios. Moreover, the GS-Bottleneck modules are applied

repeatedly, providing a deepened layering strategy to

progressively refine features at different levels of abstraction.

The bottleneck modules, now powered by GSConv, ensure

that each stage of feature processing builds on the refined

outputs of the previous stage, enhancing the network's ability

to learn complex patterns with greater accuracy. The inclusion

of concatenation after the GS-Bottlenecks and before the final

convolution layer further enriches the feature maps by

combining diverse representations, ensuring that subsequent

layers have access to a broad spectrum of features from both

deep and shallow levels. This design is aimed at boosting the

representational power of the network without a

commensurate increase in computational demands.

By combining Ghost and Shuffle Convolutions, the

Enhanced C3 Layer achieves a balance between computational

efficiency and the ability to capture detailed spatial

information. Ghost Convolutions reduce the overall number of

3075

operations without sacrificing meaningful feature

representation, while Shuffle Convolutions ensure that the

information in these features is mixed effectively, improving

the network’s ability to capture complex relationships between

objects in the image. This synergy allows the Enhanced C3

layer to retain the lightweight nature required for edge devices

while significantly improving the model’s capacity for object

detection, especially in complex or crowded environments.

4. RESULTS AND DISCUSSION

4.1 Dataset and evaluation metrics

For the evaluation of our proposed model, we utilized the

BDD100K dataset [28], which is one of the largest and most

diverse datasets available for autonomous driving tasks.

Created by the Berkeley DeepDrive Center, this dataset is

specifically designed for real-world driving scenarios and

provides a rich collection of images with various driving

conditions, environments, and object types, making it ideal for

benchmarking object detection models for applications in

autonomous driving. The BDD100K dataset contains 100,000

images, all captured at 720p resolution from dash-mounted

cameras in vehicles. These images are annotated with a wide

variety of objects relevant to driving scenarios. The dataset

includes annotations for 10 object categories, which cover

both traffic-related and environmental objects essential for

autonomous vehicle navigation. In addition to object

annotations, BDD100K also provides labels for various scene

attributes, including weather conditions (clear, rainy, foggy,

overcast), time of day (daytime, night, dusk), and road types

(city streets, highways, residential areas). This diverse and

comprehensive labeling makes the dataset particularly

challenging and valuable for developing and testing object

detection models in dynamic driving environments.

We selected the BDD100K dataset for evaluation due to

several factors. First, the dataset covers a wide range of

scenarios that an autonomous vehicle may encounter in real-

world settings, including different lighting conditions, weather

types, and varying traffic densities. This ensures that the

trained model can handle complex situations, making it more

robust and generalizable to real-world applications. Second,

BDD100K provides images from real driving environments,

which include not only urban settings but also highways,

residential areas, and parking lots. This diversity in driving

conditions allows us to evaluate the model’s ability to detect

objects accurately across different road types and

environments. Finally, the BDD100K dataset includes both

densely populated urban scenes with numerous small objects

and sparser highway environments, challenging the model’s

ability to detect objects at different scales and in varying

densities. Additionally, the presence of diverse weather

conditions and lighting environments tests the robustness of

the model across different visual conditions.

We use several metrics to assess different aspects of the

model's efficiency and accuracy, including mAP, Params,

FLOPs, and FPS. These metrics provide valuable insights into

the model's performance. mAP is a standard metric for

measuring the accuracy of object detectors like those used in

computer vision. It represents the average precision across all

classes and recall levels. Precision is the ratio of correctly

predicted positive observations to the total predicted positives,

and recall is the ratio of correctly predicted positive

observations to all actual positives. The mAP is calculated by

taking the mean of the Average Precision (AP) for each class.

Params (Parameters) refers to the total count of trainable

parameters in the model. It is a direct indicator of the model’s

complexity and memory requirements. Models with a higher

number of parameters might be capable of learning more

detailed features but are also generally more computationally

intensive and slower to train. FLOPs measure the

computational complexity of the model, specifically the

number of floating-point operations required to generate an

output from a single input. This metric is crucial for

understanding the computational demand of the model,

particularly in deployment scenarios where processing power

is a limiting factor. FPS measures the speed of the model in

processing input frames. It is an essential metric for

applications requiring real-time processing, such as video

analysis and autonomous driving. Higher FPS indicates that

the model can process more frames in a shorter amount of time,

enhancing the responsiveness of the application.

4.2 Experimental setup

In this section, we provide a detailed description of the

experimental setup used to train and evaluate the proposed

model. This information is crucial for reproducibility and

clarity regarding the model's performance.

For all experiments, we used an input resolution of 640×640

pixels. This resolution was chosen based on the balance

between computational efficiency and detection accuracy,

especially for real-time object detection tasks on edge devices.

By using a fixed input resolution, we ensured consistency

across all experiments and maintained the model’s real-time

performance. We initialized our model using weights pre-

trained on the COCO dataset. Pre-training on COCO provides

a strong starting point for object detection tasks as the dataset

contains a wide variety of objects across many different

categories, which helps the model learn basic features such as

edges, textures, and object shapes.

For the experimental evaluation of our proposed model, we

utilized a hardware setup consisting of an Intel Core i7-

11700K CPU and an NVIDIA RTX 4080 GPU. This

combination provides a robust platform for high-performance

computation, necessary for handling the intensive demands of

real-time object detection tasks. The model was trained using

a batch size of 8 and an initial learning rate of 0.001, adjusted

dynamically with a cosine annealing schedule to optimize

convergence. We employed standard data augmentation

techniques such as random cropping, rotation, and color

adjustment to enhance the model's robustness to real-world

variations in input data. Training was conducted over 100

epochs, with early stopping implemented to prevent

overfitting based on the validation loss.

4.3 Comparison with other models

We compared the performance of our model with various

models on the BDD100K dataset, including MultiNet [29],

Faster R-CNN [18], YOLOV5s, DLT-Net [30], YOLOP [31],

and HybridNets [32]. The comparison results are presented in

Table 1. The results demonstrate that our proposed model,

which incorporates significant enhancements over the

standard YOLOv5 architecture, outperforms most existing

models in terms of both accuracy and speed. With a Recall of

90.6% and an mAP50 of 77.8%, our model not only achieves

3076

higher precision in object detection compared to models like

MultiNet, Faster R-CNN, DLT-Net, and YOLOP but also

surpasses the original YOLOv5s and is slightly more accurate

than HybridNets. Crucially, it maintains a high detection

accuracy while significantly boosting the inference speed to

84 FPS, which is markedly higher than all compared models.

This high performance can be attributed to the architectural

improvements in our model. The Improved SPPF layer is

designed to optimize inference speed without compromising

accuracy, effectively balancing computational efficiency with

robust detection capabilities. The refined neck architecture

using Ghost and Partial Convolutions reduces the

computational load while maintaining high-quality feature

extraction. Additionally, the introduction of the Enhanced C3

layer, replacing the standard C3 layer in YOLOv5, contributes

to more effective feature representation and extraction, further

boosting the model’s overall performance. These

enhancements allow our model not only to perform

exceptionally in terms of standard metrics but also to operate

at a high speed, making it ideal for real-time applications such

as autonomous driving. The significant improvement in FPS,

in particular, underscores the model's suitability for

deployment in scenarios where quick processing of visual data

is critical. The blend of high recall and superior mAP50 also

indicates that the model effectively minimizes false negatives

and accurately identifies objects, which is paramount in

scenarios that demand high reliability, such as in varying

lighting and weather conditions encountered in autonomous

vehicle navigation. Thus, our model stands out as a highly

efficient and effective solution in the landscape of object

detection technologies, particularly for applications in

dynamic and challenging environments.

To further demonstrate the generalizability of our approach

beyond autonomous driving scenarios, we extended our

evaluation to an additional widely-used object detection

dataset: MS COCO [33]. This dataset is commonly used

benchmark in the computer vision community and provide

diverse images with a wide range of object categories,

environments, and scene complexities. The MS COCO dataset

contains over 330,000 images and 80 object categories, with

challenging annotations that include both large and small

objects in cluttered scenes. This dataset is ideal for testing the

generalization of our model because it covers a wide variety

of contexts that go beyond the autonomous driving domain.

The COCO dataset also includes annotations for segmentation

and keypoint detection, making it a comprehensive benchmark

for real-world applications. Table 2 provides comparison

results. The results in Table 2 show a clear trade-off between

speed and accuracy among the various models. YOLOX-Tiny

[34] and MobileNet-SSD [35] excel in terms of speed,

achieving 150 FPS and 160 FPS, respectively, but have lower

accuracy compared to our model. Our model strikes an optimal

balance, with an mAP50 of 48.5% and a competitive speed of

145 FPS, outperforming YOLOv5s in both accuracy and speed.

While Faster R-CNN lags in speed at just 10 FPS, it also has

the lowest mAP50, indicating that it is less suited for real-time

edge deployment compared to other models. These results on

MS COCO demonstrate the generalizability of the proposed

model to a broader set of object detection tasks, validating its

effectiveness across different domains beyond autonomous

driving.

When developing lightweight object detection models, one

of the most critical factors is the trade-off between inference

speed and accuracy. Models designed for edge deployment

must be computationally efficient to ensure real-time

processing while maintaining a high level of detection

accuracy, particularly in complex environments where missed

detections can be costly. Our proposed model strikes a fine

balance between inference speed and accuracy through several

architectural enhancements, including the Improved SPPF

layer, PGhostNetV2, and the Enhanced C3 Layer. These

innovations were specifically designed to optimize both

computation and accuracy, addressing the typical limitations

of lightweight models that prioritize one metric at the expense

of the other. For inference speed, our model achieves an

impressive 145 FPS, which is competitive with highly efficient

models such as MobileNet-SSD and YOLOX-Tiny. Despite

the high processing speed, our model still achieves higher

accuracy. This is largely due to the inclusion of Ghost

Convolutions and Partial Convolutions, which reduce the

number of redundant operations, thus speeding up inference

without losing critical feature extraction capabilities. In

addition, the use of dilated convolutions in the Improved SPPF

layer enables the model to capture multi-scale features without

adding significant computational overhead, contributing to

both speed and accuracy.

Table 1. Comparison with other models on the BDD100K

Models Recall mAP50 (%) Speed (FPS)

MultiNet [29] 81.3 60.2 18

Faster R-CNN [18] 77.2 55.6 16

YOLOV5s 86.8 77.2 66

DLT-Net [30] 89.4 68.4 25

YOLOP [31] 89.2 76.5 45

HybridNets [32] 92.8 77.3 24

Our model 90.6 77.8 84

Table 2. Comparison with other models on the MS COCO

Models Recall mAP50 (%) Speed (FPS)

MultiNet [29] 65.2 38.5 30

Faster R-CNN [18] 61.0 37.5 10

YOLOV5s 68.0 44.1 140

DLT-Net [30] 69.5 41.2 55

YOLOP [31] 70.8 42.9 55

YOLOX-Tiny [34] 66.5 47.4 150

MobileNet-SSD [35] 62.4 38.0 160

Our model 71.2 48.5 145

4.4 Comparison with the baseline model

We also evaluated our model in various environments and

compared the results with the baseline model, YOLOv5. The

results presented in Table 3 illustrate the robust performance

of our model across a variety of environmental scenarios when

compared to the baseline model, YOLOv5. In urban settings

such as city streets, highways, and residential areas, our model

consistently outperforms YOLOv5, achieving mAP50 scores

of 0.624, 0.602, and 0.645 respectively, compared to 0.572,

0.539, and 0.608 by YOLOv5. This indicates a stronger ability

to accurately detect objects in complex urban environments

where diverse objects and movement patterns are present.

Furthermore, our model demonstrates significant

improvements in more controlled environments such as

tunnels, gas stations, and parking lots, with the most notable

increase seen in parking lots where the mAP50 score jumps

from 0.654 to 0.760. This substantial improvement suggests

that our model is particularly effective in environments with

structured spaces and stationary objects.

3077

Weather conditions also pose varying challenges; however,

our model shows enhanced performance under all weather

scenarios. For instance, in clear conditions, it achieves an

mAP50 of 0.631 compared to 0.572 by YOLOv5, and even in

more challenging foggy and snowy conditions, it scores 0.600

and 0.617, respectively, outperforming the baseline. This

enhanced capability under diverse weather conditions

highlights the model’s adaptability and reliability, crucial for

applications such as autonomous driving where weather

variability is a significant factor. Additionally, the model's

performance during different times of the day, daytime, night,

and dawn/dusk, shows consistent improvements. It scores

0.622, 0.607, and 0.621 in these conditions, respectively,

compared to 0.572, 0.554, and 0.586 by YOLOv5. This

improvement across various lighting conditions further

confirms the model’s robustness in variable lighting,

enhancing its utility in real-world applications where lighting

can change unpredictably. Overall, the enhancements in our

model have clearly contributed to its superior performance

across different scenarios, making it a more versatile and

reliable option for real-time object detection in diverse

environments and conditions.

Table 3. Performance results in various driving scenarios

Scenarios Environments
mAP50

YOLOv5 Our Model

Scenes

City street 0.572 0.624

Highway 0.539 0.602

Residential 0.608 0.645

Tunnel 0.641 0.674

Gas stations 0.638 0.653

Parking lot 0.654 0.760

Weather

Clear 0.572 0.631

Overcast 0.578 0.617

Rainy 0.607 0.632

Foggy 0.576 0.600

Snowy 0.548 0.617

Undefined 0.559 0.603

Time

Daytime 0.572 0.622

Night 0.554 0.607

Dawn/dusk 0.586 0.621

Table 4. The effect of each component

Baseline Improved SPPF Layer PGhostNetV2 in the Neck Enhanced C3 Layer mAP50(%) Params GFLOPs FPS

√ 77.2 7 M 16.4 66

√ √ 77.3 6.2 M 15.2 68

√ √ 77.7 7.2 M 16.8 59

√ √ 77.4 6.4 M 14.8 73

√ √ √ √ 77.8 5.6 M 14.3 84

4.5 Ablation study

We conduct ablation experiments to evaluate the effect of

each component proposed in this paper. Table 4 presents the

ablation results. The ablation study presented in Table 4

systematically evaluates the impact of various architectural

enhancements on the performance of our model. This

approach allows us to discern the individual and combined

contributions of each proposed component: Improved SPPF

layer, the refined neck architecture with PGhostNetV2

modules, and Enhanced C3 layers. Starting with the baseline

model, which achieves an mAP50 of 77.2%, we observe

incremental improvements as each component is introduced.

The introduction of the Improved SPPF layer slightly

increases the mAP50 to 77.3%, while simultaneously reducing

the model parameters to 6.2 million and GFLOPs to 15.2, thus

enhancing both model efficiency and slight performance. This

indicates that the Improved SPPF layer contributes to a more

computationally efficient architecture without significantly

impacting accuracy. Integrating PGhostNetV2 into the neck

results in a slight improvement in detection accuracy, with the

mAP50 increasing from 77.2% to 77.7%. This enhancement

comes with a modest increase in the number of parameters

(from 7M to 7.2M) and GFLOPs (from 16.4 to 16.8),

reflecting a trade-off between computational complexity and

accuracy. However, this integration also leads to a reduction

in FPS from 66 to 59, indicating a decrease in inference speed

due to the added computational demands.

The addition of the Enhanced C3 layer to the baseline leads

to the improvement in mAP50, reaching 77.4%, with a notable

reduction in GFLOPs to 14.8 and parameters to 6.4 million,

alongside an increase in FPS to 73. This demonstrates that the

Enhanced C3 layer significantly contributes to both the

efficiency and effectiveness of the model, optimizing feature

extraction and representation capabilities more substantially

than the other components. When all enhancements are

combined, the model achieves an mAP50 of 77.8%, which is

the highest score among the configurations. Additionally, this

full configuration yields the most significant reductions in

GFLOPs (14.3) and model parameters (5.6 million), while also

achieving the highest FPS (84). These results highlight the

synergistic effect of integrating all proposed improvements,

leading to a model that not only performs better in terms of

accuracy but is also substantially more efficient and faster.

This combination makes it particularly suited for real-time

applications where both performance and computational speed

are critical.

While our proposed lightweight object detection model

demonstrates strong performance in terms of accuracy and

efficiency, several practical deployment challenges must be

considered when implementing the model on various edge

devices. One of the most significant challenges when

deploying deep learning models on edge devices is memory

limitation. Although we have minimized the number of

parameters in the model (5.6M parameters compared to

YOLOv5s with 7M), further reductions might be necessary

depending on the edge device. For instance, devices like

microcontrollers or small embedded systems may not have

enough memory to load the entire model, especially when

handling large batches or higher-resolution inputs. Techniques

such as model quantization, where weights are reduced from

32-bit floats to 8-bit integers, can further reduce memory

usage without significant loss of accuracy. Another option is

model pruning, where unnecessary weights and neurons are

removed post-training to reduce the model size. Both

approaches can help address memory constraints during

deployment on memory-limited edge devices. Another critical

factor in edge deployment is the balance between power

3078

consumption and latency. Many edge devices, particularly

those operating in remote or resource-constrained

environments, are battery-powered and have strict

requirements for real-time performance. To address latency

concerns, edge-cloud hybrid deployment models can be used,

where more computationally intensive tasks are offloaded to

the cloud, while real-time, lightweight tasks are handled

locally on the edge device.

4.6 Visualization results

Figure 6 provides visualization results of our model in

various environmental and lighting conditions. Across

different scenarios, city streets, residential areas, gas stations,

tunnels, highways, and parking lots, the model consistently

demonstrates high accuracy in detecting vehicles, showcasing

the effectiveness of the Improved SPPF, PGhostNetV2, and

Enhanced C3 layers. In complex urban settings like city streets

and residential areas, where multiple vehicles and pedestrians

coexist, the model accurately identifies smaller and partially

occluded objects, a testament to its refined feature extraction

capabilities. In more controlled environments such as tunnels

and parking lots, where lighting and background conditions

are more uniform, the model performs exceptionally well,

highlighting its capacity to maintain high detection standards

even in less variable contexts. This is particularly notable in

parking lots during dawn or dusk, where the model

successfully delineates vehicles despite the challenging light

conditions, indicating strong performance in low-light

scenarios.

Figure 6. Visualization results of our model in different scenarios

Weather conditions, often a challenge for object detection

systems, are adeptly handled by the model. In rain, fog, and

overcast conditions, the model retains high detection accuracy.

The clarity of object detection in rainy conditions underscores

the model's resilience to visual distortions caused by water on

the lens or other reflective surfaces. Furthermore, during

night-time conditions, our model effectively utilizes available

lighting, such as street lamps and vehicle headlights, to ensure

reliable detection, which is critical for applications like

autonomous driving that require 24/7 operational capabilities.

Moreover, the distinct bounding boxes and labels visible in the

images indicate precise localization and classification of each

object, which are essential for real-time decision-making

systems in autonomous vehicles. The enhanced feature

extraction capabilities of the model, enabled by the

architectural improvements, ensure that each vehicle is

accurately tracked across different frames and conditions,

facilitating reliable and safe navigational decisions.

While our proposed lightweight object detection model

demonstrates strong performance across various datasets, like

all models, it is prone to certain failure modes. One of the most

common failure modes is related to the detection of small

objects. In scenarios where objects like pedestrians, traffic

lights, or distant vehicles occupy only a few pixels in the

image, the model sometimes struggles to accurately detect or

classify them. This issue becomes more pronounced in

cluttered scenes where multiple small objects overlap. One

potential solution is to further enhance the multi-scale feature

3079

extraction capabilities of the model. While the current use of

dilated convolutions in the Improved SPPF layer helps capture

multi-scale context, additional fine-tuning could be done to

increase the model's sensitivity to smaller objects. Occlusion

is another common failure mode where the model struggles to

detect objects that are partially obstructed. For example, in

autonomous driving scenarios, vehicles and pedestrians are

often occluded by other objects like trees, signs, or other

vehicles. In such cases, the model might miss detecting the

partially visible objects. Improving the model’s ability to

handle occlusions can be addressed by enhancing its

contextual reasoning capabilities. For instance, the inclusion

of attention mechanisms or feature pyramid networks with

enhanced context-awareness could help the model understand

the global context better and predict partially visible objects.

In low-light conditions or under adverse weather (e.g., rain,

fog), the model tends to generate false positives due to the lack

of clear object boundaries. These false positives typically

involve background elements being incorrectly classified as

objects. One solution is to use domain-specific data

augmentation, such as adding synthetic fog, rain, or low-light

conditions to the training data to improve robustness in such

scenarios.

The analysis of these failure modes highlights the model’s

strong performance in most scenarios but also points to areas

where improvements can be made. By addressing the

challenges of small object detection, occlusion handling, and

false positives in adverse conditions, the robustness of the

model can be further improved.

5. CONCLUSIONS

In this paper, we presented a series of enhancements to the

YOLOv5 architecture, specifically aimed at improving the

performance of object detection models on edge devices with

limited computational resources. Our proposed model

incorporates three key innovations: an Improved SPPF layer

to expand the receptive field while maintaining computational

efficiency, a refined neck architecture using Ghost and Partial

Convolutions (PGhostNetV2) to reduce the computational

load while preserving detailed spatial feature extraction, and

an Enhanced C3 layer that utilizes GSConv for optimized

feature representation. Through extensive experimentation on

the BDD100K and MS COCO datasets, we demonstrated that

our model achieves competitive performance in terms of

accuracy while significantly reducing inference time and

computational demands. These results highlight the potential

of our approach for real-time applications, particularly in

environments where processing power and energy efficiency

are critical, such as autonomous vehicles, surveillance systems,

and other edge computing scenarios.

An important aspect of the proposed architectural changes

is their generalizability. The enhancements introduced in this

paper, such as Ghost Convolutions, Partial Convolutions, and

the multi-scale feature extraction capability of the Improved

SPPF layer, are not limited to YOLOv5 and can be applied to

other backbone networks. For instance, these improvements

can benefit architectures such as MobileNet, EfficientDet, or

even more complex backbones like ResNet or DenseNet when

used in lightweight or real-time detection scenarios. By

integrating these modifications, other models could achieve

similar reductions in computational overhead while

maintaining or even improving detection accuracy. The

modular nature of these enhancements makes them adaptable

to a variety of network structures. Therefore, future work

could explore applying the proposed improvements to

alternative backbones, with the expectation that they would

yield similar benefits in terms of inference speed and

computational efficiency, particularly on resource-constrained

devices.

REFERENCES

[1] Boukabous, M., Azizi, M. (2023). Image and video-

based crime prediction using object detection and deep

learning. Bulletin of Electrical Engineering and

Informatics, 12(3): 1630-1638.

https://doi.org/10.11591/eei.v12i3.5157

[2] Arrahmah, A.I., Rahmania, R., Saputra, D.E. (2022).

Comparison between convolutional neural network and

K-nearest neighbours object detection for autonomous

drone. Bulletin of Electrical Engineering and Informatics,

11(4): 2303-2312.

https://doi.org/10.11591/eei.v11i4.3784

[3] Widodo, C.E., Adi, K., Priyono, P., Setiawan, A. (2023).

An evaluation of pre-trained convolutional neural

network models for the detection of COVID-19 and

pneumonia from chest X-ray imagery. Mathematical

Modelling of Engineering Problems, 10(6): 2210-2216.

https://doi.org/10.18280/mmep.100635

[4] Patil, H., Bhosale, S. (2023). Enhancing few-shot

learning for tropical cyclone severity prediction: A deep

learning approach. Mathematical Modelling of

Engineering Problems, 10(6): 2239-2248.

https://doi.org/10.18280/mmep.100639

[5] Wen, H., Song, K., Huang, L., Wang, H., Yan, Y. (2023).

Cross-modality salient object detection network with

universality and anti-interference. Knowledge-Based

Systems, 264: 110322.

https://doi.org/10.1016/j.knosys.2023.110322

[6] Yang, L., Zhang, X., Li, J., Wang, L., Zhu, M., Zhu, L.

(2023). Lite-FPN for keypoint-based monocular 3D

object detection. Knowledge-Based Systems, 271:

110517. https://doi.org/10.1016/j.knosys.2023.110517

[7] Joseph, R., Divvala, S., Girshick, R., Farhadi, A. (2016).

You only look once: Unified, real-time object detection.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA.

pp. 779-788. http://doi.org/10.1109/CVPR.2016.91

[8] Redmon, J., Farhadi, A. (2017). YOLO9000: Better,

faster, stronger. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu,

HI, USA, pp. 7263-7271.

http://doi.org/10.1109/CVPR.2017.690

[9] Redmon, J. (2018). Yolov3: An incremental

improvement. arxiv preprint arxiv:1804.02767.

https://doi.org/10.48550/arXiv.1804.02767

[10] Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M. (2020).

Yolov4: Optimal speed and accuracy of object detection.

arxiv preprint arxiv:2004.10934.

https://doi.org/10.48550/arXiv.2004.10934

[11] Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke,

Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang,

Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X. (2022).

YOLOv6: A single-stage object detection framework for

industrial applications. arxiv preprint arxiv:2209.02976.

3080

https://doi.org/10.48550/arXiv.2209.02976

[12] Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M. (2023).

YOLOv7: Trainable bag-of-freebies sets new state-of-

the-art for real-time object detectors. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Vancouver, BC, Canada, pp. 7464-

7475. https://doi.org/10.1109/CVPR52729.2023.00721

[13] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,

Fu, C.Y., Berg, A.C. (2016). SSD: Single shot multibox

detector. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, pp.

21-37. http://doi.org/10.1007/978-3-319-46448-0_2

[14] Tian, Z., Shen, C., Chen, H., He, T. (1904). FCOS: Fully

convolutional one-stage object detection. In 2019

IEEE/CVF International Conference on Computer

Vision (ICCV), Seoul, Korea (South), pp. 9626-9635.

https://doi.org/10.1109/ICCV.2019.00972

[15] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.

(2019). Centernet: Keypoint triplets for object detection.

In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea (South),

pp. 6569-6578.

https://doi.org/10.1109/ICCV.2019.00667

[16] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014).

Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

Columbus, OH, USA, pp. 580-587.

https://doi.org/10.1109/CVPR.2014.81

[17] Girshick, R. (2015). Fast R-CNN. In Proceedings of the

IEEE International Conference on Computer Vision,

Santiago, Chile, pp. 1440-1448.

https://doi.org/10.1109/ICCV.2015.169

[18] Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-

CNN: Towards real-time object detection with region

proposal networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6): 1137-1149.

http://doi.org/10.1109/TPAMI.2016.2577031

[19] Howard, A.G. (2017). MobileNets: Efficient

convolutional neural networks for mobile vision

applications. arxiv preprint arxiv:1704.04861.

https://doi.org/10.48550/arXiv.1704.04861

[20] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake

City, UT, USA, pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

[21] Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B.,

Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,

Le, Q.V., Adam, H. (2019). Searching for mobilenetv3.

In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea (South),

pp. 1314-1324.

https://doi.org/10.1109/ICCV.2019.00140

[22] Tan, M., Pang, R., Le, Q.V. (2020). Efficientdet:

Scalable and efficient object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Seattle, WA, USA, pp. 10781-

10790. https://doi.org/10.1109/CVPR42600.2020.01079

[23] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.

(2020). GhostNet: More features from cheap operations.

In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA,

USA, pp. 1580-1589.

https://doi.org/10.1109/CVPR42600.2020.00165

[24] Tang, Y., Han, K., Guo, J., Xu, C., Xu, C., Wang, Y.

(2022). GhostNetv2: Enhance cheap operation with long-

range attention. Advances in Neural Information

Processing Systems, 35: 9969-9982.

https://doi.org/10.48550/arXiv.2211.12905

[25] He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial

pyramid pooling in deep convolutional networks for

visual recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(9): 1904-1916.

https://doi.org/10.1109/TPAMI.2015.2389824

[26] Yu, F., Koltun, V., Funkhouser, T. (2017). Dilated

residual networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

Honolulu, HI, USA, pp. 472-480.

https://doi.org/10.1109/CVPR.2017.75

[27] Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., Ren, Q. (2024).

Slim-neck by GSConv: A lightweight-design for real-

time detector architectures. Journal of Real-Time Image

Processing, 21(3): 62. https://doi.org/10.1007/s11554-

024-01436-6

[28] Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,

Madhavan, V., Darrell, T. (2020). Bdd100k: A diverse

driving dataset for heterogeneous multitask learning. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Seattle, WA, USA, pp.

2636-2645.

https://doi.org/10.1109/CVPR42600.2020.00271

[29] Teichmann, M., Weber, M., Zoellner, M., Cipolla, R.,

Urtasun, R. (2018). Multinet: Real-time joint semantic

reasoning for autonomous driving. In 2018 IEEE

Intelligent Vehicles Symposium (IV), Changshu, China,

pp. 1013-1020.

https://doi.org/10.1109/IVS.2018.8500504

[30] Qian, Y., Dolan, J.M., Yang, M. (2019). DLT-Net: Joint

detection of drivable areas, lane lines, and traffic objects.

IEEE Transactions on Intelligent Transportation Systems,

21(11): 4670-4679.

https://doi.org/10.1109/TITS.2019.2943777

[31] Wu, D., Liao, M.W., Zhang, W.T., Wang, X.G., Bai, X.,

Cheng, W.Q., Liu, W.Y. (2022). Yolop: You only look

once for panoptic driving perception. Machine

Intelligence Research, 19(6): 550-562.

https://doi.org/10.1007/s11633-022-1339-y

[32] Vu, D., Ngo, B., Phan, H. (2022). HybridNets: End-to-

end perception network. arxiv preprint arxiv:2203.09035.

https://doi.org/10.48550/arXiv.2203.09035

[33] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., Dollár, P., Zitnick, C.L. (2014). Microsoft

coco: Common objects in context. In Computer Vision–

ECCV 2014: 13th European Conference, Zurich,

Switzerland, pp. 740-755. https://doi.org/10.1007/978-3-

319-10602-1_48

[34] Zheng, G., Liu, S.T., Wang, F., Li, Z.M., Sun, J. (2021).

YOLOX: Exceeding YOLO series in 2021. arXiv

preprint arXiv:2107.08430.

https://doi.org/10.48550/arXiv.2107.08430

[35] Chiu, Y.C., Tsai, C.Y., Ruan, M.D., Shen, G.Y., Lee, T.T.

(2020). Mobilenet-SSDv2: An improved object detection

model for embedded systems. In 2020 International

Conference on System Science and Engineering (ICSSE),

Kagawa, Japan, pp. 1-5.

https://doi.org/10.1109/ICSSE50014.2020.9219319

3081

