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Authors developed the Improved Proportionate Normalized Least Mean Square algorithm 

using the ℓ0 norm (IPNLMS-L0) to fully leverage the sparsity of impulse responses in echo

cancellation scenarios. This algorithm delivered satisfactory outcomes, surpassing the 

IPNLMS algorithm, especially when addressing sparse impulse responses. However, its 

utility was limited by its poor performance in non-stationary or dispersive systems and 

practical constraints associated with evaluating the exponential expression and aligning the 

parameter β with the impulse response's sparsity. In the initial phase of our research, we 

aimed to overcome these practical hurdles. To do so, we introduced an approach that 

employs a sparseness measure grounded in the ℓ1, ℓ2, and ℓ∞ norms to determine the value

of the parameter β. We also applied an approximation method based on a Maclaurin 

expansion of the exponential term. The integration of these two strategies resulted in the 

development of an efficient gain control matrix. We seamlessly integrated this matrix into 

the framework of Improved Set-Membership Fast NLMS (ISMFNLMS). This led to a 

substantial reduction in computational complexity and an enhanced ability to address non-

stationary conditions. Our proposed algorithm, named Enhanced Improved Proportionate 

Set-Membership Fast NLMS using the ℓ0 norm (EIPSMFNLMS-L0), aims to address the

challenges of acoustic echo cancellation (AEC) by adeptly handling varying degrees of 

impulse response sparsity. Simulation results validate that our algorithm, regardless of 

whether the impulse response is sparse or dispersive, exhibits improved convergence speed, 

enhanced tracking capability, and achieves lower mean square error (MSE) levels, all while 

maintaining cost-effective computational performance, outperforming all recent variants of 

the IPNLMS and ISMFNLMS algorithms. 

Keywords: 

adaptive filtering, sparse algorithms, system 

identification, acoustic echo cancellation, 

Set-Membership Fast NLMS, convergence 

speed, tracking capability  

1. INTRODUCTION

The aim of this research work is to address the challenging 

problem of AEC for different sparsity levels of acoustic 

impulse responses (AIRs) [1]. Sparse system identification is 

a prevalent issue in various practical applications [1-3]. For 

instance, in AEC the AIR often exhibits sparsity, where only a 

small percentage of components have significant magnitudes 

while the rest are close to zero. The commonly used algorithms, 

NLMS and Recursive Least Squares (RLS) do not consider the 

sparse nature of such systems. This led to the development of 

"proportionate" approaches, resulting in the PNLMS 

algorithms [2-4]. The idea behind these algorithms is to 

individually update each coefficient by adjusting the 

adaptation gain proportionally to the estimated coefficient's 

magnitude. This prioritizes coefficients with high magnitudes, 

leading to faster initial convergence and an overall improved 

convergence rate. Unfortunately, the enhanced performance of 

the PNLMS algorithms is not sustained throughout the 

adaptation process. This is because the PNLMS algorithm 

accelerates the convergence of high-magnitude coefficients at 

the expense of slowing down the convergence of low-

magnitude coefficients. Furthermore, when the Impulse 

Response (IR) is dispersive, PNLMS performs worse than the 

NLMS [3-5]. Multiple variations of the PNLMS algorithm 

have been introduced to enhance the resilience of 

proportionate algorithms across diverse system types. Among 

these alternatives, the IPNLMS algorithm [3-5] has emerged 

as a successful option. It utilizes the ℓ1 norm to leverage the

sparsity of the IR along with the combination of the NLMS 

gain and a proportionality rule in the PNLMS. The IPNLMS-

L0 algorithm, proposed in studies [6-8], replaces the ℓ1 norm

with the ℓ0 norm in the IPNLMS algorithm. This substitution

is based on the recognition of the ℓ0 norm as an effective and

intuitive mathematical measure of sparseness. The IPNLMS-

L0 algorithm introduces a new parameter β for calculating the 

ℓ0  norm and incorporates an exponential term in the gain

control matrix equation. It effectively utilizes the sparsity of 

the IR and performs well, particularly when dealing with 

sparse IR. However, it has practical limitations [4, 7]. Firstly, 

choosing an appropriate value for the parameter 𝛽 is crucial 

and depends on the sparseness of the IR. Additionally, the 

exponential term in the gain control matrix equation may pose 

challenges during real-world implementations.  

In addition, recent studies have revealed that algorithms 

with proportionate characteristics, such as the IPNLMS 
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algorithm, exhibit inadequate performance in numerous sparse 

systems or when confronted with non-stationary and 

compressible systems. Specifically, these systems refer to 

those that do not possess sufficient sparsity [9]. 

On a different note, while the RLS algorithm and its variants 

demonstrate a considerably faster convergence rate than the 

NLMS algorithm, they suffer from high computational 

complexity. To address this issue, researchers have conducted 

several experiments to achieve the fast convergence of the 

RLS algorithm while reducing its computational complexity. 

The result of these efforts is the development of the FNLMS 

algorithm [10-13]. When compared to the NLMS algorithm, 

the FNLMS algorithm exhibits a faster convergence rate and 

enhanced tracking capability.  

The FNLMS algorithm has recently integrated the Set- 

Membership (SM) approach [14-16]. This integration involves 

updating the step size based on the estimated output error, 

resulting in the development of an ISM-FNLMS algorithm. 

These enhancements lead to reduced computational update 

costs and improved tracking capability. However, the 

algorithm still requires additional consideration for sparseness 

and an upgrade to incorporate it. In a more recent 

development, a hybrid sparseness-aware algorithm called 

Improved Proportionate FNLMS (IPFNLMS) has been 

created [17]. This algorithm incorporates the gain control 

matrix of the IPNLMS algorithm into the Kalman-based 

adaptation gain of the FNLMS algorithm. In comparison to the 

IPNLMS algorithm, the IPFNLMS algorithm exhibits similar 

computational costs but demonstrates superior behavior. 

The practical limitations of the IPNLMS-L0 algorithm are 

well-known [4, 7]: the determination of the parameter 𝛽 and 

the exponential term evaluation. To address these limitations, 

the proposed EIPSMFNLMS-L0 algorithm provides a solution 

by introducing a method that incorporates sparseness measure 

based on the ℓ1  ,ℓ2 and ℓ∞norms which accurately captures 

both sparse and dispersive IRs to determine the parameter 𝛽 

and employing an efficient approximation of the exponential 

term through a Maclaurin expansion. This approach yields to 

an effective gain control matrix that not only mitigates the 

shortcomings of the IPNLMS-L0 algorithm but also works 

effectively and robustly to the variations in the sparseness of 

the IR. To further reduce the computational complexity of our 

proposed algorithm and enhance the algorithm's ability to 

track time-varying changes in the system. we take a step 

further by integrating our new gain control matrix obtained 

into the concept of ISMFNLMS. This integration involves 

incorporating the gain control matrix into the Kalman-based 

adaptation gain of the FNLMS algorithm and subsequently 

integrating the SM concept. The resulting EIPSMFNLMS-L0 

algorithm achieves a desirable balance between convergence 

speed, steady-state performance, lower MSE level and 

robustness to sparse and dispersive AIRs with low-cost 

complexity, surpassing NLMS, IPNLMS and IPNLMS-L0 

and significantly surpasses the recent ISMFNLMS and 

IPFNLMS algorithms. This study offers comprehensive 

derivations and explanations of the proposed algorithm, along 

with the results of numerical simulations. The focus is on 

comparing the performance of the proposed algorithm with 

existing algorithms in terms of convergence speed, tracking 

capability, final mean square error (MSE), and computational 

complexity. The evaluation covers scenarios involving both 

sparse and dispersive IRs, as well as stationary and non-

stationary signals and systems. 

 

2. OVERVIEW ON THE IPNLMS AND THE AEC 

  

2.1 The standard IPNLMS algorithm and AEC  

 

 
 

Figure 1. Adaptive system for AEC 

 

In this section, the IPNLMS algorithm [3] is investigated 

within the context of an adaptive system designed for AEC. 

The system configuration is illustrated in Figure 1. Where 

𝑥(𝑛)  is the far-end signal at time index  𝑛  and 𝒙(𝑛) =
[𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇  describes the L-

dimensional signal vector and 𝒉(𝑛) =
[ℎ(𝑛) ℎ(𝑛 − 1) ⋯ ℎ(𝑛 − 𝐿 + 1)]𝑇 indicates the L-

dimensional impulse response vector of the unknown time-

varying system to be identified. Certainly, as noise is 

unavoidable in the acoustic environment, noise processing 

must be considered thus the additive noise 𝑏(𝑛) is introduced 

to the output of the unknown system, and the noisy desired 

signal 𝑑(𝑛) could be expressed as follows: 

 

𝑑(𝑛) = 𝒉𝑇(𝑛)𝒙(𝑛) + 𝑏(𝑛) (1) 

 

The scalar quantity 𝑦(𝑛) = 𝒉𝑇(𝑛)𝒙(𝑛) is the echo signal, 

where the unknown system 𝒉(𝑛) is assumed as a finite 

impulse response (FIR) model of size L. The adaptive filter is 

noted by the estimated vector �̂�(𝑛). 
The a priori error signal  𝑒(𝑛), the estimated echo signal 

�̂�(𝑛),  and the coefficient update equation of the IPNLMS 

algorithm are defined as: 

 

𝑒(𝑛) = 𝑑(𝑛) − �̂�(𝑛) (2) 
 

�̂�(𝑛) =  �̂�𝑇(𝑛 − 1) 𝒙(𝑛) (3) 

 

 �̂�(𝑛) =  �̂�(𝑛 − 1) + 𝜇
𝑸(𝑛 − 1)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝑸(𝑛 − 1)𝒙(𝑛) + 𝛿𝐼𝑝
 (4) 

 

With  

 

𝑸(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} (5) 

 

The gain diagonal control matrix, denoted as 𝑸(𝑛 − 1) , 

plays a crucial role in the adaptive filter by adjusting the step 

size of each coefficient. The 𝜇 parameter designates a fixed 

step-size. 

The calculation of the diagonal elements of 𝑸(𝑛 − 1) , 

follows the procedure outlined in: 
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𝑞𝑙(𝑛 − 1) =
(1 − 𝜌)

2𝐿
+
(1 + 𝜌)|ℎ̂𝑙(𝑛 − 1)|

2‖ �̂�(𝑛 − 1)‖
1
+ 𝛿

,

0 ≤ 𝑙 ≤ 𝐿 − 1 

(6) 

 

where, ‖. ‖1 is the ℓ1 norm, 𝛿 is a small positive number used 

to avoid division by zero [1, 3] and 𝜌 is the control factor that 

controls the degree of proportionality in IPNLMS, i.e., the 

behavior of IPNLMS is altered between NLMS and PNLMS 

according to the value of  𝜌, that is when 𝜌 = −1 IPNLMS 

performs similarly to NLMS and similarly to PNLMS when 𝜌 

is close to 1. The best choices for this parameter are: 0, 0.5 and 

-0.5 [1, 3, 5]. The regularization parameter for the IPNLMS 

algorithm is: 

 

𝛿𝐼𝑃 =
(1 − 𝜌)

2𝐿
𝛿𝑁𝐿𝑀𝑆 (7) 

 

2.2 The IPNLMS algorithm built on the 𝓵𝟎 norm 

 

The IPNLMS algorithm described in the previous section 

uses the ℓ1  norm to exploit the sparseness of the IR for 

identification problem [3-5]. However, it is worth noting that 

the ℓ0  norm is considered a more suitable mathematical 

measure of sparseness, as it provides a better reflection of 

sparseness according to study [6]. Taking the vector 𝒛  of 

length 𝐿, 𝑧 = [𝑧0, 𝑧1, . . , 𝑧𝐿−1]
𝑇 ≠ 0, the related function of the 

ℓ0 norm is: 

 

𝑓(𝑧) = {
    1,           𝑧 ≠ 0    
0,          𝑧 = 0

 (8) 

 

The ℓ0 norm of the vector 𝑧 is expressed as follows: 

 

‖𝑧‖0 =∑𝑓(𝑧𝑙) 

𝐿−1

𝑙=0

 (9) 

 

Due to the presence of elements in vector 𝑧 that may be very 

small but not precisely zero, the function 𝑓(𝑧)  is not 

continuous [6-8]. To address this, it is advantageous to 

approximate the function 𝑓(𝑧) with a smooth and continuous 

function, which is a commonly employed approximation [6]. 

 

‖𝑧‖0 ≈∑(1 − 𝑒−𝛽|𝑧𝑙|
𝐿−1

𝑙=0

) (10) 

 

The elements of the gain control matrix have been 

computed using this norm in studies [4, 7], where β is a 

positive value. The calculation is performed as follows: 

 

𝑞𝑙(𝑛 − 1) = 

(1 − 𝜌)

2𝐿
+

(1 + 𝜌)(1 − 𝑒−𝛽|ℎ̂𝑙(𝑛−1)|)

2∑ [1 − 𝑒−𝛽|ℎ̂𝑖(𝑛−1)|]𝐿−1
𝑖=0 + 𝛿𝐼𝑃

, 

0 ≤ 𝑙 ≤ 𝐿 − 1 

(11) 

 

where,  

 

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

∑ 𝑘𝑖(𝑛 − 1)
𝐿−1
𝑖=0

, 0 ≤ 𝑙 ≤ 𝐿 − 1 (12) 

 

The proportionality function 𝜅𝑙(𝑛 − 1) is evaluated using 

the following expression: 

𝜅𝑙(𝑛 − 1) = 

(1 − 𝜌)
‖ �̂�(𝑛 − 1)‖

0

𝐿
+ (1 + 𝜌)(1 − 𝑒−𝛽|ℎ̂𝑙(𝑛−1)|), 

0 ≤ 𝑙 ≤ 𝐿 − 1 

(13) 

 

 

3. THE FNLMS VARIANTS 
 

3.1 The standard FNLMS algorithm 

 

The FNLMS algorithm, a novel algorithm obtained by 

simplifying the Fast RLS algorithm, is introduced. This 

algorithm demonstrates rapid convergence and offers low 

computational complexity. The adaptation gain for the 

FNLMS algorithm is given in studies [12, 13] as: 

 

𝒈(𝑛) = 𝛾(𝑛)�̃�(𝑛) (14)  
 

where, the likelihood variable is 𝛾(𝑛), and the dual Kalman 

gain is �̃�(𝑛). By completely disregarding the backward and 

forward predictors and solely utilizing the forward prediction 

error of the input signal, the evaluation of the dual Kalman 

gain is conducted. This evaluation process is described in 

studies [11-13] as follows: 

 

[
�̃�(𝑛)

𝑐(𝑛)
] = [

−
𝜀(𝑛)

𝜆 𝛼(𝑛 − 1) + 𝐶0
�̃�(𝑛 − 1)

] (15) 

 

A small positive constant,  𝐶0 , is employed to prevent 

division by extremely small values or zero, especially in cases 

where the input signal remains absent for a prolonged period. 

The forgetting factor, 𝜆, falls within the range of 0 to 1, while 

𝛼(𝑛) represents the variance of the forward prediction error. 

 

𝛼(𝑛) = 𝜆𝛼(𝑛 − 1) + 𝜀2(𝑛) (16) 

 

The prediction error 𝜀(𝑛)  in Eq. (15) and Eq. (16) is 

computed by a first-order prediction model. 

 

𝜀(𝑛) =  𝑥(𝑛) − 𝑎(𝑛)𝑥(𝑛 − 1) (17) 

 

In scenarios where the input statistics are often unknown or 

subject to variations over time, the prediction parameter 𝑎(𝑛) 
needs to be determined based on the input signal. To estimate 

𝑎(𝑛), the following equation is employed: 

 

𝑎(𝑛) =
𝑟1(𝑛)

𝑟0(𝑛) + 𝐶𝑎
 (18) 

 

To prevent division by values that are very close to zero, 𝐶𝑎 

is introduced as a small positive constant. The estimate of the 

first lag correlation function of 𝑥(𝑛) is denoted as 𝑟1(𝑛), while 

𝑟0(𝑛) represents the estimate of the power of the input signal. 

Recursive formulas are used to estimate these two functions, 

and they are given by: 

 

𝑟1(𝑛) = 𝜆𝑎𝑟1(𝑛 − 1) + 𝑥(𝑛)𝑥(𝑛 − 1) (19) 

 

𝑟0(𝑛) = 𝜆𝑎𝑟0(𝑛 − 1) + 𝑥
2(𝑛) (20) 

 

where, 𝜆𝑎 is an exponential forgetting factor. The likelihood 

variable 𝛾(𝑛) is recursively defined as [13]. 

2329



 

 

𝛾(𝑛) =
𝛾(𝑛 − 1)

1 + 𝛾(𝑛 − 1)𝜊(𝑛)
 (21) 

 

where, 

 

𝜊(𝑛) = 𝑐(𝑛)𝑥(𝑛 − 𝐿) +
𝑥(𝑛)𝜀(𝑛)

𝜆. 𝛼(𝑛 − 1) + 𝐶0
 (22) 

 

In order to have better control over the adaptation gain of 

the filtering component, a fixed step-size 𝜇  has been 

incorporated. The update equation for this algorithm is defined 

as: 

 

 �̂�(𝑛) =  �̂�(𝑛 − 1) − 𝜇 𝒈(𝑛)𝑒(𝑛)    (23) 

 

3.2 The ISMFNLMS algorithm 

 

The SM adaptive filtering presents a new algorithm known 

as SM-NLMS. Its update equation is similar to that of the 

NLMS algorithm, but with an "optimal" adaptive step size. 

This means that the step size assumes a value of zero when the 

optimization problem described below has been verified, 

indicating that there is no need for further updates [14-16]. 

This SM concept was expanded to include the FNLMS 

algorithm. This extension involved replacing the a priori error 

with its estimates, which resulted in the development of the 

ISM-FNLMS algorithm, as described in the study [16]. The 

objective of this algorithm is to minimize the optimization 

problem represented by‖ �̂�(𝑛) −  �̂�(𝑛 − 1)‖
2
, while adhering 

to the constraint that the estimated impulse response vector 

�̂�(𝑛) belongs to the set 𝓗(𝑛) which is a set comprising all 

vectors �̂�(𝑛) for which the error is within by a certain upper 

bound 𝜔 . In simpler terms, 𝓗(𝑛)  encompasses the vectors 

whose estimation error is limited by 𝜔. This set can be defined 

as [14-16]: 

 

ℋ(𝑛) = { �̂� ∈ ℝ𝐿+1: |𝑑(𝑛) −  �̂�(𝑛 − 1)𝒙(𝑛)| ≤ 𝜔} (24) 

 

The achievement of the constraint involves orthogonal 

projection of the previous estimate �̂�(𝑛 − 1) onto the closest 

boundary of the set 𝓗(n) . As a result, the ISM-FNLMS 

algorithm has an updated equation given as follows [14]: 

 

 �̂�(𝑛) =  �̂�(𝑛 − 1) − 𝜇(𝑛)𝒈(𝑛)𝑒(𝑛) (25) 

 

The step-size 𝜇(𝑛) in Eq. (25) is defined as follows: 

 

𝜇(𝑛) = {
1 −

𝜔

𝜎𝑒(𝑛)
             𝑖𝑓 |𝑒(𝑛)| > 𝜔

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

Here, 𝜔 represents the given bound, and 𝜎𝑒(𝑛)  is an 

estimation of the modulus of the error signal. Initially, 𝜎𝑒(𝑛) 
is set to a value close to the input signal power 𝜎𝑥 . The 

parameter 𝜁  is a forgetting factor, and Eq. (27) defines the 

update rule for 𝜎𝑒(𝑛) [16]: 

 

𝜎𝑒(𝑛) = 𝜁𝜎𝑒(𝑛 − 1) + (1 − 𝜁)|𝑒(𝑛)| (27) 

 

 

4. THE PROPOSED ALGORITHM 

 

4.1 Sparseness measure using the 𝓵𝟏, 𝓵𝟐 and 𝓵∞ norms 

 

Quantifying an estimate of sparseness by considering the ℓ1 

and ℓ2  norms, which specifically characterize the sparse 

impulse response, can be expressed according to reference [5] 

using the following expression: 

 

𝜉12(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
1

√𝐿‖ �̂�(𝑛 − 1)‖
2

} (28) 

 

In study [4], an additional measure of sparseness is 

introduced, which is based on the  ℓ2  and ℓ∞  norms. This 

measure is designed to reflect dispersive impulse responses. 

However, since the true impulse response is unknown during 

the adaptation process, an estimated weight vector �̂�(𝑛 − 1) 
is utilized to obtain an estimated version of this measure. The 

estimated sparseness measure, denoted as 𝜉2∞(𝑛) , can be 

calculated using the following equation: 

 

𝜉2∞(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
2

√𝐿‖ �̂�(𝑛 − 1)‖
∞

} (29) 

 

where, the ‖. ‖2  and the ‖. ‖∞  are the ℓ2  and ℓ∞  norms 

respectively. An adequate sparseness measure of both sparse 

and dispersive IRs may be generated by combining these two 

measures; an example of this combination is given [4] as: 

 

𝜉12∞(𝑛) =
𝜉12(𝑛) + 𝜉2∞(𝑛)

2
 (30) 

 

This combination allows for a balanced assessment of 

sparsity, considering the characteristics captured by both the 

𝜉12(𝑛) and the 𝜉2∞(𝑛) measures. 

 

4.2 Derivation of the proposed algorithm 

 

Two specific practical issues in the IPNLMS-L0 algorithm 

must be addressed: 

(1) Parameter β selection: the algorithm's performance 

heavily relies on the parameter β [7], making its selection 

crucial. Determining the optimal β value requires considering 

multiple factors which can be found in study [6]. A dispersive 

impulse response necessitates a larger β value, while a sparse 

impulse response requires a smaller β value. Therefore, it is 

essential to develop a feasible method for selecting this 

parameter. 

(2) Exponential term evaluation: implementing the 

exponential element in Eq. (11) poses challenges in real-world 

applications. To address this, an efficient approximation is 

required. 

 

In this section, we present a novel approach to compute the 

gain control matrix elements that address the aforementioned 

issues. The main concern, as stated in point (1), is how to 

determine the value of β based on the sparseness of the impulse 

response. To address this, we propose incorporating the 

system sparseness measure 𝜉12∞(𝑛)  which effectively 

represents both sparse and dispersive impulse responses, into 

the calculation of the parameter β. This association allows for 

a degree of sparseness to be linked with the optimal value of 
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β. It is crucial to note that a low value of β is required when 

𝜉12∞(𝑛)  is large, indicating a sparse impulse response. 

Conversely, when 𝜉12∞(𝑛) is low, a larger value of β is needed 

for a dispersive impulse response. In both cases of sparseness, 

an exponential function is preferred to achieve the desired 

value of β. However, it is worth mentioning that a linear 

function yields similar effects. Hence, we have chosen the 

following expression: 

 

𝛽(𝑛) =
1

𝐿
(1 − 𝜓 𝜉12∞(𝑛)) (31) 

 

A suitable choice for 𝜓 is 0.25. Notably, when 𝑛 = 0, both 

ℓ2  and ℓ∞  norms in 𝜉12∞(𝑛) are zero. To avoid division by 

zero, 𝜉12∞(𝑛) can be calculated and incorporated into Eq. (31) 

for 𝑛 ≥ 𝐿  [5]. For 𝑛 < 𝐿 , we set 𝛽(𝑛) = 0.5, which yields 

satisfactory results for both sparse and dispersive impulse 

responses. 

Regarding point (2), an effective solution involves utilizing 

the first-order Maclaurin series expansion of the exponential 

function. We propose the following approximation: 

 

  𝑒−𝛽(𝑛)|ℎ̂𝑙(𝑛−1)|

≈ {
1 − 𝛽(𝑛)|ℎ̂𝑙(𝑛 − 1)|            𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤

1

𝛽(𝑛)
      , 0 ≤ 𝑙 ≤ 𝐿 − 1  

0                                                             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 
(32) 

 

The approximation presented in Eq. (33) limits the values 

of the estimated coefficient by utilizing the fact that the 

exponential function is always greater than zero. As an 

alternative to Eq. (10), the ℓ0 -norm of the estimated 

coefficient can be expressed as follows: 

 

‖�̂�(𝑛 − 1)‖
0

≈ {
∑

𝛽(𝑛)|ℎ̂𝑙(𝑛 − 1)|             𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤
1

𝛽(𝑛)
, 0 ≤ 𝑙 ≤ 𝐿 − 1              

𝐿−1

𝑙=0

𝐿                                                             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(33) 

 

In accordance with the principles of both IPNLMS and 

IPNLMS-L0 algorithms [3, 7], along with the utilization of the 

new method for selecting 𝛽(𝑛)  and the ℓ0 -norm 

approximation outlined in (33), the proportionality function 

𝜅𝑙(𝑛 − 1) can be expressed as: 

 

𝜅𝑙(𝑛 − 1)

=

{
 
 

 
 (1 − 𝜌)

‖ �̂�(𝑛 − 1)‖
0

𝐿
+ (1 + 𝜌)𝛽(𝑛)|ℎ̂𝑙(𝑛 − 1)|

𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤
1

𝛽(𝑛)
  ,           0 ≤ 𝑙 ≤ 𝐿 − 1

2                                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(34) 

 

Calculating the ℓ1  norm of the proportionality vector 𝐤 , 

yields: 

 
‖𝒌(𝑛 − 1)‖1

= {
2‖ �̂�(𝑛 − 1)‖

0
             𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤

1

𝛽(𝑛)
 

, 0 ≤ 𝑙 ≤ 𝐿 − 1  
2𝐿                                                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
(35) 

The gain control matrix elements can be computed using the 

new approach by substituting Eq. (34) and Eq. (35) into Eq. 

(12). The computation of matrix elements is found as follows: 

 

𝑞𝑙(𝑛 − 1)

=

{
  
 

  
 
(1 − 𝜌)

2𝐿
+

(1 + 𝜌)𝛽(𝑛)|ℎ̂𝑙(𝑛 − 1)|

2𝛽(𝑛) ∑ |ℎ̂𝑙(𝑛 − 1)|
𝐿−1
𝑙=0 + 𝛿𝐼𝑃

           

 𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤
1

𝛽(𝑛)
                 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

1

𝐿
                                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 
(36) 

 

In the context of changing acoustic environments, the 

tracking capabilities of IPNLMS-type algorithms have shown 

limited improvements. Moreover, these algorithms may 

experience significant performance degradation when dealing 

with systems that lack sufficient sparseness [9]. Enhancing 

robustness in such scenarios typically requires additional 

computational costs. Consequently, there is a demand for a 

sparseness-aware algorithm that is both low-cost and robust. 

Inspired by the ISM-FNLMS algorithm described in 

subsection (3.2), which combines the advantages of the SM 

concept and the FNLMS algorithm, and exhibits strong 

tracking capabilities in time-varying environments while 

reducing computational complexity, we propose a solution. 

Our approach involves two key steps: 

First, we incorporate the previously described novel gain 

control matrix 𝑸(𝑛 − 1) with elements given by Eq. (36), into 

the Kalman-based adaptation gain of the FNLMS algorithm, 

similar to the approach used in the IPFNLMS algorithm [17]. 

Next, we introduce the SM concept into the proposed 

algorithm, akin to the method employed in study [16]. By 

doing so, we develop the EIPSMFNLMS-L0 algorithm using 

the ℓ0-norm. 

These enhancements are achieved through the following 

two phases: 

(1) Phase 01: The insertion and integration of the 

Kalman-based adaptation gain. 

In the steady state, when considering a stationary input, the 

adaptation gain for the FNLMS algorithm can be 

approximated to be comparable to the adaptation gain of the 

NLMS algorithm [10-13]. It can be expressed as follows: 

 

𝒈(𝑛) ≈ −
𝒙(𝑛)

𝑉𝜎𝑥
2
 →  𝒙(𝑛) ≈ −𝑉𝜎𝑥

2𝒈(𝑛) (37) 

 

where,  

 

𝑉 = 𝐿 (1 + 
𝜆

(1 − 𝜆)𝐿
+
𝐶0
𝐿𝜎𝑥

2
) (38) 

 

where, 𝜎𝑥
2 is the power of the input signal. The influence of the 

input signal power in the adaptation gain can be reduced by 

choosing [(𝐶0/𝐿𝜎𝑥
2) ≪ 1] . In Eq. (4), by substituting 𝒙(𝑛) 

with −𝑉𝜎𝑥
2𝒈(𝑛) we obtain the following expression [17]: 

 

�̂�(𝑛) =  �̂�(𝑛 − 1) 

      −
𝜇

(𝑉𝜎𝑥
2)

𝑸(𝑛 − 1)𝒈(𝑛)𝑒(𝑛)

𝒈𝑇(𝑛)𝑸(𝑛 − 1)𝒈(𝑛) +
𝛿𝐼𝑝

(𝑉𝜎𝑥
2)2

 (39) 

 

By utilizing the adaptation step-size derived from the 

approximate mean-square analysis for the NLMS algorithm, 
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specifically, 0 < 𝜇 < 2 [18], we ensure the suitability of the 

step-size in Eq. (39). If 𝜎𝑥
2 ≥ 1/𝐿, then 𝑉𝜎𝑥

2 ≥ 1, since 𝑉 > 𝐿 

[17, 19, 20]. In such cases, the inequality 0 < (𝜇/𝑉𝜎𝑥
2) < 2 

always holds true for 0 < 𝜇 < 2. Consequently, the step size 

in Eq. (39) is substituted with 0 < 𝜇 < 2, yielding an update 

equation form comparable to IPNMLS-type algorithms. Eq. 

(39) demonstrates the dependency of the regularization 

parameter on 𝜎𝑥
2. As a result, the regularization parameter of 

the proposed algorithm is simplified and specified as follows: 

 

𝛿𝐼𝑃𝐹𝐿 =
(1 − 𝜌)

2𝐿
𝐶0 (40) 

 

With 𝐶0  is the regularization parameter of the FNLMS 

algorithm. 

(2) Phase 02: The derivation of the set-membership 

version. 

The proposed algorithm, just like the ISMFNLMS 

algorithm, may have its step-size determined by resolving the 

optimization problem stated in subsection (3.2), in which the 

a-posteriori error 𝑒𝑝(𝑛) used to form the constraint set 𝓗(𝑛) 

ought to be equal to 𝜔 [15], as follows: 

 

𝑒𝑝(𝑛) = 𝑑(𝑛) − �̂�
𝑇(𝑛)𝒙(𝑛) = 𝜔 (41) 

 

The a-posteriori error can be rewritten as follows: 

 

𝑒𝑝(𝑛) = 𝑑(𝑛) − ( �̂�(𝑛 − 1) 

−𝜇(𝑛)
𝑸(𝑛 − 1)𝒈(𝑛)𝑒(𝑛)

𝒈𝑇(𝑛)𝑸(𝑛 − 1)𝒈(𝑛) + 𝛿𝐼𝑃𝐹𝐿
)𝒙(𝑛) 

 

(42) 

 

Using approximation Eq. (37), and under the assumption 

that the constant 𝛿𝐼𝑃𝐹𝐿 is small, the above equation becomes: 

 

𝑒𝑝(𝑛) = 𝑒(𝑛) − 𝜇(𝑛)𝑒(𝑛)𝑉𝜎𝑥
2    (43) 

 

Considering that 𝑉𝜎𝑥
2 ≥ 1, we can conclude that: 

 

𝑒(𝑛)[1 − 𝜇(𝑛)] ≈ 𝜔   (44) 

 

Given that estimations are used to replace the magnitude of 

the error [16], the proposed algorithm adapts the step size 𝜇(𝑛) 

according to Eq. (26). Consequently, the update equation for 

the developed algorithm is expressed as follows: 

 

�̂�(𝑛)

=  �̂�(𝑛 − 1) − 𝜇(𝑛)
𝑸(𝑛 − 1)𝒈(𝑛)𝑒(𝑛)

𝒈𝑇(𝑛)𝑸(𝑛 − 1)𝒈(𝑛) + 𝛿𝐼𝑃𝐹𝐿
 

(45) 

 

The pseudo-code for the proposed algorithm is outlined in 

Table 1. 

 

Table 1. Pseudo-code for the EIPSMFNLMS-L0 algorithm 

 

Initialization 

𝜌 = −0.5 , 𝜆𝑎 ≈  𝜁  ,   𝜆 = 1 −
1

𝐿
, 𝛾(0) = 1, 𝑟1(0) = 0, 

𝛼(0) = 𝑟0(0) = 𝐸0 = 1,𝜓 = 0.25, 𝛿𝐼𝑃𝐹𝐿 =
(1−𝜌)

2𝐿
𝐶0, 

𝜔 = 0.0025,  ℎ̂(0) = �̃�(0) = 0𝐿×1; 

𝐅𝐨𝐫 𝑛 = 1, 2,… (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 
𝒙(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

Forward Prediction Update 

𝑟1(𝑛) = 𝜆𝑎𝑟1(𝑛 − 1) + 𝑥(𝑛)𝑥(𝑛 − 1) 
𝑟0(𝑛) = 𝜆𝑎𝑟0(𝑛 − 1) + 𝑥

2(𝑛) 

𝑎(𝑛) =
𝑟1(𝑛)

𝑟0(𝑛)+𝐶𝑎
; 𝜀(𝑛) =  𝑥(𝑛) − 𝑎(𝑛)𝑥(𝑛 − 1) 

𝛼(𝑛) = 𝜆𝛼(𝑛 − 1) + 𝜀2(𝑛) 
Update Gain control matrix 

If 𝑛 ≥ 𝐿 

𝜉12(𝑛) =
𝐿

𝐿−√𝐿
{1 −

‖ �̂�(𝑛−1)‖
1

√𝐿‖ �̂�(𝑛−1)‖
2

},𝜉2∞(𝑛) =
𝐿

𝐿−√𝐿
{1 −

‖ �̂�(𝑛−1)‖
2

√𝐿‖ �̂�(𝑛−1)‖
∞

}, 

𝜉12∞(𝑛) =
�̂�12(𝑛)+�̂�2∞(𝑛)

2
, 𝛽(𝑛) =

1

𝐿
(1 − 𝜓 𝜉12∞(𝑛)) 

Else if 

 𝛽(𝑛) = 0.5 

End if 

𝑞𝑙(𝑛 − 1) =

{
  
 

  
 
(1 − 𝜌)

2𝐿
+

(1 + 𝜌)𝛽(𝑛)|ℎ̂𝑙(𝑛 − 1)|

2𝛽(𝑛)∑ |ℎ̂𝑙(𝑛 − 1)|
𝐿−1
𝑙=0 + 𝛿𝐼𝑃

           

 𝑖𝑓|ℎ̂𝑙(𝑛 − 1)| ≤
1

𝛽(𝑛)
                 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

1

𝐿
                                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

 

𝑸(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 
Adaptation Gain (FNLMS-like) 

[
�̃�(𝑛)

𝑐(𝑛)
] = [

−
𝜀(𝑛)

𝜆𝛼(𝑛−1)+𝐶0

�̃�(𝑛 − 1)
],𝜊(𝑛) = 𝑐(𝑛)𝑥(𝑛 − 𝐿) +

𝑥(𝑛)𝜀(𝑛)

𝜆.𝛼(𝑛−1)+𝐶0
, 

𝛾(𝑛) =
𝛾(𝑛−1)

1+𝛾(𝑛−1)𝜊(𝑛)
,𝑔(𝑛) = 𝛾(𝑛)�̃�(𝑛) 

 

Filtering Part 

𝑒(𝑛) = 𝑦(𝑛) −  �̂�𝑇(𝑛 − 1)𝒙(𝑛) 
Set-Membership part 

𝜎𝑒(𝑛) = 𝜁𝜎𝑒(𝑛 − 1) + (1 − 𝜁)|𝑒(𝑛)| 

𝜇(𝑛) = {
1 −

𝜔

𝜎𝑒(𝑛)
             𝑖𝑓 |𝑒(𝑛)| > 𝜔

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 �̂�(𝑛) =  �̂�(𝑛 − 1) − 𝜇(𝑛)
𝑸(𝑛 − 1)𝒈(𝑛)𝑒(𝑛)

𝒈𝑇(𝑛)𝑸(𝑛 − 1)𝒈(𝑛) + 𝛿𝐼𝑃𝐹𝐿
 

𝐄𝐧𝐝 for 

 

4.3 Computational complexities 

 

Table 2 provides an evaluation of the relative complexity of 

NLMS, ISMFNLMS, IPNLMS, IPNLMS-L0, IPFNLMS, and 

EIPSMFNLMS-L0 algorithms in terms of the total number of 

multiplications (×) per iteration and the corresponding values 

of the steady-state MSE. 

 

Table 2. Computational complexities 
 

Algorithm Multiplication Steady-State MSE (dB) 

 Sparse Dispersive Sparse Dispersive 

NLMS 2L -48.32 -39.27 

ISMFNLMS L+0.17L L+0.26L -50 -39.37 

IPNLMS 5L -48.60 -39.01 

IPNLMS-L0 5L -48.53 -39.22 

IPFNLMS 6L -48.77 -39.40 

EIPSMFNLMS-L0 4L+0.75L 4L+0.93L -50 -39.21 
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The proposed algorithm exhibits a computational 

complexity of approximately 7L when the SM concept is not 

employed. This breakdown consists of 2L for the update 

control matrix, L for the FNLMS gain, L for the error 

component, and 3L for the filtering part. However, by 

incorporating the SM concept, the computational complexity 

is significantly reduced. This reduction is achieved by setting 

the step-size to zero once the optimization problem within the 

SM is verified, eliminating the need for additional updates. 

In the case of the ISM-FNLMS algorithm, the 

computational complexity is determined by L multiplications 

for the filter error, with an additional percentage of L for the 

adaptation part. For the EIPSMFNLMS-L0 algorithm, the 

complexity is 4L plus a percentage of 3L. This percentage is 

obtained by dividing the number of times the adaptive filter is 

updated by the total number of iterations.  

The nature of the system being identified (sparse or 

dispersive) has a notable impact on the computational 

complexity's performance. Furthermore, as mentioned in study 

[16], the magnitude of the error-bound threshold, which is 

influenced by noise levels, affects the computational 

complexity. In this paper, the error-bound threshold remains 

constant at 0.0025 for signal 𝑦(𝑛) to noise 𝑏(𝑛) ratio (SNR) 

equals to 50dB, allowing us to focus solely on the impact of 

system sparseness. 

The proposed algorithm achieves a significant reduction in 

computational complexity compared to previous algorithms. 

This decrease in complexity does not only preserves 

performance but also enhances it. It is worth noting that the 

proposed algorithm effectively eliminates the exponential 

computational complexity associated with the IPNLMS-L0 

algorithm. 
 

 

5. SIMULATION RESULTS 
 

Our study involved a comprehensive performance 

evaluation of the proposed EIPFSMNLMS-L0 algorithm in 

comparison to several other algorithms, including 

ISMFNLMS, IPNLMS, IPNLMS-L0, IPFNLMS, and 

classical NLMS algorithms.  
 

5.1 Experimental setup 
 

The schematic diagram in Figure 1 was employed to 

investigate an AEC application. We conducted simulations 

under various operating conditions. These conditions 

encompassed the use of two distinct correlated stationary input 

signals, namely USA Standards Institute (USASI) depicted in 

Figure 2 (a) which is a zero-mean correlated noise, featuring a 

spectral dynamic range of 29dB, and auto-regressive (AR20) 

which is a simulated by AR stationary process of order 20 with 

a spectral dynamic range of 42dB shown in Figure 2 (b), as 

well as a speech input signal, displayed in Figure 2 (c), is a real 

non-stationary signal characterized by a spectral dynamic 

range of 46dB. All signals used in this simulation are sampled 

at a rate of 16 kHz. 

Additionally, we considered different impulse responses 

with different levels of sparseness which were synthetically 

generated using the method described in previous studies [5, 

17] to generate output signal given in Figures 3-5. These 

synthetic IRs are subsequently named SIRs. 

 

5.1.1 Time-varying SIRs generation 

The time-varying scenarios were generated by multiplying 

the SIRs by an artificial gain depicted in Figure 6. This gain 

variation was applied between 60000 and 80000 samples for 

USASI noise and in the interval 90000 to 110000 samples for 

the AR20 input noise. It is important to note that the artificial 

gain was only applied to the SIRs corresponding to stationary 

input signals. 

 

5.1.2 Generation of desired output signals 

The time-varying SIRs were convolved with the three input 

signals. We used three sets of two pairs and one triad of SIRs, 

each set of equal length consisting of sparse and dispersive 

SIRs. The first pair, shown in Figures 3 (a) and 3 (b), was used 

in conjunction with the USASI input signal and length L=256. 

The second pair, shown in Figures 4 (c) and 4 (d), with a length 

of L=512, was used with the AR (20) input signal. Finally, the 

third triplet, shown in Figures 5 (e), 5 (f) and 5 (g), with a 

length of L=1024, was used with the speech input signal. To 

include the noise component to the desired signal 𝑑(𝑛), , we,

added,a,white,Gaussian,noise,𝑏(𝑛) with an SNR of 50 dB or 

30 dB to,the,echo,signal,𝑦(𝑛). 
 

 

 
 

Figure 2. The used input signals 

 

 
 

Figure 3. Two types of SIRs with 𝐿=256: (a) 𝜉12(𝑛) =

0.8296, (b) 𝜉12(𝑛) = 0.3028 

 

5.2 Performance metric 

 

The Mean-Square Error value (MSE) is the performance 

metric employed in all our simulations. The MSE is expressed 

in decibels (dB) and is calculated as follows: 
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𝑀𝑆𝐸(𝑑𝐵) =  10 𝑙𝑜𝑔10(< 𝑒2(𝑛) >) (46) 

 

where, < . >  indicates time averages over blocks of 1024 

samples for USASI noise and SPEECH signals, and 2048 

samples for AR (20). 

 

 
 

Figure 4. Two types of SIRs with 𝐿=512: (c) 𝜉12(𝑛) =

0.8637, (d) 𝜉12(𝑛) = 0.4080 

 

 
 

Figure 5. Three types of SIRs with 𝐿=1024: (e) 𝜉12(𝑛) =

0.8789, (f) 𝜉12(𝑛) = 0.6506, (g) 𝜉12(𝑛) = 0.4552 

 

 
 

Figure 6. Artificial gain for tracking capability tests 

 

5.3 Selection of simulation parameters  

 

Regarding the algorithm parameters, we selected a common 

step-size of 𝜇 = 0.5 for all algorithms to achieve a roughly 

consistent steady-state MSE value. The remaining parameters 

were chosen to provide good performance with a trade-off 

between convergence, tracking ability, and the minimum 

steady-state MSE value.  

For the ISMFNLMS, IPFNLMS, and EIPSMFNLMS-L0 

algorithms, two forgetting factors were employed. The first 

one 𝜆𝑎 is used to track changes in the statistics of the input 

signal [9-13] and it is evaluated over a rectangular window of 

35ms (equivalent to a 560-sample window) 𝜆𝑎 ≈  𝜁 ≈ 1 −
1/560 = 0.9982 . The second forgetting factor λ captures 

variations in the unknown system and is determined by 𝜆 =
1 − 1/𝐿 . We considered three different lengths of impulse 

response (𝐿=256, 512 and 1024).  

The regularization constants 𝐶0 and 𝐶𝑎 were initially set to 

values comparable to the input signal power and were 

subsequently modified to achieve equivalent steady-state MSE 

levels for ISMFNLMS, IPFNLMS, and EIPSMFNLMS-L0 

algorithms. The constant 𝐸0  is utilized during initialization 

and set to 𝐸0 = 1. The initial value of 𝜎𝑒(0), is set to 𝜎𝑥/100 

at an SNR of 50dB or 𝜎𝑥/10 when the SNR is 30dB. 

The calculation of regularization parameters differs among 

the algorithms. The IPFNLMS and EIPSMFNLMS-L0 

algorithms utilize Eq. (40), whereas the NLMS algorithm uses 

𝛿𝑁𝐿𝑀𝑆 ≈ 𝜎𝑥
2 . In the case of the IPNLMS-L0 algorithm, the 

value of 𝛽 is adjusted based on the type of input signal 0.5 for 

stationary inputs, 50 for sparse IRs and 500 for dispersive IRs 

with a speech input signal. For IPNLMS-L0, a specific value 

of 𝜌 = 0.5  is assigned. On the other hand, for IPNLMS, 

IPFNLMS, and EIPNLMS-L0, 𝜌 is consistently set to -0.5.  

Table 3 summarizes the length of the SIRs utilized for each 

input signal and the associated forgetting factors for each 

length. 
 

Table 3. Signals, synthetic impulse response lengths, and 

forgetting factors 
 

Parameters 

Input Signal 
𝜆 = 1 −

1

𝐿
 L 

USASI 0.9961 256 

AR (20) 0.9980 512 

SPEECH 0.9990 1024 

 

5.4 Results and discussions 

 

We began the performance comparisons using the USASI 

input with the first pair of time-varying SIRs (for both sparse 

and dispersive cases) of length L=256, as illustrated in Figure 

7 for sparse case and Figure 8 for dispersive case. The results 

reveal that IPNLMS-L0 outperforms IPNLMS in handling 

sparse IRs but suffers from slower convergence and reduced 

tracking as sparseness decreases. While ISMFNLMS shows 

improvement for dispersive IRs, all algorithms fall behind our 

proposed algorithm EIPSMFNLMS-L0, which excels in faster 

convergence, superior tracking and lower error for sparse and 

dispersive cases with a lower computational complexity, 

surpassing even the recently introduced IPFNLMS algorithm. 

In the case of the AR (20) input signal convoluted with the 

time-varying second pair of SIRs of L=512, the proposed 

algorithm demonstrates superior overall performance in 

situations with sparse IRs, as shown in Figure 9. It achieves 

the fastest convergence speed and the strongest tracking 

capability compared to the NLMS, IPNLMS, IPNLMS-L0, 

ISMFNLMS and IPFNLMS algorithms. Concerning 

dispersive SIRs, shown in Figure 10, the EIPSMFNLMS-L0 

algorithm exhibits a fastest convergence speed approximately 

equivalent to that of the ISMFNLMS algorithm. However, it 

surpasses the other algorithms in terms of convergence speed, 

tracking ability, and final MSE. 
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Figure 7. Performance comparison under time-varying- in 

sparse 𝜉12(𝑛) = 0.8296 SIRs of length 𝐿=256. Using USASI 

noise Input signal. 𝐶0 = 𝐶𝑎 = 1.2, 𝜔 = 0.0025 and 

SNR=50dB 

 

 
 

Figure 8. Performance comparison under time varying-time 

in dispersive 𝜉12(𝑛) = 0.3028 SIRs of length 𝐿=256. Using 

USASI noise Input signal. 𝐶0 = 𝐶𝑎 = 1.2, 𝜔 = 0.0025 and 

SNR=50dB 

 

 
 

Figure 9. Performance comparison under time varying- in 

sparse 𝜉12(𝑛) = 0.8637 SIRs of length 𝐿=512. Using AR20 

noise input signal. 𝐶0 = 𝐶𝑎 = 1.8, 𝜔 = 0.0025 and 

SNR=50dB 

 
 

Figure 10. Performance comparison under time varying- in 

dispersive 𝜉12(𝑛) = 0.4080 SIRs of length 𝐿=512. Using AR 

(20) noise Input signal. 𝐶0 = 𝐶𝑎 = 1.8, 𝜔 = 0.0025 and 

SNR=50dB 

 

 
 

Figure 11. Performance comparison in sparse 𝜉12(𝑛) =
0.6539 SIRs of length 𝐿=1024. Using SPEECH Input signal. 

𝐶0 = 𝐶𝑎 = 1.2, 𝜔 = 0.0025 and SNR=50dB 

 

 
 

Figure 12. Performance comparison in dispersive 𝜉12(𝑛) =
0.4552 synthetic AIRs of length 𝐿=1024. Using SPEECH 

Input signal. 𝐶0 = 𝐶𝑎 = 1.2, 𝜔 = 0.0025 and SNR=50dB 
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The comparison with speech input signals and the third pair 

of SIRs of length L = 1024, with signal-to-noise ratio SNR = 

50 dB. Figures 11 and 12 show the results obtained for these 

cases, as it can be seen that these tests demonstrate the superior 

performance of the proposed algorithm in both sparse and 

dispersive systems, reinforcing its effectiveness compared to 

other algorithms. 

Figure 13 shows an additional experiment in a rather 

difficult situation with non-stationary speech input convolved 

with a large SIR with L=1024 points and very sparse 𝜉12(𝑛)= 

0.8789 with an SNR of 30 dB. This last experiment confirms 

the superiority of the proposed algorithm compared to other 

algorithms. 

Based on these simulations, it is clear that our proposed 

algorithm outperforms all algorithms used in this study in 

terms of MSE, convergence speed and tracking capability, at 

a reduced computational cost. 

 

 
 

Figure 13. Performance comparison in very sparse 𝜉12(𝑛) =
0.8789 SIRs of length 𝐿=1024. Using SPEECH Input signal. 

𝐶0 = 𝐶𝑎 = 1.2, 𝜔 = 0.015 and SNR=30dB 

 

 

6. CONCLUSIONS 

 

We successfully addressed the practical limitations of the 

IPNLMS-L0 algorithm by introducing a novel method for 

calculating the gain control matrix elements. This innovative 

approach not only improves resilience to changes in sparsity 

but also eliminates the need for costly exponential calculations 

in practice. 

By integrating this gain control matrix into the Improved 

Set-Membership Fast NLMS framework, we achieved a 

reduction in computational costs and improved tracking 

performance, enhancing the algorithm's overall cost-

effectiveness. 

Across a diverse range of operational scenarios, our 

proposed EIPSMFNLMS-L0 algorithm consistently 

showcases superior performance compared to recent 

alternatives IPFNLMS, IPNLMS-L0 and ISM-FNLMS 

algorithms, particularly when addressing varying impulse 

response sparsity and non-stationary conditions. The proposed 

algorithm consistently achieves the lowest error, fastest 

convergence rate, most robust tracking performance, and 

minimal computational complexity for both sparse and 

dispersive IRs. 

The simulation results clearly indicate the effectiveness of 

the proposed algorithm in meeting the challenges of an AEC 

with different levels of sparseness. 
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NOMENCLATURE 

 

AEC Acoustic Echo Cancellation 

AIR Acoustic Impulse Response 

NLMS Normalized Least Mean Square  

RLS Recursive Least Square 

PNLMS Proportionate Normalized Least Mean 

Square  

IPNLMS Improved Proportionate Normalized Least 

Mean Square  

IPNLMS-L0 Improved Proportionate Normalized Least 

Mean Square using on the ℓ0 norm 

FNLMS Fast Normalized Least Mean Square  

SM Set Membership 

ISMFNLMS Improved Set Membership Fast Normalized 

Least Mean Square 

EIPSMFNL Enhanced Improved Proportionate Set 

Membership Fast Normalized Least  

MS-L0 Mean Square built on the ℓ0 norm 

MSE Mean Square Error  

IPFNLMS Improved Proportionate Fast Normalized 

Least Mean Square 

USASI USA Standards Institute  

AR (20) Auto Regressive Process of order 20  

SNR Signal to Noise Ratio 

 

Greek symbols 

 

𝜇 step size 

𝜌 control factor 

𝛿 regularization parameter 

𝛽 parameter related to the sparsity of the 

impulse response 

𝛾(𝑛) likelihood variable 

𝜀(𝑛) prediction error 

𝛼(𝑛) variance of the forward error  

𝜆 forgetting factor 

𝜆𝑎 forgetting factor 

𝜉12∞(𝑛) sparseness measure built on the ℓ1  ,ℓ2  and 

ℓ∞ norms 

𝜔 bound on the error 

𝜎𝑒(𝑛) estimation of the modulus of the error  
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