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 To achieve precise energy supply and energy-efficient operation of the steam system in the 

primary processing workshop of tobacco enterprises, a Random Forest prediction model is 

introduced in this study to forecast steam consumption. A correlation analysis is conducted 

to identify the factors that significantly impact steam load. These key features are then used 

to develop the Random Forest prediction model, with appropriate hyper parameters 

selected to enhance prediction accuracy. The results indicate that the Random Forest model 

offers high prediction precision and strong practical applicability, providing a basis for 

optimizing the scheduling of the steam system. 
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1. INTRODUCTION 

 

With the continuous maturation of emerging technologies 

such as artificial intelligence and machine learning, the 

intelligent application of the primary processing production 

process has gradually become a major research focus in the 

industry [1-2]. Steam, as an essential secondary energy source 

in the tobacco industry, relies heavily on non-renewable 

energy sources, including natural gas, coal, and petroleum. 

Rational prediction and decision-making regarding steam 

production and consumption are of great significance for 

enterprises to save resources and improve production 

efficiency [3-7]. Currently, in the steam systems of tobacco 

enterprises, the primary processing workshop consumes a 

large amount of steam. When production begins in the primary 

processing workshop, gas boilers in the power workshop 

operate at high loads to provide steam to the system. To ensure 

the production quality of cut tobacco, the steam supply to the 

primary processing workshop often exceeds its actual demand. 

This unrefined management of steam supply results in 

significant steam dispersion, falling short of achieving precise 

supply and demand management, and causing energy waste 

due to excessive steam production. 

In recent years, increasing attention has been paid to 

research on energy conservation, consumption reduction, and 

refined management. Commonly used energy consumption 

prediction methods include parametric regression, time series 

analysis, and artificial neural networks [8-13]. For example, 

Chen et al. [14] proposed an energy consumption prediction 

model for air conditioning systems based on a deep learning 

gated recurrent unit (GRU) neural network, predicting energy 

consumption data for the air conditioning system of a tobacco 

factory’s storage workshop. Zhao et al. [15] developed a 

prediction model for steam production and consumption in the 

steel industry, achieving accurate steam consumption 

predictions and reducing energy consumption per ton of steel. 

Song et al. [16] used six machine learning algorithms, 

including decision trees, Bayesian classifiers, neural networks, 

and logistic regression, to predict personal annual income. Yu 

et al. [17] analyzed educational big data using five major 

machine learning algorithms: logistic regression, decision 

trees, Bayesian algorithms, Random Forest, and others. While 

the scope of research on load prediction is broad, studies on 

steam load prediction in the primary processing workshops of 

tobacco enterprises are limited. Multiple production devices 

interact within the workshop, with five steam pipelines 

supplying high-pressure steam to each piece of equipment, 

greatly increasing the complexity of the steam load fluctuation 

patterns. The steam load in the primary processing workshop 

of tobacco enterprises fluctuates significantly with the start 

and stop of production equipment. Relying on workers 

experience to measure and adjust the steam supply often leads 

to energy waste. If an accurate prediction model is available, 

it would facilitate source-side control, achieving the goal of 

energy conservation and emission reduction. 

The steam load in the primary processing workshop is 

affected by various factors, including production processes, 

equipment, and tasks, resulting in nonlinear changes in steam 

load data with no obvious patterns and relatively small data 

volumes. Due to its ensemble nature and feature randomness, 

Random Forest can effectively reduce the problem of model 

overfitting. Moreover, the OOB Predictor Importance function 

embedded in the TreeBagger function of the Random Forest 

model provides feature importance evaluation, helping 

identify the key factors influencing steam load. Based on the 

above analysis, this paper examines the production processes 
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of tobacco enterprises and identifies the factors affecting 

steam load. It analyzes the relationship between production 

plans and the required steam load, selecting highly correlated 

factors as input variables for the model. The Random Forest 

learning method is employed to predict steam consumption in 

the primary processing workshop, and the prediction results 

are compared with those from other traditional models. This 

research offers a refined prediction method for forecasting 

steam consumption in the primary processing workshop, 

providing data support for the rational scheduling of the steam 

system in tobacco enterprises. 

 

 

2. PRODUCTION PROCESS AND STEAM SYSTEM OF 

THE PRIMARY PROCESSING WORKSHOP IN A 

TOBACCO ENTERPRISE 

 

The primary processing stage is a crucial part of the 

production process in tobacco enterprises. Its production 

processes and equipment significantly impact the overall 

production efficiency and product quality of the entire factory. 

The steam consumption of the primary processing workshop 

is a top priority for the whole factory, and the stability of the 

workshop's steam system directly affects the productivity and 

annual economic performance of the enterprise. 

 

2.1 Production process of the primary processing 

workshop 

 

Steam plays multiple roles in the production process, 

primarily used for humidifying and heating tobacco leaves and 

stems, generating hot air to dry tobacco, and injecting flavors 

to enhance tobacco quality. The detailed production process of 

the primary processing workshop is shown in Figure 1. When 

assigning production tasks, the enterprise distributes them 

across the following eight areas: the vacuum area, leaf area, 

Phase I leaf strip area, Phase II leaf strip area, Phase I blending 

area, Phase II blending area, stem area (before stem storage), 

and stem area (after stem storage). 

In the vacuum area and leaf area, the vacuum rehumidifiers 

and loose rehumidifiers consume large amounts of steam. 

When these devices are in operation, the steam pipeline load 

fluctuates significantly. In the blending area, the production 

process mixes stems, leaf strips, expanded strips, and recycled 

tobacco strips according to a set ratio based on the flow of leaf 

strips. The blended tobacco strips are then transferred to the 

flavoring machine in the blending area, where they are 

flavored in a specific ratio to produce qualified cut tobacco, 

which is stored in cabinets for later use. This process involves 

minimal steam-consuming equipment, with only the flavoring 

machine requiring a small amount of steam for injecting 

flavors. The steam-consuming equipment in different process 

areas is listed in Table 1. 

 

2.2 Steam system of the primary processing workshop 

 

During production, the daily steam consumption of the 

primary processing workshop accounts for approximately 

65% to 90% of the factory’s total steam consumption, making 

it the largest steam consumer in the plant. The power 

workshop of the tobacco factory provides steam to the internal 

steam system. As the production conditions change, the boiler 

system load in the power workshop increases rapidly within a 

short period, resulting in significant fluctuations in the steam 

load. The steam supply to the primary processing workshop is 

distributed through five steam pipelines: the Phase I vacuum 

rehumidification steam pipeline, the Phase II vacuum 

rehumidification steam pipeline, the Phase I leaf line steam 

pipeline, the Phase II leaf line steam pipeline, and the stem line 

steam pipeline. Each pipeline provides steam to different 

steam-consuming equipment, and the steam quality 

requirements vary across the equipment. The required steam 

quality in the primary processing workshop ranges from 0.2 

MPa to 1.1 MPa. 

 

 
 

Figure 1. Production process of the tobacco manufacturing workshop 
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Table 1. Steam-consuming equipment in different production process areas of the primary processing workshop 

 

Process Area of the Primary 

Processing Workshop 
Steam-Consuming Equipment 

Vacuum Area Vacuum Rehumidifier (A), Vacuum Rehumidifier (B), Vacuum Rehumidifier (C) 

Leaf Blade Area Loose Rehumidifier, Feeding Rehumidifier 

Leaf Strip Area (Phase I) 
Hot Air Leaf Conditioner (Phase I), Drum-Type Leaf Strip Rehumidifier (Phase I), Tunnel-Type Leaf Strip 

Rehumidifier (Phase I), Plate-Type Leaf Dryer (Phase I), Gas-Pipeline-Type Leaf Dryer (Phase I) 

Leaf Strip Area (Phase II) 
Hot Air Leaf Conditioner (Phase II), Drum-Type Leaf Strip Rehumidifier (Phase II), Tunnel-Type Leaf Strip 

Rehumidifier (Phase II), Plate-Type Leaf Dryer (Phase II), Gas-Pipeline-Type Leaf Dryer (Phase II) 

Stem Area (Before Stem 

Storage) 

Stem Washer, Primary Scraper Conveyor, Secondary Scraper Conveyor (Phase I), Secondary Scraper Conveyor 

(Phase II), Stem Feeder (Phase I), Stem Feeder (Phase II) 

Stem Area (After Stem Storage) 
Stem Rehumidifier (Phase I), Stem Rehumidifier (Phase II), Flash Steam Stem Expansion Unit (Phase I), Flash 

Steam Stem Expansion Unit (Phase II), Fluidized Bed Dryer (Phase I), Fluidized Bed Dryer (Phase II) 

Blending Area (Phase I) 
Flavoring Machine 

Blending Area (Phase II) 

 

2.3 Current steam usage in the primary processing 

workshop 

 

The total daily steam consumption of the primary 

processing workshop is the sum of the steam used by the five 

steam pipelines in the workshop’s steam system. A 

comprehensive analysis of the workshop reveals a strong 

coupling between the fluctuations in daily steam load and the 

production tasks assigned by the enterprise. These tasks are 

distributed according to the following process areas: vacuum 

area, leaf blade area, Phase I leaf strip area, Phase II leaf strip 

area, Phase I blending area, Phase II blending area, stem area 

(before stem storage), and stem area (after stem storage). Since 

there are no steam meters installed in the workshop to measure 

the steam consumption of each process area, it is not possible 

to collect data on the steam used by each area. Therefore, this 

paper analyzes the production tasks assigned to the eight 

process areas and the total daily steam consumption of the 

workshop to forecast the daily steam load. 

 

 

3. STEAM CONSUMPTION PREDICTION MODEL 

FOR THE PRIMARY PROCESSING WORKSHOP 

 

3.1 Data processing 

 

The data used in this study were collected from the primary 

processing workshop of a tobacco factory over a period of 

seven months, from March 2023 to September 2023. Due to 

factory shutdowns or production scheduling issues, data for 

138 days of production tasks and steam energy consumption 

were obtained during this period. First, outlier detection was 

performed on the dataset, and noisy data with high fluctuations 

in steam load were preprocessed by removing faulty data. 

There were no missing values in the dataset. Afterward, 

normalization was applied to the dataset, and the processed 

data were fed into the model. After preprocessing, a total of 

131 data samples were obtained, which were used in the 

simulation tests of the prediction model described later. 

 

3.2 Decision tree model 

 

The decision tree is a commonly used machine learning 

algorithm that performs classification and regression analysis 

by simulating the human decision-making process. Its core 

idea is to partition the dataset based on features to build a tree-

structured model. As a supervised learning algorithm, the 

decision tree is easy to understand and interpret. In this study, 

the decision tree extracts decision rules from the factors 

affecting the steam load in the primary processing workshop 

and the corresponding steam load to make predictions. The 

structure of the decision tree is similar to that of a real tree, 

consisting of internal nodes, a root node, and leaf nodes. The 

classification or partitioning of the steam load-related factors 

in the workshop determines the number of nodes in the 

decision tree. The goal of this study is to use the influencing 

factors of the steam load in the workshop to predict the steam 

load for the next time step. Since this is a regression problem, 

a regression decision tree has been chosen for steam load 

prediction. Figure 2 shows the topology of the decision tree. 

 

 
 

Figure 2. Principle of decision tree 

 

The primary algorithm used in regression decision trees is 

Classification and Regression Trees (CART). The CART 

algorithm can be applied to both classification and regression 

problems. For regression problems, CART predicts 

continuous target variables by constructing decision trees. The 

CART algorithm follows these steps: the model input consists 

of data from the training set, and it continuously calculates the 

size of different values under various influencing factors. The 

optimal splitting point is found using the least squares method 

to minimize the squared error, which solves the following 

equation: 

 

𝑚𝑖𝑛
𝑗,𝑠

[𝑚𝑖𝑛
𝑐1

∑ (𝑦𝑖 − 𝑐1)
2

𝑥𝑖∈𝑅1(𝑗,𝑠)
+𝑚𝑖𝑛

𝑐2
∑ (𝑦𝑖 − 𝑐2)

2
𝑥𝑖∈𝑅2(𝑗,𝑠)

] 

 

where, j represents the j-th feature variable in the dataset; s 

represents value of the j-th feature variable; and there are: 

𝑅1(𝑗, 𝑠) = {𝑥|𝑥𝑗 ≤ 𝑠}, and 𝑅2(𝑗, 𝑠) = {𝑥|𝑥𝑗 ≥ 𝑠}. 

Through this process, the calculation values for different 

regions are obtained, and the above steps are repeated for 

subregions until the squared error reaches its minimum. The 
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final result is a division into several regions, forming a 

regression decision tree. 

 

3.3 Random Forest model 

 

The Random Forest is an ensemble learning method that 

primarily uses decision trees as base learners. By constructing 

multiple decision trees and aggregating their prediction results, 

the model enhances both its accuracy and stability. The 

Random Forest model employs bootstrap sampling to train and 

generate multiple decision trees, which together form the 

Random Forest. The outputs of these trees are then aggregated 

using voting or weighted averaging, improving the model's 

robustness and generalization capability. This approach 

embodies the concept of “collective wisdom”—while 

individual models may be prone to errors, the collective 

prediction of multiple models is more reliable. Random 

Forests perform exceptionally well across various datasets, 

especially when the feature space is large. Compared to 

traditional BP neural networks and some deep learning models, 

Random Forests achieve greater robustness through collective 

predictions by building multiple decision trees. This makes 

them highly effective in situations involving large fluctuations 

in steam load in the workshop and relatively small datasets, 

ensuring high-performance predictions. 

 

3.4 Correlation analysis 

 

The Random Forest model not only solves classification or 

regression problems but also evaluates the importance of each 

factor in the dataset. The Out-of-Bag (OOB) dataset is used in 

the Random Forest algorithm to assess model performance and 

feature importance. OOB refers to the data that are not 

included in the training set due to the bootstrap sampling 

process, where approximately one-third of the data are left out. 

These OOB samples serve as a built-in validation set, allowing 

model evaluation without additional computational costs. The 

concept of OOBPredictorImportance is introduced in the 

model to assess the importance of each predictor (feature) 

using the OOB dataset. Each decision tree in the Random 

Forest is independently built, with the splitting features at each 

node selected from a randomly chosen subset of features. This 

ensures that each feature is evaluated a varying number of 

times across different trees, providing a natural way to 

compare feature importance. The importance of a feature is 

determined by calculating the impurity reduction (for 

classification) or error reduction (for regression) it achieves 

when splitting nodes across all trees. The cumulative 

contribution of each feature is averaged or weighted to obtain 

an overall importance score. The higher the importance score, 

the greater the impact of that feature on the model’s 

predictions. Using this method, the importance of various 

factors affecting the steam load in the primary processing 

workshop is determined, with the results presented in Table 2. 

Analysis of the Table 2 shows that the factors significantly 

affecting the steam load in the primary processing workshop 

are the Vacuum Area, Leaf Blade Area, Stem Area (Before 

stem storage), and Stem Area (After stem storage), with 

correlation coefficients all above 0.5, indicating strong 

correlations. The Leaf Strip Areas (Phase I and Phase II) 

exhibit weak correlations with steam load, with coefficients 

around 0.4. The Blending Areas (Phase I and Phase II) have 

correlation coefficients below 0.2, indicating very low 

correlation. The low correlation in the blending areas can be 

explained by the fact that only the blending and flavoring 

machines use steam in this area, and the amount of steam used 

is minimal, making it negligible. When building the predictive 

model, it is important to select highly correlated factors as 

input features. The more comprehensive and relevant the input 

features, the higher the model's prediction accuracy. However, 

including too many features may lead to overfitting, negatively 

affecting the model's performance. The correlation analysis 

provides a reference for selecting input features [18]. For this 

study, factors with correlation coefficients above 0.5—namely, 

the Vacuum Area, Leaf Blade Area, Stem Area (Before stem 

storage), and Stem Area (After stem storage)—are chosen as 

input features for the prediction model. 

 

Table 2. Correlation between influencing factors and steam 

load in the primary processing workshop 

 
Influencing Factor Correlation Coefficient 

Vacuum Area 0.68 

Leaf Blade Area 0.69 

Leaf Strip Area (Phase I) 0.40 

Leaf Strip Area (Phase II) 0.44 

Blending Area (Phase I) 0.16 

Blending Area (Phase II) 0.13 

Stem Area (Pre-Storage) 0.73 

Stem Area (Post-Storage) 0.65 

 

3.5 Hyperparameter selection 

 

For the Random Forest model, the tree depth (dp) and 

number of trees (es) are generally considered the two most 

important hyperparameters. In this paper, the primary focus is 

on selecting the maximum tree depth and the number of 

regression trees, while other parameters are kept at their 

default values. The maximum depth of the tree is a crucial 

hyperparameter for both decision trees and Random Forest 

models. If the maximum depth is set too shallow, the model 

may fail to capture the complex relationships in the data, 

leading to underfitting. Conversely, if the depth is too large, 

the model might overfit the noise in the training data, reducing 

its generalization ability. Common methods for determining 

the optimal tree depth include cross-validation and grid search. 

In this study, cross-validation was employed to determine the 

optimal maximum depth, which was found to be 4. 

 

 
 

Figure 3. Impact of the number of trees on prediction 

accuracy 
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The number of trees in a Random Forest refers to the 

number of decision trees within the model. Increasing the 

number of trees typically improves the model's performance, 

as more trees can better capture the features of the data and 

reduce variance. However, the performance gains are not 

linear, and after a certain point, additional trees offer 

diminishing returns. Too many trees may also lead to 

overfitting, especially when the dataset is relatively small. The 

Figure 3 shows the change in prediction error with different 

numbers of decision trees, using the OOB error as the 

evaluation metric. As illustrated in Figure 3 and Table 3, the 

prediction error decreases as the number of trees increases. 

The error reaches 0.01755 when the number of trees reaches 

30, and further increases in the number of trees provide no 

significant improvement in prediction accuracy. To avoid 

overfitting, the optimal number of trees was set to 30. 

 

Table 3. Errors for different numbers of decision trees 

 
Number of Trees Error Number of Trees Error 

10 0.02076 22 0.01857 

11 0.02040 23 0.01846 

12 0.02094 24 0.01838 

13 0.02021 25 0.01832 

14 0.01999 26 0.01800 

15 0.01940 27 0.01784 

16 0.01941 28 0.01775 

17 0.01890 29 0.01767 

18 0.01912 30 0.01755 

19 0.01894 31 0.01778 

20 0.01891 32 0.01773 

21 0.01876 33 0.01758 

 

 

4. STEAM LOAD FORECAST 

 

In this study, a prediction model was developed using 

MATLAB R2022a. The simulation focused on a tobacco 

manufacturing plant’s primary processing workshop, using 

seven months of data (from March to September 2023) with 

131 sets of steam load data and corresponding influencing 

factors. The dataset was split into 91 training samples and 40 

test samples. 

 

4.1 Analysis of the Random Forest model 

 

 
 

Figure 4. Random Forest model prediction results for the 

training set 

A Random Forest model was used to predict the steam load. 

The Root Mean Square Error (RMSE) was used to evaluate the 

prediction accuracy. The results showed that the RMSE for the 

training set was 6.3091, while the RMSE for the test set was 

5.3583. The prediction results for both sets are shown in 

Figures 4 and 5, respectively. The RMSE calculation formula 

is as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
 

 

 
 

Figure 5. Random Forest model prediction results for the test 

set 

 

4.2 Analysis of different prediction models 

 

 
 

Figure 6. MSE of different prediction models 

 

In this paper, a Random Forest model was used for 

simulation testing. Its prediction accuracy was compared with 

that of a Decision Tree model, a Support Vector Machine 

(SVM) model, and a traditional BP neural network model [19-

23]. The Mean Squared Error (MSE) was chosen as the 

evaluation metric, which measures the average squared 

difference between the predicted and actual values. The 
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comparison of MSE values for different models is illustrated 

in Figure 6. The MSE calculation formula is as follows: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
 

 

As shown in Figure 6, the Random Forest model exhibits 

higher prediction accuracy compared to the other three models. 

In particular, the BP neural network showed relatively poor 

performance on this dataset. To further validate the predictive 

performance of the proposed model, the following metrics 

were selected as evaluation criteria: Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), and R-

squared (R²). The calculation results are detailed in Table 4, 

with the formulas as follows: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑦𝑖 − �̂�𝑖)

2|
𝑛

𝑖=1
 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|
𝑛

𝑖=1
× 100% 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

 

Table 4. Comparison of parameters for different models 

 
Prediction Model MAE MAPE R2 

BP neural network 4.67 6.72% 0.271 

SVM 4.58 6.29% 0.498 

Decision tree 4.87 6.76% 0.392 

Random Forest 4.32 5.87% 0.492 

 

From Table 4, it can be seen that the Random Forest model 

has the lowest MAE at 4.32 and the lowest MAPE at 5.87%, 

outperforming the other prediction methods. The R² value is 

0.492, which is the closest to 1 among the models, indicating 

that the Random Forest model has a better fitting effect. 

Figures 7 and 8 compare the prediction result errors for 

different models in the training and test sets, respectively, 

demonstrating that the BP neural network has a larger 

prediction error in this dataset, while the Random Forest 

model shows the smallest prediction error. 

 

 
 

Figure 7. Comparison of prediction result errors for different 

models (training set) 

 
 

Figure 8. Comparison of prediction result errors for different 

models (test set) 

 

 

5. CONCLUSION 

 

This paper analyzed the energy consumption of the steam 

system in a tobacco manufacturing plant's primary processing 

workshop, applying emerging technologies such as artificial 

intelligence and machine learning to predict daily steam 

consumption. Initially, the OOBPredictorImportance concept 

was introduced in the prediction model to assess the 

importance of each feature using the OOB dataset. Factors that 

significantly affect the steam load in the processing workshop 

were identified, including the vacuum area, leaf blade area, 

stem area (before storage), and stem area (after storage). 

Subsequently, the Random Forest method was employed to 

predict the daily steam load and compared with traditional BP 

neural network, SVM, and decision tree. The results 

demonstrate that the Random Forest model outperformed the 

others in both prediction accuracy and fitting effectiveness, 

providing a reliable basis for optimizing the scheduling of the 

enterprise's steam system. While the prediction results of the 

model generally achieved satisfactory outcomes, it is noted 

that the data exhibited significant fluctuations and the sample 

size was relatively small, which may limit the feature selection 

process. Therefore, future research should focus on exploring 

additional influencing factors and enriching the dataset to 

optimize the model and further enhance prediction accuracy, 

facilitating the regulation of steam supply and achieving 

energy-saving and emission-reduction goals. 
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