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 The potential of Advanced Driving Assistance Systems (ADAS) to enhance road safety is 

considerable; however, the reliability of ADAS in detecting and classifying road entities 

under varied environmental conditions remains a critical challenge. Conventional ADAS 

sensors often encounter limitations in adverse weather and low-visibility conditions, such 

as nighttime, rain, snow, and haze, reducing their capacity to detect vehicles and 

pedestrians effectively. To address these limitations, this study explores the integration of 

infrared thermal imaging technology into standard automotive sensor kits to enhance target 

detection capabilities. The YOLOv5 deep learning algorithm is applied to infrared thermal 

imaging data, aiming to improve the detection and classification of road targets, including 

pedestrians and motor vehicles, across diverse driving scenarios. Experimental results 

demonstrate that the proposed approach significantly enhances target detection, 

maintaining a balance between detection accuracy and real-time performance, particularly 

under challenging visibility conditions. These findings indicate that the integration of 

infrared thermal imaging with YOLOv5 in ADAS could reduce accident risks and improve 

road safety by providing more reliable scene analysis under adverse conditions. 
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1. INTRODUCTION 

 

ADAS [1] detects and identifies objects using an array of 

vehicle-mounted sensors, including millimeter-wave radar, 

LiDAR, ultrasound, and visible-light cameras. During vehicle 

operation, these sensors assess distances to nearby vehicles 

and pedestrians, gather traffic data, and monitor road signs. 

Combined with navigation maps, ADAS enables real-time 

identification, dynamic tracking, and classification of traffic 

objects, such as pedestrians and motor vehicles, thereby 

supporting early warning systems and assisting drivers in 

maintaining safe driving practices through systematic data 

processing and analysis [2]. Target detection is considered a 

core component of ADAS [3], as it relies on integrated sensors, 

processing units, and control mechanisms to help drivers 

anticipate potential hazards, mitigate human error, counteract 

distractions, and reduce accident rates. As an active safety 

technology, target detection is critical to improving road safety. 

The process of object detection in ADAS primarily comprises 

two key stages: (1) sensing, or perceiving, target objects; and 

(2) classifying objects to inform subsequent actions. In the first 

stage, sensing technology enhances or even substitutes human 

perception, optimising vehicle performance in diverse driving 

scenarios. The second stage involves classifying and 

recognising traffic-related images or video data captured by 

sensors through deep-learning algorithms. This classification 

enables the system to differentiate between various traffic 

objects, including motor vehicles, pedestrians, and bicycles, 

thereby refining target recognition and response capabilities. 

In complex driving environments, however, target detection 

remains a considerable challenge. The limitations of current 

ADAS sensors and detection algorithms can affect system 

performance. The predominant sensors in ADAS, including 

visible-light cameras, radar, and laser rangefinders, present 

unique constraints. While visible-light cameras [4] capture 

high-resolution environmental data and perform effectively 

under sufficient lighting for tasks such as lane departure 

warnings, emergency braking assistance, and pedestrian and 

animal detection, their night-vision capabilities are limited, 

and visibility deteriorates in adverse weather. LiDAR sensors 

[5], capable of acquiring three-dimensional environmental 

information, also face drawbacks. Although effective for 

obstacle avoidance when combined with other sensors, 

LiDAR performance declines in dusty, rainy, and foggy 

conditions, with recognition accuracy diminished, particularly 

for smaller objects. Object detection based on deep-learning 

algorithms has progressed significantly in recent years, with 

prominent algorithms such as Faster R-CNN [6, 7], YOLO [8, 

9], and SSD [10] demonstrating considerable efficacy in 

vehicle and pedestrian detection as well as in traffic sign 

recognition. Despite these advancements, challenges persist, 

particularly in complex environments or under low-light and 

adverse weather conditions, where deep-learning algorithms 

may produce false detections or fail to detect targets entirely. 

Moreover, real-time performance demands are not 

consistently met, impacting the timeliness and reliability of 
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ADAS applications. 

 

 

2. THE ADVANTAGES OF INFRARED THERMAL 

IMAGING TECHNOLOGY 

 

2.1 Strong night vision ability 

 

Pedestrians, as critical participants in traffic and the most 

vulnerable road users, are particularly important to detect in 

complex traffic environments within ADAS systems. The 

report released by the Governor's Highway Safety Association 

(GHSA) shows that the growth rate of pedestrian fatalities in 

the United States has been much faster in recent years than all 

other traffic fatalities [11]. In the first half of 2022, 

approximately 3,500 pedestrians were killed in the U.S., 

equating to one pedestrian fatality every 75 minutes—a 5% 

increase over the same period in 2021. Over the past three 

years, the number of pedestrian deaths in the U.S. has risen by 

18%, a rate nine times faster than that of the general population 

growth. According to research by the International 

Commission on Illumination (CIE), the traffic accident rate at 

night is three times higher than during the day. Insufficient 

road lighting has been identified as a primary factor impacting 

driver safety at night, with traffic accidents occurring during 

nighttime accounting for approximately 40% of all accidents 

but resulting in a high fatality rate of up to 60%. These 

statistics indicate that the risk of driving at night is 

considerably higher than during daylight hours [12], 

underscoring the importance of night vision capabilities in 

ADAS systems for effective pedestrian and vehicle detection. 

The ADAS market has expanded rapidly in recent years. 

While sensor technology continues to advance, no single 

sensor can ensure absolute driving safety, as each sensor type 

presents distinct advantages and limitations. Table 1 below 

summaries the applications of various sensors in ADAS-

assisted driving. It is evident that, compared to other sensors, 

infrared thermal imaging technology not only excels in 

pedestrian detection and classification but also provides 

unique advantages in night vision capabilities [13]. 
 

Table 1. The corresponding detection application of different sensors in ADAS system 
 

Application Visible Thermal Radar LIDAR Ultrasound 

Traffic Sign Recognition √     

Adaptive Cruise Control  √    

Lane Departure Warning √     

Front Cross Traffic Alert  √   √ 

Emergency Brake Assist √ √ √  √ 

Pedestrian Detection √  √  √ 

Pedestrian Classification √    √ 

Night Vision     √ 

Blind Spot Detection  √  √ √ 

Rear Collision Warning  √    

Park Assist √   √  

Rear Cross Traffic Alert  √  √ √ 

Rear AEB    √  

Collision Avoidance √ √ √  √ 

Surround View √    √ 

 

2.2 Long operating range, with a detection range four 

times that of regular headlights 

 

The infrared thermal imager operates continuously, 

providing 24-hour functionality, and benefits from the strong 

atmospheric transmissivity of thermal radiation. As a result, 

thermal imaging is particularly advantageous for nighttime 

observation and offers an extended detection range [14]. In 

Figure 1, the left image shows an RGB camera capture taken 

with high-beam illumination on a night road, while the right 

image presents an infrared thermal image of the same location. 

Unlike the RGB camera, the thermal imager is unaffected by 

ambient and artificial lighting conditions and can detect 

objects at a range four times greater than the high beam's 

illumination distance. 
 

 
 

Figure 1. Comparison of RGB image and infrared thermal 

imager imaging effects under night road conditions 

2.3 Eliminate glare and weather interference 

 

In harsh weather conditions, such as rain, snow, and haze, 

visible-light cameras produce images with low visibility, 

indistinct target boundaries, or targets that blend into the 

background, making them unsuitable for effective object 

detection and recognition. By contrast, thermal infrared or 

long-wave infrared cameras are capable of detecting and 

classifying targets in darkness or dense fog and are unaffected 

by solar glare, thereby enhancing situational awareness [15]. 

As illustrated in Figure 2, testing conducted in a haze-filled 

tunnel demonstrated that the visibility of the infrared thermal 

imaging camera (right) was significantly higher than that of 

the visible-light camera (left), making it more appropriate for 

image preprocessing applications. 

 

 
 

Figure 2. Comparison of visible light camera images and 

thermal imaging camera images in haze tunnels 
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2.4 Sensitive to temperature 

 

Due to limitations in their working principles, typical 

sensors such as visible-light cameras, LiDAR, and radar are 

affected by target reflectivity and atmospheric conditions, 

which can impact their performance. In contrast, infrared 

thermal imaging technology leverages the fact that all objects 

emit thermal energy, thereby removing the need for external 

reference sources. This technology is highly sensitive to 

temperature differences, enabling clear visualisation of objects 

in the environment. As demonstrated in Figure 3, an example 

presented at the SIA Vision 2016 conference [16] compares 

images captured by a visible-light RGB camera and a long-

wave infrared (LWIR) thermal imaging camera in a fog-filled 

tunnel. It is evident that the LWIR images facilitate superior 

target recognition under such conditions. 

 

 
 

Figure 3. Example images recorded in fog tunnel with 

thermal (LWIR), visible RGB 

 

 
 

Figure 4. Sensing kits in ADAS and AV platforms using 

infrared thermal imaging technology 

 

In summary, as an integral sensor within onboard ADAS 

systems, accurate sensing across diverse and complex 

environments typically requires the fusion and complementary 

use of multiple sensors to deliver a more comprehensive and 

precise target recognition solution for autonomous driving. 

Sensor fusion technology thus represents a critical component 

in achieving full vehicle intelligence in the future. The 

inclusion of an infrared thermal imager in the sensor kit of a 

vehicle is essential. The application of infrared thermal 

imaging technology enhances the reliability of the ADAS 

sensor suite and improves overall system perception 

performance. Figure 4 illustrates the expanded object 

detection capability and range achieved by augmenting 

traditional sensor kits with infrared thermal imaging 

technology [17]. 

 

 

3. INFRARED THERMAL IMAGE PREPROCESSING 

 

As discussed previously, while infrared thermal imaging 

technology (hereinafter referred to as "infrared thermal 

imaging") offers advantages over RGB visible-light imaging 

for traffic object detection, it also presents certain limitations. 

Infrared thermal images typically exhibit a lower signal-to-

noise ratio, fewer target texture features, and lower resolution 

compared to visible-light images. Additionally, noise is 

introduced during the digital imaging process, making it 

challenging to distinguish between targets and the background 

[18]. These factors can reduce the accuracy of target detection, 

necessitating image preprocessing tailored to the specific 

characteristics of infrared thermal images. The goals of 

preprocessing are to reduce irrelevant noise, enhance the 

contrast between traffic targets and environmental 

backgrounds, improve the detectability of traffic targets, 

simplify image data, and facilitate feature extraction, thereby 

laying a solid foundation for subsequent detection and 

classification tasks [19]. Image preprocessing for infrared 

thermal imaging in target detection primarily involves three 

key aspects. 

 

3.1 Image denoising 

 

 
 

Figure 5. Comparison of infrared image denoising effects 

 

Infrared thermal images frequently contain substantial noise, 

stemming partly from equipment-based sources—such as 

thermal noise, three-particle noise, and photon noise—due to 

limitations in infrared detector hardware, and partly from 

environmental noise. Based on an analysis of the types and 

characteristics of noise in infrared thermal images, this study 

explores the application of mathematical morphology filtering 

for infrared image noise reduction. It was observed that when 

a single structural element is employed in the open-close filter, 

residual negative pulse noise remains after positive pulse noise 

is removed; conversely, in the close-open filter, positive pulse 

noise remains after the removal of negative pulse noise. 

Furthermore, as the structural element size increases, these 

residual effects become more pronounced. To address this, a 

denoising algorithm based on multi-scale structural operator 
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morphological filtering is proposed, aimed at preserving the 

fine details of the image while effectively eliminating noise. 

This approach enhances the suitability of infrared images for 

subsequent object detection and classification tasks. The 

denoising results for infrared images are shown in Figure 5 

[20]. 

 

3.2 Image enhancement 

 

The primary objective of image enhancement is to increase 

the contrast between targets and the background in infrared 

thermal images. To address the low signal-to-noise ratio and 

resolution challenges inherent in these images, an analysis of 

current mainstream image enhancement methods was 

conducted based on the unique characteristics of infrared data. 

Consequently, a channel expansion-based infrared image 

enhancement algorithm was implemented [21]. This algorithm 

capitalises on the fact that infrared images are typically single-

channel and therefore contain limited information. To enrich 

the data, two infrared image enhancement techniques—

CLAHE (Contrast Limited Adaptive Histogram Equalization) 

and a conversion-based enhancement method—are applied to 

expand the single-channel infrared image into three channels, 

enabling it to be used in subsequent processing steps. This 

expansion increases the data volume and allows the network 

to learn a richer set of features. The results of this image 

enhancement process are shown in Figure 6. 

 

 
 

Figure 6. Comparison of image enhancement effects 

 

3.3 Target ROI extraction 

 

(a)                                                        (b) 

 
(c) 

 

Figure 7. (a) Comparison of image enhancement effects  

(b) Visual saliency map (c) Target ROI extraction 

 

Through research, it has been observed that visual saliency 

algorithms exhibit strong recognition performance in the 

domains of moving object tracking and recognition. 

Consequently, this study aims to employ the principle of visual 

saliency for the rapid localisation of target regions of interest 

(ROI). However, pedestrians or distant vehicles often appear 

as weak infrared targets in traffic images or videos captured 

by infrared thermal imaging cameras. The presence of image 

noise or low contrast can significantly impact detection 

accuracy, leading to a high false detection rate. To mitigate 

this issue, a visual saliency algorithm based on spatial distance 

enhancement, as outlined in reference [22], is adopted. This 

method reduces noise and background interference, 

effectively lowering the computational complexity of the 

image while enhancing detection results for small infrared 

targets. For instance, taking the infrared thermal image from a 

fog tunnel shown in Figure 3 of this study (Figure 7(a)), the 

target ROI extraction using the spatial distance-enhanced 

visual saliency algorithm is illustrated in Figure 7(c). 

The main process of image preprocessing is shown in Figure 

8. 

 

 
 

Figure 8. Image preprocessing 

 

 

4. YOLOv5 TRAINING TARGET DETECTION 

NETWORK 

 

Detection and classification are fundamental performance 

indicators in the ADAS sensor suite. The objective of traffic 

1764



 

object detection within an ADAS system is to identify the 

presence of specific types of traffic objects (e.g., pedestrians, 

motor vehicles, bicycles, animals, etc.) based on images or 

videos transmitted by the system's sensors. If an object is 

detected and its existence confirmed, a bounding box is 

returned to annotate the spatial position and coverage area of 

the identified object. In the context of object detection for 

automotive driving scenarios, it is typically required to detect 

multiple object types simultaneously. However, several 

challenges arise due to factors such as scale variations, diverse 

postures, complex backgrounds, and occlusion of objects 

within the scene. The primary challenge lies in the time-

consuming nature of the template matching process following 

network model training, which hampers the ability to develop 

a target detection system that effectively balances detection 

accuracy and real-time performance. 

 

 
 

Figure 9. Performance comparison of different target 

detection algorithms 

 

 
 

Figure 10. Comparison of training speeds between YOLO4 

and YOLO5 on the same dataset 

 

Experimental results have demonstrated that the YOLOv4 

algorithm outperforms other object detection algorithms. For 

instance, using the MS COCO dataset, YOLOv4 achieves 

nearly double the detection speed (FPS) compared to the 

EfficientDet algorithm under similar accuracy requirements. 

In comparison to YOLOv3, YOLOv4 shows a 10% 

improvement in mAP (mean average precision), while the FPS 

increases by 12%, as depicted in Figure 9. With advancements 

in the YOLO algorithm, research conducted by the 

computational vision startup Roboflow reveals that YOLOv5 

significantly outpaces YOLOv4 in terms of speed, as shown in 

Figure 10. YOLOv5 not only excels in computational 

performance but is also easy to configure in various hardware 

environments and boasts a rapid model training speed, making 

it suitable for real-time system batch processing. Given the 

need to balance detection accuracy and real-time performance, 

this study employs the YOLOv5 algorithm to process the 

experimental dataset. This involves applying denoising, 

enhancement, and ROI extraction techniques on the pre-

processed images, followed by transfer learning.  

Transfer learning, by leveraging pre-trained model 

parameters from the COCO dataset within the YOLOv5 

framework, accelerates model training and optimizes learning 

efficiency. This approach reduces the dependency on sample 

size and improves the model's accuracy. The process includes 

the following steps: 

 

4.1 Collection and annotation of training datasets 

 

To validate the experimental results, the FLIR Thermal 

Starter Dataset V1.3, released by FLIR Systems in August 

2019 for algorithm training, is utilized. This dataset is derived 

from RGB cameras and thermal imaging cameras installed on 

vehicles. It consists of a total of 14,452 infrared images, 

including 10,228 images from multiple short videos and 4,224 

images from a 144-second long video. The dataset contains 

five categories of target objects: pedestrians, dogs, motor 

vehicles, bicycles, and other vehicles. Annotations are 

provided in MSCOCO label vector format, offering both 

annotated thermal images and corresponding non-annotated 

RGB images, as illustrated in Figure 11. The dataset is 

available in five file formats: (1) 14-bit TIFF thermal images 

(without automatic gain control, AGC); (2) 8-bit JPEG thermal 

images (with AGC) without embedded bounding boxes; (3) 8-

bit JPEG thermal images (with AGC) containing embedded 

bounding boxes for easier visualization; (4) RGB 8-bit JPEG 

images; and (5) JSON comments in MSCOCO format. 

 

 
(a)                                                    (b) 

 

Figure 11. FLIR thermal starter dataset image example (a) 

RGB visible light image (b) Classification annotated infrared 

thermal imaging image 

 

4.2 Dataset preprocessing and configuration file 

preparation 

 

To prepare for model training, the FLIR Thermal Starter 

dataset must undergo preprocessing. This involves converting 

the annotations from JSON format to the YOLO format and 

organizing the dataset according to the YOLOv5 training file 

structure. Additionally, the YOLOv5 code library needs to be 

set up. Within the YOLOv5 directory, the model folder 

contains configuration files for various model versions: s, m, 

l, and x. The architecture size increases with the version, 

resulting in longer training times. For this study, to ensure real-

time performance, the version 's' is selected, which 

corresponds to the yolov5s.yaml configuration. The model file 

is named model_Yolov5s.yaml, with modified parameters. 
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Additionally, the model_data.yaml file is prepared, which 

includes information on the dataset location, the number of 

categories, and the names of the training and validation sets. 

 

4.3 Parameter setting and model training 

 

The first step involves downloading the pre-trained model 

corresponding to the YOLOv5 source code from the official 

website. The second step is to perform model training, with the 

training parameters specified in Table 2. 

 

Table 2. Training parameter settings 

 
Parameter Value Description 

img 640 width and height of the input 

image 

batch-size 32 Batch size 

epochs 300 Training iteration algebra 

data model_data.yaml Files for storing training and 

testing data 

cfg model_yolov5s.yaml Configuration file for storing 

model structure 

cache-images true Caching images can 

accelerate training speed 

resume true Restore the recently saved 

model and start training 

nosave false Save only the final 

checkpoint 

notest true Only test the last epoch 

noautoanchor false Adaptive anchoring box 

multi-scale true Input image multi-scale 

training to prevent model 

overfitting 

single-cls  false The output of the model is a 

single class training set 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

5.1 Evaluating indicator 

 

For classification problems, the performance of the 

classifier is typically evaluated using the concepts of True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). TP refers to the number of samples that 

are actually positive and correctly predicted as positive. TN 

represents the number of samples that are actually negative 

and correctly predicted as negative. FP refers to the number of 

samples that are actually negative but incorrectly predicted as 

positive. FN represents the number of samples that are actually 

positive but incorrectly predicted as negative. 

 

(1) Accuracy 

Accuracy refers to the ratio of the number of correctly 

classified samples to the total number of samples, calculated 

as follows using formula (1): 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (1) 

 

(2) Precision and recall 

Precision (also known as accuracy in this context) refers to 

the ratio of correctly detected traffic objects (TP) to the total 

number of detected objects (TP+FP). It shows how accurate 

the detected traffic objects are. Recall (also known as 

sensitivity) refers to the ratio of correctly detected traffic 

objects (TP) to the total number of actual traffic objects 

(TP+FN). It indicates how many actual traffic targets have 

been correctly detected. The accuracy and recall rates are 

given by formulas (2) and (3) below. 

 

TP
Precision

TP FP
=

+
 (2) 

 

TP
Recall

TP FN
=

+
 (3) 

 

(3) Comprehensive evaluation indicators 

The comprehensive evaluation index (F1 score) is the 

harmonic mean of the accuracy rate and recall rate. The higher 

the F1 score, the more robust the classification model. As 

shown in formula (4) below. 

 

    
1 2

    

precision recall
F

precision recall


= 

+
 (4) 

 

5.2 Test result 

 

This study tested 600 infrared thermal images from the 

FLIR Thermal Starter dataset, which included 2,101 traffic 

targets such as pedestrians, motor vehicles, and bicycles. After 

300 iterations of model training, the detection accuracy 

reached 90.58%, successfully detecting 1,903 targets. The 

false detection rate was 5.85%, with 123 false positives, while 

the missed detection rate was 3.57%, with 75 missed targets. 

The model achieved a target detection speed of 140 FPS. As 

shown in Figure 12, accuracy increased with more training 

iterations, the loss value decreased, and the model began to 

converge. Both the accuracy and recall rates met the desired 

requirements. 
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Figure 12. Model training results 

 

Experiments have also demonstrated that the model, after 

undergoing image preprocessing steps (denoising, 

enhancement, and ROI extraction), achieves higher 

classification accuracy and faster detection speed. The 

comparison of model detection accuracy and speed across 

different image preprocessing methods is presented in Table 3. 

 

Table 3. Comparison results of different methods 

 

Algorithm 
Image Preprocessing 

Algorithm 
Accuracy Speed 

YOLO4 No Image Preprocessing 0.8032 50FPS 

YOLO4 
Denoising & Enhancement & 

ROI Extraction 
0.8561 65FPS 

YOLO5 No Image Preprocessing 0.8654 98FPS 

YOLO5 
Denoising & Enhancement & 

ROI Extraction 
0.9058 140FPS 

 

 

6. SUMMARY 

 

This article highlights the limitations of mainstream 

automotive sensor technologies in object detection, analyzes 

the advantages of infrared thermal imaging technology for 

ADAS system applications, and emphasizes the necessity and 

technical value of integrating an infrared thermal imager into 

the sensor suite. The study then combines image preprocessing 

with the YOLO algorithm to address the challenge of detecting 

moving objects in complex traffic environments, offering new 

insights for the practical application of automotive assisted 

driving systems. Future work will explore the use of color 

image fusion technology, which combines visible light and 

infrared thermal images, to enhance traffic detection and target 

recognition. This approach aims to improve the speed and 

accuracy of the target detection system while ensuring its 

adaptability across various scenarios. 
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