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The monkeypox virus is a DNA virus with a double-stranded structure and belongs to the 

Orthopoxvirus family. While skin lesions are a major indicator of monkeypox, they are often 

indistinguishable from early-stage chickenpox and measles lesions, leading to potential 

misdiagnoses. To address this issue, a new hybrid deep learning model has been developed 

to classify skin lesions into four categories: normal, monkeypox, chickenpox, and measles, 

using the publicly available Monkeypox Skin Images Dataset (MSID). The dataset was 

initially expanded through image preprocessing and data augmentation techniques. Seven 

pre-trained deep learning models were then trained individually. After evaluating their 

performance, the top three models were selected, and an ensemble model was created to 

improve overall accuracy through majority voting based on the probabilistic outputs from 

these models. The model’s effectiveness is validated by accuracy, recall, precision, F1 score, 

and a confusion matrix. The proposed ensemble model, which combines EfficientB3, 

ResNet152, and MobileNetV3, achieved a detection accuracy rate of 94.82%. 
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1. INTRODUCTION

1.1 Background 

The monkeypox virus, part of the Orthopoxviridae family, 

is a highly infectious DNA virus with a double-stranded 

structure [1-3]. It exhibits clinical symptoms similar to those 

of chickenpox and measles, and is categorized under the 

Poxviridae family and Orthopoxvirus genus [1, 4]. Identified 

initially in a monkey at a research facility in 1959, it was 

subsequently named monkeypox [5, 6]. The virus’s natural 

hosts include animals such as squirrels, Gambian opossums, 

and primates [1, 3], while transmission frequently occurs 

through rats and monkeys, with human-to-human spread also 

reported [7, 8]. 

The first recorded human infection of monkeypox occurred 

in 1970 in the Democratic Republic of Congo, coinciding with 

the global smallpox eradication campaign [9]. The virus 

spreads through direct physical contact, respiratory droplets, 

bites from infected animals, or exposure to contaminated 

surfaces [10, 11]. Monkeypox has an incubation period of 5 to 

21 days, with illness severity influenced by the individual's 

immune response and viral load [1]. Early symptoms, 

generally appearing within the first 1-5 days, include fever, 

swollen lymph nodes, muscle pain, fatigue, and headaches. A 

rash usually follows, appearing on areas such as the face, 

hands, and feet, and progresses through five stages: macules, 

papules, vesicles, pustules, and finally, crusted lesions, over a 

period of 2-4 weeks [12]. Rising transmission rates of 

monkeypox have led to increased concern. While only about 

50 cases were reported in Western and Central Africa in 1990 

[13], by January 2023, cases had surged to 65,353 across 100 

countries, spanning the Americas, Europe, Africa, the Eastern 

Mediterranean, and the Western Pacific regions [4, 8, 14, 15]. 

The World Health Organization (WHO) has classified 

monkeypox as a moderate health risk, underscoring the need 

for swift global response [1]. Despite considerable efforts, the 

Centers for Disease Control and Prevention (CDC) states that 

no fully effective treatment currently exists for monkeypox 

[12]. However, two drugs, Brincidofovir and Tecovirimat, 

which the CDC initially approved for chickenpox, are also 

available for treating monkeypox [16]. Though a vaccine is 

considered the ultimate solution for prevention, a reliable 

vaccine specifically for monkeypox in humans has not yet 

been developed, although research continues. Some countries 

have reportedly utilized varicella virus vaccines for 

monkeypox treatment [17]. 

Diagnosis typically starts with a visual examination of skin 

lesions, followed by a review of exposure history. The virus 

can be confirmed most accurately through electron 

microscopy of skin lesions. Polymerase chain reaction (PCR) 

testing from skin rashes, samples, fluids, crusts, or biopsies is 

another method used to detect monkeypox [1, 12, 13, 18], 

although PCR testing is not universally accessible. In certain 

cases, antigen and antibody detection methods can mistakenly 

identify monkeypox as the highly contagious varicella virus 

[18]. Mortality rates for monkeypox are estimated between 3% 

and 6% [19], making early detection and isolation crucial to 

controlling the virus’s spread. While PCR is the preferred 

confirmation method, image analysis can be an effective 
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preliminary diagnostic tool in regions with limited resources, 

helping to curb outbreaks. Monkeypox poses diagnostic 

challenges for clinicians due to its rarity and its skin 

manifestations, which can resemble those of chickenpox, 

measles, and smallpox [1, 4]. This resemblance has led 

researchers to focus on developing image-based classification 

models for skin lesions related to various viral diseases, 

including monkeypox, chickenpox, and measles. 

This study presents a hybrid model aimed at classifying skin 

lesions from monkeypox, chickenpox, measles, and healthy 

skin. The structure of the paper is outlined as follows: Section 

2 details the dataset used, data augmentation techniques, and 

the proposed detection framework; Section 3 reports the 

model’s results and compares them with findings from other 

research, based on performance metrics; Section 4 offers a 

summary of the key findings and suggests areas for further 

research. 

1.2 Contribution and novelty 

Research on detecting virus-related diseases through deep 

learning (DL) has largely relied on transfer learning, using 

well-established pre-trained DL models. However, previous 

studies highlight three main limitations that this research seeks 

to overcome: 

1. Most models are designed for binary classification,

typically distinguishing monkeypox from other

conditions. However, differentiating monkeypox lesions

from chickenpox and measles lesions is essential, given

their similar visual characteristics. This study develops a

DL model for a four-class classification problem (normal,

monkeypox, chickenpox, and measles), addressing these

distinctions more comprehensively.

2. Previous studies often employ outdated DL models for

predictions through transfer learning. In contrast, this

study introduces an ensemble deep neural network

framework to improve monkeypox lesion detection

accuracy. Seven pre-trained DL models were evaluated,

and the top three were combined using majority voting,

creating a more robust final prediction output.

3. Limited datasets in prior studies have restricted model

accuracy and reliability. This research utilizes the largest

publicly available monkeypox dataset, with additional

data generated through augmentation techniques to ensure

broader and more reliable model training.

This study’s contributions and innovations include the 

following: 

• By including three conditions with visually similar lesions,

this study addresses a four-class problem, advancing

holistic problem-solving in disease classification.

• Results for all seven pre-trained DL models in

monkeypox detection were generated and compared using

a refined architecture.

• The three highest-performing pre-trained models were

integrated through majority voting to strengthen detection

reliability and success rates.

• Results of the proposed ensemble framework are

compared with individual pre-trained network

architectures, highlighting the advantages of the ensemble

method.

1.3 Related works 

Research efforts towards early detection of the monkeypox 

virus have been somewhat limited, leaving room for 

improvement in the results. The studies in this area revolve 

around detecting the Monkeypox virus, detailing the datasets 

used, classification methods employed, and the achieved 

outcomes. 

Nayak et al. [20] leveraged deep learning methods to 

diagnose monkeypox by analyzing visual features in skin 

lesion images. To evaluate the effectiveness of their approach, 

they used a publicly accessible dataset and tested it on five 

well-established pre-trained neural networks: GoogLeNet, 

Places365-GoogLeNet, SqueezeNet, AlexNet, and ResNet-18. 

Each of these models brings unique strengths to feature 

extraction and image recognition, offering a diverse set of 

architectural frameworks for comparison. By applying these 

varied models, Nayak et al. aimed to determine which 

architecture would best distinguish monkeypox from other 

conditions based on skin lesion imagery, contributing to a 

more accurate and efficient diagnostic approach. The optimal 

parameters were selected using hyperparameter. With an 

accuracy of 99.49%, ResNet18 achieved the highest rating 

among the aforementioned models. A distinction was drawn 

between monkeypox and other diseases, citing Alakus [21]. 

Images of various illnesses as well as chickenpox were used. 

In the second phase, data classification was performed using a 

Siamese deep learning model, achieving an accuracy score of 

91.09%. Örenç et al. [22] created EfficientNetB3, ResNet50, 

and InceptionV3 using picture datasets that they acquired from 

Kaggle. The best model is resNet50, based on the three 

models' results. With an accuracy of 94.00%, resNet50 has the 

greatest accuracy value. Akın et al. [23] explored various deep 

learning models for classifying monkeypox skin lesions, 

including ResNet-18, ResNet-50, VGG-16, DenseNet-161, 

EfficientNet B7, EfficientNet V2, GoogLeNet, MobileNet V2, 

MobileNet V3, ResNeXt-50, ShuffleNet V2, and ConvNeXt. 

Among these models, MobileNet V2 demonstrated the highest 

performance, achieving an accuracy of 98.25%, sensitivity of 

96.55%, specificity of 100.00%, and an F1-score of 98.25%, 

making it the top performer in their analysis. Additionally, 

Özaltın and Yeniay [24] leveraged MobileNet V2 as a feature 

extractor, integrating it with a Support Vector Machine (SVM) 

for classification purposes. By applying the Chi-Square 

method to select relevant features, they successfully classified 

500 features with SVM, reaching an accuracy rate of 99.69%. 

This approach highlighted the effectiveness of combining deep 

learning-based feature extraction with traditional machine 

learning classifiers for improved accuracy in identifying 

monkeypox lesions. 

In a related study, Sathwik et al. [25] explored models such 

as SVM, CNN, VGG16, VGG19, ResNet50, ResNet101, 

EfficientNet B0, EfficientNet B1, and EfficientNet B2 for 

detecting monkeypox lesions using images from the Kaggle 

open-source monkeypox dataset. Among these models, 

ResNet and VGG19 reached the highest accuracy, each 

achieving 92% in identifying the lesions. 

A Q-learning approach for multilayer neural network 

parameter tuning and reinforcement learning for the 

classification of monkeypox images was created by Velu et al. 

[26]. For monkeypox, they received 96% f1 scores, 95% recall, 

and 95% accuracy. Almufareh et al. [27] utilized deep learning 

models (Inception V3, ResNet50, MobileNet V2, and 

EfficientNet B4) to classify skin lesions as either MPXV 

positive or negative. Their methodology was evaluated using 

both the Monkeypox Skin Image Dataset (MSID) and the 

Kaggle Monkeypox Skin Lesion Dataset (MSLD), assessing 
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model performance based on balanced accuracy, sensitivity, 

and specificity. In related research, Lakshmi and Das [28] 

employed models such as VGG16, VGG19, ResNet50, 

ResNet101, DenseNet201, and AlexNet for the detection and 

classification of monkeypox symptoms, with ResNet101 

achieving the highest accuracy at 98.59%. Uysal [29] 

developed a hybrid AI system for identifying monkeypox from 

skin images, utilizing a four-class classification scheme 

(chickenpox, measles, monkeypox, and normal). Models 

including CSPDarkNet, InceptionV4, MnasNet, MobileNetV3, 

RepVGG, SE-ResNet, and Xception were tested. To improve 

classification, the top two models were combined with a long 

short-term memory (LSTM) network, resulting in a unique 

hybrid model that achieved 87% test accuracy. Ahsan et al. [13, 

30] introduced the "Monkeypox2022" dataset, the first open-

access dataset for monkeypox classification, containing 1905 

images in four categories: monkeypox, chickenpox, measles, 

and normal. This dataset, gathered from online sources, was 

shared on GitHub. By applying their modified VGG16 deep 

neural network model, Ahsan et al. achieved a 78% accuracy 

in distinguishing monkeypox lesions in a binary classification 

problem (monkeypox vs. other). Ali et al. [19] also compiled 

skin lesion images into four distinct categories—monkeypox, 

chickenpox, measles, and normal—forming the "Monkeypox 

Skin Lesion Dataset (MSLD)," which has become a valuable 

resource for advancing research in this field. 

They employed VGG-16, ResNet50, and InceptionV3 deep 

neural network architectures for lesion class detection, with 

ResNet50 achieving 92.96% accuracy, VGG-16 reaching 

81.48% accuracy, and their ensemble model achieving 79.26% 

accuracy. They also developed a web application for online 

image detection, emphasizing the need for a larger dataset to 

account for demographic differences. Sitaula and Shahi [31] 

used thirteen pre-trained deep neural network architectures on 

the Monkeypox2022 dataset (three lesion variants and one 

normal class). The highest performing Xception and 

DenseNet169 DL models were combined using the majority 

vote approach to create an ensemble model with 87.13% 

accuracy. Islam et al. [32, 33] addressed data limitations by 

web scraping, curating the Monkeypox Skin Image Dataset 

2022. Their analysis of skin images in six categories resulted 

in ShuffleNet-V2 achieving the highest success with 79% 

accuracy. They further improved predictions with an ensemble 

model, reaching 83% accuracy. 

Alakus and Baykara [34] examined the similarity between 

monkey flower visuals and some types of sigils that could 

cause confusion during diagnosis. Ali et al. [19] designed a 

deep neural network to detect monkeypox by analyzing DNA 

sequences of HPV and MPV, reaching an average accuracy of 

96.08% and an F1 score of 99.83% in classifying DNA maps. 

Eid et al. [35] introduced a parameter-optimized LSTM deep 

network for monkeypox detection, achieving a predictive 

success rate of R² = 0.73 through hyperparameter tuning using 

the BER optimization algorithm. Abdelhamid et al. [36] 

enhanced monkeypox image classification by employing 

AlexNet, VGG-19, GoogleNet, and ResNet-50 models with 

transfer learning for feature extraction, reaching a 93.80% 

classification accuracy with GoogleNet and a hybrid feature 

selection method on the Monkeypox Skin Images Dataset 

(MSID). 

Sahin et al. [37] created an Android app for detecting 

monkeypox, leveraging pre-trained models such as ResNet18, 

GoogleNet, EfficientNetb0, NasnetMobile, ShuffleNet, and 

MobileNetv2, which were specifically optimized for 

monkeypox detection using MATLAB. MobileNetv2 

demonstrated the highest accuracy, reaching 91.11%, and was 

subsequently converted to a TensorFlow Lite model for 

integration into the Android platform. On three different 

mobile devices, average processing times for image extraction 

were recorded as 197 ms, 91 ms, and 138 ms. Miran et al. [38] 

employed an LSTM model to predict chickenpox cases using 

data from the CDC and web sources, achieving a correlation 

coefficient of 0.97114 and a sum of squared errors of 

341.01547, outperforming linear regression methods. Haque 

[39] applied five deep neural network models—VGG19, 

Xception, DenseNet121, EfficientNetB3, and MobileNetV2—

enhanced with a convolutional block attention module 

(CBAM) for monkeypox detection. The Xception-CBAM-

Dense architecture yielded the best results, with an accuracy 

of 83.89%. 

Kumar [40] worked on classifying monkeypox lesions 

using the Monkeypox-Skin-Lesion-Dataset. He extracted 

features with AlexNet, GoogleNet, and VGG16Net and 

utilized classifiers such as SVM, KNN, Naïve Bayes, Decision 

Tree, and Random Forest. The highest classification accuracy, 

91.11%, was obtained by combining the Naïve Bayes 

classifier with features from VGG16Net. Dwivedi et al. [41] 

compared three deep neural network models for monkeypox 

lesion detection. Their study on the Monkeypox2022 data set 

resulted in detection accuracies of 84%, 87%, and 77% for the 

ResNet50, EfficientNetB3, and EfficientNetB7 models, 

respectively. Ozsahin et al. [8] curated a data set with two 

classes (monkeypox and chickenpox) using images from two 

open-source datasets. They developed a CNN model with four 

convolutional layers to identify and categorize monkeypox 

and chickenpox lesions. Comparing their model with five 

well-known DL models (VGG16, VGG19, ResNet50, 

AlexNet, InceptionV3), their suggested technique 

significantly outperformed the others, achieving a test 

accuracy of 95%. A novel diagnostic approach was proposed 

by Almutairi [4] to divide patient cases into two categories as 

pox (monkeypox, chickenpox, and measles) and normal). 

They used five DL models that have already been trained 

(Xception, MobileNet, MobileNetV2, VGG19, VGG16, and 

MobileNet) for diagnostic framework. The hyperparameters 

of these models have been determined with a metaheuristic 

algorithm to provide high performance. In addition, seven 

machine learning models were utilized to classify the extracted 

features in this study. The effectiveness of the proposed 

framework was evaluated on two publicly accessible datasets, 

MSID and MPID, with results presented accordingly. The 

VGG16 model combined with maximum voting (k=7) yielded 

the highest performance within the diagnostic framework, 

achieving accuracy, sensitivity, specificity, precision, and F1 

score values of 97.44%, 94.81%, 97.67%, 94.72%, and 

94.67%, respectively. Gairola [42] employed the Monkeypox 

Skin Lesion Dataset (MSLD) for a two-class classification 

task, using feature extraction with three deep learning models 

and a fusion approach involving six different machine learning 

models (DT, SVM, KNN, LR, NB, RF). Their approach 

achieved the highest performance using the 

AlexNet+VGGNet+NB combination, with an accuracy of 

95.55%. 

Irmak et al. [43] trained and tested their classification 

approach for monkeypox lesions using the Monkeypox Skin 

Image Dataset, comparing the performances of three pre-

trained models—MobileNetV2, VGG16, and VGG19. Their 

findings indicated that MobileNetV2 had the highest 
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predictive accuracy, reaching 91.38%, with precision at 90.5%, 

recall at 86.75%, and an F1 score of 88.25%. Agrawal et al. 

[44] used ResNet50, EfficientNet-B3, VGG16, and 

InceptionNetV3 on an image dataset from Kaggle, with 

EfficientNet-B3 demonstrating the highest accuracy at 93%. 

Haque et al. [45] enhanced monkeypox detection through deep 

transfer learning combined with a convolutional block 

attention module (CBAM). They applied channel and spatial 

attention mechanisms to five models (VGG19, Xception, 

DenseNet121, EfficientNetB3, and MobileNetV2), achieving 

an accuracy of 83.89% with an Xception-CBAM-Dense-based 

architecture for distinguishing monkeypox from other 

conditions. 
 

 

2. MATERIAL AND METHOD 

 

The current study utilized the Monkeypox Skin Images 

Dataset (MSID) [46], the largest publicly available dataset for 

monkeypox classification, accessible at this link. 

(https://www.kaggle.com/datasets/dipuiucse/monkeypoxskini

magedataset). The dataset is divided into four categories: (1) 

normal/healthy, (2) chickenpox, (3) measles, and (4) 

monkeypox. All images were sourced from internet-based 

health websites. The dataset was developed by Diponkor Bala 

and Md. Shamim Hossain, affiliated with the Department of 

Computer Science and Engineering at Islamic University, 

Bangladesh, and the School of Computer Science and 

Technology at the University of Science and Technology of 

China (USTC), respectively. 
 

 
 

Figure 1. Sample image from the datasets 
 

Table 1. Features of MSID dataset 

 

Class Name 
Account of 

Image 
Size of Image 

Class-1: Chickenpox 107 

224×224 

Class-2: Measles 91 

Class-3: Monkeypox 279 

Class-4: Normal 293 

Total 770 

 

Table 1 displays the distribution of images across the 

different classes in the dataset, along with details about image 

sizes. Figure 1 provides a sample image from each class within 

the dataset. 

 

2.1 Image pre-processing 

 

In order to increase success in classification studies, two 

basic pre-treatments are generally applied to the data set. The 

first of these processes is image enhancement and the second 

is data set duplication. Poor camera quality and environmental 

conditions cause digital image degradation. Image purification 

gives good results to increase classification success. Therefore, 

within the scope of this study, image contrast enhancement 

was applied to the data set in order to better see the details of 

the region of interest in the image. In this study, histogram 

equalization was applied to improve image quality by 

enhancing contrast and emphasizing pixel differences. This 

process involved creating a histogram based on pixel intensity 

values and transforming it to achieve a more evenly distributed 

contrast. Given the limited size of the dataset, data replication 

techniques were also employed to enhance classification 

accuracy within the deep neural network architecture. Table 2 

summarizes the data augmentation techniques and associated 

rates/parameters used in this research. Various 

transformations based on position, color, and zoom were 

applied to generate image variations while maintaining dataset 

integrity. The parameters for these techniques were selected 

based on insights from prior studies and similar research in the 

field. These augmentation methods not only improve the 

model's ability to generalize and predict accurately but also 

help to prevent overfitting by introducing diversity and 

flexibility to the training data [33]. 

 

Table 2. Data augmentation methods used in this study 

 
 Augmentation Method Range 

Shear 0.2 

Zoom 0.2 

Rotation 0.2 

Height weighting 0.2 

Channel ship 0.2 

Width shift 0.2 

Horizontal flip True 

Vertical flip True 

 

In this study, various data augmentation methods have been 

utilized. 'Shear' is used to introduce deformation by shifting 

the image at a certain angle. 'Zoom' creates different 

perspectives by zooming in or out the image. 'Rotation' adds 

diverse viewpoints by rotating the image at a certain angle. 

Additionally, 'Height weighting' enables obtaining samples of 

different sizes by altering the height dimension of the image. 

'Channel shift' introduces color variations by shifting the color 

channels. 'Width shift' generates samples of different sizes by 

altering the width dimension of the image. 'Horizontal flip' 

mirrors the image along the horizontal axis, while 'Vertical 

flip' mirrors it along the vertical axis, offering different 

perspectives of the original image and increasing data 

diversity. Combined with other transformations like rotation, 

scaling, brightness adjustment, and zoom, these methods 

improve the model's ability to recognize new, unseen images. 

These techniques help the model learn from a broader data 

range, preventing overfitting and enabling stronger 

classification performance. 

 

2.2 Proposed pre-trained hybrid deep learning model 

(VirLesDetNet) 

 

In this study, a new diagnostic framework has been 

proposed to classify cases under four classes: normal, measles, 

chickenpox and monkeypox. The primary goal of the proposed 

diagnostic framework is to enhance the prediction success by 

combining the three best-performing out of the 9 pre-trained 

CNN architectures. Figure 2 illustrates a graphical 

representation of the proposed method. First, mesh weights 

pre-trained using the ImageNet dataset were used as starting 

weights in monkeypox network training. Table 3 summarizes 

the layer structure of the proposed framework.  

The pre-trained model, called the base model, is followed 

by the dropout, flattening, dense and drop-dense, and output 

layers, respectively. There are7 pre-trained CNN models used 
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in this study. These models are DenseNet 121, DenseNet 169, 

DenseNet 201, EfficientNetB3, EfficientNetB7, 

EfficientNetB5, MobileNetV3, ResNet152. Each model's 

predictions were assessed using five performance metrics, and 

the three best-performing models were then combined through 

a majority voting approach to enhance overall accuracy. In this 

system, each classifier casts a vote for a specific class, and the 

class that receives the majority of votes becomes the final 

prediction. 
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Figure 2. Proposed ensemble deep learning based model (VirLesDetNet) 

 

Table 3. Proposed frame with modified architecture 

 
Layer Type Specifications 

Image_RGB Dimensions: 224×224×3 

DenseNet121, DenseNet201, EfficientNetB3, EfficientNetB7, 

EfficientNetB5, MobileNetV3, ResNet152 
Pre-trained base models 

Dropout Dropout Rate: 0.5 

Flatten Applied after Dropout Layer 1 

Dense Units: 256, Activation: ReLU 

Dropout Dropout Rate: 0.5 

Dense Units: 128, Activation: ReLU 

Dense Units: 4, Activation: Sigmoid 

 

2.3 Model hyperparameters optimization 

 

In DL models, the most basic elements that determine the 

structure of the network and affect the performance / success 

of the network are the unique variables (hyperparameters) of 

the network. In order for the model prediction success to be 

high, it is extremely important to choose the optimal 

hyperparameters, that is, to optimize the parameters. Since the 

transfer learning method was adopted in the current study, pre-

trained models’ hyperparameters were transferred without 

changing them directly. The primary goal of the proposed 

diagnostic framework is to ensure consistency and reliability 

by initially maintaining fixed hyperparameters across the 

model configuration. However, to achieve the highest possible 

performance, the hyperparameters of the pre-trained model 

were carefully fine-tuned using a grid search approach. This 

process involved testing a range of batch sizes, from 10 to 100, 

and experimenting with different epoch values between 50 and 

100 to find the most effective combination. Additionally, the 

influence of seven distinct optimizers was examined to 

identify the one that would yield the most stable and accurate 

results for this application. The grid search also explored 

varying learning rates within the range of [0.001, 0.3] and 

momentum values from [0.0, 0.9], allowing for an in-depth 

understanding of how these parameters impact the model’s 

ability to converge and avoid overfitting. Following extensive 

testing, the optimal configuration was identified as a batch size 

of 32, 100 epochs, the Stochastic Gradient Descent (SGD) 

optimizer, a learning rate of 0.001, and a momentum value of 

0.0, yielding the best overall performance.  

 

2.4 Performance evaluation metrics  

 

To assess the effectiveness of the proposed framework for 

monkeypox detection, five primary performance metrics were 

calculated: accuracy, precision, recall, F1 score, and 

specificity [47]. These metrics provide a comprehensive 

evaluation of the model's classification performance, 

balancing both accuracy and the model’s ability to correctly 

identify positive and negative cases. In these formulas, TP 

denotes the count of true positives, representing correctly 

identified positive cases. FN stands for false negatives, 

indicating instances where positive samples were mistakenly 

classified as negative. TN refers to true negatives, representing 

the correctly identified negative cases, while FP represents 

false positives, where negative samples were incorrectly 

classified as positive. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 
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Precision =
TP

TP + FP
 (2) 

  

Recall =  Sensitivity =
TP

TP + FN
 (3) 

  

Specificity =
TN

TN + FP
 (4) 

  

F1-Score =
2 ×  Precision ×  Sensitivity 

(Recall+Precision) 
 (5) 

 

 

3. RESULT AND DISCUSSION 
 

Within the scope of this study, all image preprocessing, data 

replication, model creation, model training and calculation of 

performance metrics were developed using Keras package and 

Python programming language. The generated ensemble 

diagnostic method model was created utilizing architectures 

on the Kaggle platform and was accelerated using the 

platform's GPU capability. Table 4 shows the distribution of 

train, validation and test datasets for both cases. In this 

distribution, the ratio of 80:20:10 was adopted and the 

selection was made randomly. Data augmentation was applied 

solely to the training and validation sets, keeping the test set 

unchanged. This approach enhances test reliability by 

evaluating model performance on original data. 

 

Table 4. Assignment of dataset split to train, validation and 

test 

 
Train Set Validation Set Test Set 

22176 4928 77 

 

Figure 3 and Table 5 present a performance comparison 

chart of seven pre-trained DL models and the proposed 

ensemble diagnostic framework approach. In addition, the 

matrices of the confusion matrices showing how many of the 

models predicted to belong to the true class and how many to 

the false class from the 77 test image data are presented in 

Figure 3. 

Accuracy alone does not adequately capture the models' 

performance. Thus, the proposed models were further assessed 

using precision, recall, and F1 score, offering a more 

comprehensive evaluation. Table 5 summarizes obtained 

results. When the data are reviewed, it is clear that the 

ResNet152 design had the best success rate (94%), while the 

DenseNet121 architecture had the lowest success rate (75%). 

The Proposed Ensemble model outperforms the best pre-

trained model by 2% in classification success. The confusion 

matrices of five models are shown in Figure 3.  

 

Table 5. Performance results of models for test dataset 

 
Base-Model Class No Precision Recall F1-Score AUC Accuracy 

DenseNet 121 

1 0.40 0.18 0.25  

0.75 
2 0.50 0.56 0.53  

3 0.81 0.89 0.85  

4 0.84 0.90 0.87  

DenseNet 201 

 

1 0.75 0.27 0.40  

0.78 
2 0.32 0.56 0.59  

3 0.84 0.93 0.88  

4 0.76 0.90 0.83  

EfficientNetB3 

1 0.85 1.00 0.92  

0.92 
2 0.86 0.67 0.75  

3 1.00 0.89 0.94  

4 0.91 1.00 0.95  

EfficientNetB7 

1 0.64 0.82 0.72  

0.86 
2 0.75 0.67 0.71  

3 0.96 0.82 0.88  

4 0.90 0.97 0.93  

EfficientNetB5 

1 0.62 0.73 0.67  

0.83 
2 0.89 0.78 0.78  

3 0.88 0.75 0.81  

4 0.90 0.97 0.93  

MobileNetV3 

1 0.71 0.91 0.80  

0.91 
2 1.00 0.89 0.94  

3 0.96 0.86 0.91  

4 0.93 0.97 0.95  

ResNet152 

1 0.91 0.91 0.91  

0.92 
2 1.00 0.78 0.88  

3 0.96 0.89 0.93  

4 0.88 1.00 0.94  

Ensemble Model 

(EfficientB3+ResNet152+MobileNetV3) 

1 0.91 0.91 0.91  

0.94 
2 1.00 0.89 0.94  

3 0.96 0.89 0.93  

4 0.91 1.00 0.95  
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Figure 3. Confusion matrix of used all model for test dataset 

 

Table 6. Comparison of the results obtained with the literature 

 

Ref. Class Method Accuracy 

Ali et al. [19] 2 (Monkeypox or other) 
VGG16 / ResNet50 /InceptionV3 

Ensemble approach 

81.48 /82.96 

/74.07 

79.26 

Nahak et al. [20] 2 (Monkeypox or other) ResNet18 99.49 

Alakus [21] 2 (Monkeypox or other) Siamese deep learning 91.09 

Örenç et al. [22] 2 (Monkeypox or other) ResNet50 94.00 

Akın et al. [23] 2 (Monkeypox or other) ResNet18 98.25 

Özaltın and 

Yeniay [24] 
2 (Monkeypox or other) MpbilNet +K2 and SVM 99.69 

Sathwik et al. 

[25] 
2 (Monkeypox or other) VGG19 +ResNet 92.00 

Velu et al. [26] 2 (Monkeypox or other) Q Öğrenme 96.01 

Almufareh et al. 

[27] 
2 (Monkeypox or other) Inception V3 93.33 

Lakshmi and Das 

[28] 
2 (Monkeypox or other) ResNet101 98.59 

Uysal [29] 
4 (Monkeypox, Chickenpox, 

Measle, Normal) 
LSTM 87.00 

Abdelhamid et al. 

[36] 
2 (Monkeypox or other) 

GoogleLeNet+ Sober 

feature extraction method 
93.80 

Şahin et al. [37] 2 (Monkeypox or other) 
ResNet18 /GoogleNet /EfficientNetb0 

NasnetMobile /ShuffleNet /MobileNetv2 

73.33 /77.78 

/91.11 

86.67 / 80.00 

/91.11 

Haque [39] 2 (Monkeypox or other) 

VGG19-CBAM / Xception- CBAM 

DenseNet121-CBAM /MobileNetV2-CBAM /EfficientNetB3-

CBAM 

71.86 

/83.89/78.27 

74.07 /81.43 

Kumar [40] 2 (Monkeypox or other) 
VGG16Net +SVM /VGG16Net +Naïve Byes/ VGG16Net +KNN 

/VGG16Net +DT/ VGG16Net +RF 

75.55 /91.11 

/84.44 

84.44 /91.11 

Ozsahin et al. [8] 
2 (Chickenpox or 

Monkeypox) 
Proposed CNN Model 95.00 

Almutairi [4] 2 (Normal or pox) VGG19 and majority voting 97.44 

Gairola [42] 2 (Monkeypox or other) AlexNet+VGGNet+NB 95.50 

Irmak et al. [43] 
4 (Monkeypox, Chickenpox, 

Measle, Normal 
MobilNetV2 / VGG16 /VGG19 

91.37 

/83.62/77.58 

Agrawal et al. 

[44] 
2 (Monkeypox or other) EfficientNetB3 93.00 

Haque et al. [45] 2 (Monkeypox or other) Xception-CBAM-Dense 83.89 

In current study 
4 (Monkeypox, Chickenpox, 

Measle, Normal) 
(EfficientB3+ResNet152+MobileNetV3) 94.82 
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Although there are few research studies on Monkeypox 

lesion categorization in the literature, we believed that 

comparing the findings of the approach we developed with 

existing literature would be informative. Table 6 provides a 

summary of studies that have used the Monkeypox Skin 

Lesion Dataset (MSLD) along with the results of the current 

investigation. Upon analyzing previous studies, we could not 

find any other study that analyzed the same dataset using four 

categories, except for Uysal [29] and Irmak et al. [43]. Irmak 

et al. [43] employed MobileNet architectures and achieved a 

91% accuracy rate, while Uysal [29] attained an 87% accuracy 

rate with LSTM. In the current study, we present the 

performance of a network architecture developed for four 

categories, anticipating a lower classification success 

compared to the two-category problem. However, it is evident 

that the proposed method demonstrates classification 

performance even higher than the majority of two-category 

monkeypox classification problems found in the literature. 

We developed an ensemble model by synthesizing the 

estimation results of the MobiNetV3, ResNet152, and 

EfficientNetB3 architectures with the hybrid diagnostic 

framework approach we proposed. We successfully increased 

the estimation success rate by 3% for multiclass with this 

approach. However, as seen in the Current Study, the 

combination of multiple models and the classification of 

multiple diseases can enhance classification performance. 

 

 

4. CONCLUSION AND FUTURE WORKS 

 

Monkeypox lesions are challenging to detect at an early 

stage, as they exhibit similarities to chickenpox and measles. 

Therefore, there is a need for computer-aided software to 

detect monkeypox lesions with high accuracy and reliability. 

In the current study, an ensemble approach is proposed to 

obtain the final result by combining the prediction results of 

the three highest-performing CNN models for this problem.  

This study utilized the Monkeypox Skin Image Dataset for 

both training and testing. Four key metrics—accuracy, 

precision, recall, and F1 score—were calculated to assess the 

proposed approach. The Ensemble model achieved 94% 

accuracy, 94% precision, 92.25% recall, and an F1 score of 

93.25%. The majority voting method improved accuracy by 

3% over the top-performing individual deep learning model. 

Accurate and rapid disease classification is crucial for tracking 

its spread and supporting the timely implementation of public 

health measures. Given the highly contagious nature of the 

virus, an early and precise diagnosis enables patient isolation, 

helping to prevent further transmission within the community. 

This will enable patients to access appropriate treatment early, 

thereby increasing their chances of recovery. 

Finding adequate datasets in this field was extremely 

difficult, which made achieving acceptable performance and 

reliability very challenging. The plan for future studies is (1) 

to create generalizable results across diverse demographics, 

the dataset should be expanded, and worldwide relationships 

in data gathering and sharing should be developed; (2) to 

widen the research by trying different ensemble algorithms; (3) 

to utilize metaheuristic optimization techniques to optimize 

hyperparameters, and (4) to develop lightweight deep neural 

network models that can run on embedded system boards. 
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