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In this paper, we have proposed a new glaucoma classification approach that employs a 

wavelet neural network (WNN) on optimally enhanced retinal images’ features. To avoid 

tedious and error-prone manual analysis of retinal images, computer-aided diagnosis (CAD) 

substantially aids in robust diagnosis. Our proposal has a significant contribution to make in 

all major CAD phases. Retinal image quality improvement is attempted in two phases. The 

retinal image preprocessing phase improves the brightness and contrast of the image through 

quantile-based histogram modification. It is followed by the image structural enhancement 

phase, which involves multi-scale morphological operations using image-specific dynamic 

structuring elements (SE). Graph-based retinal image features in terms of Local Graph 

Structures (LGS) and Graph Shortest Path (GSP) statistics are extracted from various 

directions along with the statistical features from the enhanced images. WNN is employed 

to classify glaucoma retinal images with a suitable wavelet activation function. The 

performance of the WNN classifier is compared with that of multilayer perceptron neural 

networks (MLP) and the state-of-the art approaches to prove its efficacy. 
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1. INTRODUCTION

In human life, vision plays a critical role in coordinating 

daily activities. There are harmful diseases that can affect 

vision more than the adverse effects caused by accidents. The 

primary cause [1] of vision disability is glaucoma 

development. There are a variety of approaches to detecting 

glaucoma in the early stages [2], most of which are based on 

medical examination through the fundus (retinal) image 

structures [3]. Manually inspecting retinal images, on the other 

hand, is a tedious task. In this case, CAD [4] has proven to be 

a valuable tool for ophthalmologists in interpreting the eye 

fundus images for a rapid and accurate glaucoma screening. 

The major phases of CAD are image improvement, feature 

extraction, and classification. Several existing CAD 

approaches exhibit potential in screening glaucoma from 

various medical imaging modalities such as fundus 

photography. However, they come with certain limitations. 

The current approaches use large retinal image datasets to 

demonstrate their effectiveness, but acquiring these datasets is 

challenging and time-consuming. Another significant 

limitation is class imbalance, where the number of healthy 

samples greatly exceeds or falls short of the number of 

glaucomatous samples. This can bias the model toward the 

majority class and diminish its ability to accurately classify the 

minority class. Present convolutional-based glaucoma 

screening approaches are often criticized for their lack of 

interpretability since originally they are trained on non-

medical images. In medical contexts, understanding the 

rationale behind a model's classification decisions is essential 

due to the significant consequences of these decisions. Lack of 

model generalization is another issue in the retinal image 

pattern recognization. Retinal images frequently lack quality 

and standardization due to factors like low contrast, uneven 

illumination, and imaging conditions. While current CAD 

approaches focus primarily on identifying retinal image 

patterns, there's a need to address image enhancement. 

Improving visualization of retinal structures and abnormalities 

can facilitate clinicians in detecting subtle disease signs. 

Techniques that enhance features like blood vessels, the optic 

disc (OD), and the macula can aid in early glaucoma detection 

and accurate diagnosis. 

To overcome these challenges, a CAD-based glaucoma 

screening approach is needed, one that prioritizes 

interpretability and generalization, even when faced with 

limited training data and potential class imbalance issues. Such 

an approach should place equal emphasis on retinal image 

improvement and pattern identification. Thus, in this paper, we 

have proposed a novel CAD system whose significant 

contributions are utilizing quantile-based preprocessing for 

mapping image histograms and complex wavelet-based image 

enhancement using dynamic SE. It is followed by a robust 

feature extraction phase that considers both statistical and 

graph-based features, which are employed for retinal image 

classification using WNN and MLP. 

The rest of the paper is organized into different portions: 

Section 2 reviews the related work; Section 3 illustrates the 

proposed CAD-based approach for glaucoma diagnosis; 

Section 4 analyzes the results for performance appraisal, and 

Section 5 concludes the paper. 
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2. RELATED WORK 

 

In the proposed method, our contribution exists in retinal 

image enhancement, novel feature extraction, and 

classification. So far, numerous practices have been proposed 

in all these CAD phases. Out of all the contributions, some 

significant contributions are discussed below. 

It is essential to improve the visual quality of retinal image 

structures for effective feature extraction. Gupta and Tiwari 

[5], Kim [6], and Sim et al. [7] employ adaptive gamma 

correction (AGC) and histogram equalization (HE) 

approaches to enhance the luminosity of the image without the 

occurrence of a gamut problem. Histogram modification based 

on recursive procedures and optimization is given by Wang et 

al. [8] and Arici et al. [9], but these approaches are not optimal 

due to their recursive nature. Thresholding is applied by Khare 

[10] to correct the non-illumination regions before enhancing 

contrast using the HE approach. Luo et al. [11] applied non-

linear transformations to images to improve their contrast 

before noise suppression. A discrete wavelet transformation 

(DWT) is applied by Mallat [12]. DWT limitations are 

addressed by Selesnick et al. [13] by proposing a complex 

wavelet transformation (CWT)-based image enhancement. 

The contourlet transform (CT) of the image was proposed by 

Feng et al. [14], using non-linear functions. Images are 

sharpened and smoothed by Sujitha et al. [15] before denoising 

them. Liao et al. [16] applied a top-hat transformation (TH) 

with multi-scale to improve the image based on brighter and 

dim regions. 

The proposed approach mainly concentrated on statistical 

and graph-based features of the retinal image. The co-

occurrence matrix of image gray level (GLCM) was used by 

Tabbakh et al. [17] to extract the second-order features. 

Wavelet features are extracted from the image by Dua et al. 

[18] to classify images using Naïve Bayes (NB) [19], Support 

Vector Machine (SVM) [20], and Random Forest (RM) [21] 

approaches. Ranked cross-entropy image features are utilized 

by Shubhangi and Parveen [22]. Statistical image features are 

employed by Septiarini et al. [23] for higher accuracy. Local 

binary pattern (LBP)-based features are extracted by de Sousa 

et al. [24] for glaucoma classification. Singh et al. [25] 

extracted DWT features from the vessel's free optic disc area 

to get higher accuracy in ANN [26] classification. A hybrid 

feature set is formed with structural and non-structural features 

by Salam et al. [27]. Images’ higher-order spectra (HOS) 

features are optimized by linear discriminant analysis (LDA) 

prior to applying SVM and NB classifiers by Noronha et al. 

[28] and Acharya et al. [29]. Image texture features can also 

be extracted from the equivalent graphs obtained from fundus 

images, which come under graph-based features. Abusham et 

al. [30] formed a binary relationship pattern for texture 

features using the graph formed by image mapping. Junior et 

al. [31] extracted the shortest paths from the image equivalent 

graph to generate texture features for image categorization. 

The nearest neighbor classifier (k-NN) is employed by Li et al. 

[32] on statistical retinal image features for higher accuracy. 

It has been observed from the existing literature that prior to 

feature extraction, image quality improvement is carried out 

either by focusing on image brightness and contrast or on 

image structures, but not both. Regarding feature extraction, 

there is no specific approach to capturing the image texture 

pattern. This motivated us to propose a novel approach for the 

image quality enhancement, feature extraction, and 

classification phases of CAD-based glaucoma detection. 

Concerning retinal image quality, both colour adjustment and 

retinal structural improvement are necessary. Thus, we have 

incorporated two sub-phases into retinal image quality 

improvement to achieve intensity adjustment and structural 

improvement. The CAD approach to image classification is 

heavily based on the patterns of image textures. This led us to 

identify a new approach called graph-based image feature 

extraction, along with statistical features for glaucoma 

classification. We have introduced WNN for glaucoma 

screening. Our proposed approach employs WNN for the first 

time in glaucoma classification, based on existing literature. 

 

 

3. THE PROPOSED CAD-BASED GLAUCOMA 

DIAGNOSIS 

 

The proposed CAD approach is carried out on various 

public datasets [33] such as: 

ACRIMA: This dataset has been created with a pixel 

resolution 2048×1536 as a part of the ACRIMA project by 

CVB labs, Spain. These retinal images are captured from the 

selected patients with a 35° Field of View (FOV) with a 

Topcon TRC fundus camera and labelled by Fisabio Medical 

Ophthalmology experts. This dataset contains a total of 705 

fundus images, of which 309 are healthy images and 396 are 

glaucomatous retinal images. 

ORIGA: This dataset is an online repository that contains 

650 labelled retinal images with 482 healthy and 168 

glaucomatous cases. These retinal images were captured from 

the Singapore Malay Eye Study by the eye research institute 

(SiMES) in a multi-environment framework that supports 

image segmentation, grading, and classification. Image 

grading follows the Centre for Eye Research Australia's 

protocol. 

DRISHTI: This dataset has been published by the Centre 

for visual information technology, IIIT-Hyderabad in 

collaboration with Arvind eye hospital, Madhurai, India. It 

contains 101 fundus images out of which 31 are healthy 

images and 70 are glaucomatous images. Images are acquired 

from the dilated eyes of above 40 years age patients with a 

FOV of 30°, OD cantered with 2896×1944 resolutions. The 

primary objective of this dataset is to segment optic nerve head, 

i.e. OD of retinal images. 

 

 
 

Figure 1. High level process flow of the proposed method 

 

The overall flow of the proposed method of CAD glaucoma 

diagnosis is shown in Figure 1. The proposed process begins 

with retinal image preprocessing followed by enhancement for 

the visual improvement of images. Each image feature vector 

is fed to WNN and MLP classifiers to diagnose the image type 

(normal or abnormal). Classifier findings are analyzed to draw 

significant conclusions. This section explains the proposed 

image preprocessing, enhancement, and feature extraction 

w.r.t corresponding algorithm steps (An:Sn). 
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3.1 Retinal image pre-processing 

 

The proposed preprocessing qualitatively improves the 

retinal image by systematically increasing brightness and 

contrast, as given in the Algorithm: A1. It begins by making 

the image's gray intensity (GI) histogram (HISTGI) closer to the 

uniform histogram (HISTU) (A1:S2) using an optimal 

proportion value αopt. We have experimented with various 

values for αopt and qualitative results are obtained for 

0.3≤αopt≤0.7 with no over improvement. Using the resultant 

mapped histogram (Mh), a normalized CDF (FCDF) is 

generated. Instead of conventional FCDF usage, a Quadratic 

Rank Transmutation Map (QRTM) [34] transformation of 

CDF (CDFT) has been applied to provide a skew-kurtotic 

normal distribution (A1:S4). In this transformation, range of δ 

is [-1, 1]. Then, modified adaptive gamma correction (AGC) 

[35] is carried out to form a brighter image (IAGC) (A5:S5) 

using image’s maximum intensity Imax. During this process, 

image color information may slightly fluctuate, which can be 

restored by the input retinal image (IORG) color information 

(A1:S6). The resultant IMGpre is a luminous and brightness 

enhanced image. It is then subjected to contrast improvement 

using a quantile-based approach. In terms of image intensities, 

quantiles are intensity values generated using the probability 

distribution function (PDF) of the image histogram (Hpre) over 

maximum and minimum intensities [Imin, Imax]. In this 

approach, t-quantiles are generated for IMGpre by histogram 

splitting, as Hpre1 =[i0, i1], Hpre2 =[i1, i2],…,Hpre-t =[it-1, it] and 

the corresponding normalized CDFpre-k for each sub-histogram 

is generated. The final pre-processed image (IMGPRE) is 

obtained using sub-histogram mapping (A1:S7). The resultant 

pre-processed images are enriched with sufficient brightness 

and contrast. These pre-processed images are fed into the 

image enhancement. 

 

3.2 Retinal image enhancement 

 

The proposed enhancement technique aims to increase the 

quality of retinal image structures as described in Algorithm: 

A2. Dual tree CWT (DT-CWT) high and low-pass sub-bands 

(SB) [36, 37] are obtained from IMGPRE. After this, the low 

and high pass SB coefficients (C) are processed independently 

as described in the following sub-sections. 

 

3.2.1 Low-pass coefficient enhancement using dynamic SE-

based morphological operation 

 

 
 

Figure 2. Local S-curve image transformation procedure 

 

This approach utilizes an improved Top-Hat transformation 

(TH) using the white top-hat (THW) and bottom top-hat (THB) 

operations for the low-pass image coefficient mapping. Usage 

of the same SE leads to poor utilization of pixel neighbor 

information. To address this, our proposed approach performs 

TH transformation on multiple scales with varied SE for 

processing brighter and darker image regions. It defines SE 

dynamically (Dse) based on the s-curve optimization principle 

(illustrated in Figure 2), which transforms larger gray pixel 

values into small higher ranges and smaller gray pixel values 

into short-ranges. 

 

Algorithm 1: Retinal image pre-processing 

Input: Gray scale retinal image: GI 

Procedure: PRE-PROCESS(GI) 
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end  

Output: Brightness and contrast improved image: IMGPRE 

 

We have constructed the DSE={SE1, SE2 … SEl} using the 

initial SE0 (A2:S23). The ith SE is dynamically constructed by 

operating on SE0 for t-times, and its value is determined by 

using local S-transformation. In the initial iteration, SEi is 

obtained with t=1. It is followed by low-pass (LS) SB image 

enhancement (LSen) (A2:S24). Local s-transformation is 

operated on LSen. The edge content [38] of the s-curve 

transformed images (EDC_LS) is measured (A2:S27). The 

distance (Diffmax) to the original image’s edge content value 

(EDC) is the deciding factor for t value and SEi (A2:S28 to S29). 

At the end of iterations, the t value is determined for Dse. Using 

Dse in 𝑇𝐻𝑊𝑖
 and 𝑇𝐻𝐵𝑖

,the LS image is enhanced (LSfinal) by 

upgrading brighter (DTHW) and darker (DTHB) regions (UBD) 

at equal rates using the control limit (К) based on the edge 

detection principle (A2:S9 to S11). 

 

3.2.2 High-pass coefficient enhancement 

The process starts by applying CT to retinal images high-

pass (HS) image’s DT-CWT coefficients to eliminate noise 

components. The noise-free HS image (HSNoise-free) is 

generated using noise variance (NoiseSB), SB’s variance 

(VarianceSB) of size p×q w.r.t. A×A sized neighborhood area 

(A2:S15 to S17). 

 

3.2.3 Formation of enhanced retinal image 

Inverse DT-CWT is applied to combine the processed DT-

CWT LS and HS to produce a fully improved retinal image 

(IMGenh) (A2:S17). The process corrects the over-brightness 

and contrast in the enhanced retinal images, and the significant 

retinal structures are visually highlighted. The sample results 

of image preprocessing and enhancement are shown in Figure 

3. 

 

3.3 Retinal image feature extraction 

 

The overall feature extraction process is described in the 

Algorithm: A3. Both statistical and graph-based retinal image 
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features have been extracted. 

 

 
 

Figure 3. Sample results (a) Original images;  

(b) Preprocessed images; (c) Enhanced images 

 

3.3.1 Retinal images’ statistical features extraction 

A two-stage DWT using biorthogonal 6.8 wavelet filter 

banks has been applied to the enhanced retinal image [39]. The 

resultant coefficients (Cf) are used to extract first- and second-

order statistical (FOS and SOS) features. Retinal images’ 

characteristics that fall into the non-stationary and non-linear 

categories are captured with higher order cumulants (HOC) 

features using moments of higher order. Since a retinal image 

comes under the non-stationary signal category, third-order 

cumulants in various directions (i.e., 10°, 50°, 90°, 130°, and 

180°) are considered. Signal amplitude and phase information 

are used for higher order statistical (HOS) feature extraction 

in various directions [40]. 

 

3.3.2 Retinal images’ graph-based features extraction 

Graph representations of images provide a structure for 

pictorial data encoding. The formed graph reflects the image’s 

hidden patterns through its structures, which are highly 

significant in image description and identification. In this 

approach, LGS and shortest path (SP) statistics have been 

considered for graph-based feature extraction. 

 

Algorithm 2: Retinal image enhancement 

Input: Brightness and contrast improved image:IMGPRE 

Procedure: ENHANCEMENT (IMGenh) 

1. 
PREIMG IMGwhile do  
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32. end  

Output: Structurally improved image: IMGenh 

 

Local graph structure (LGS) features. The LGS feature 

extraction operates on a graph theory that considers image 

pixels as vertices (VertexG) and their neighborhood relations. 

It applies the threshold operation to neighboring pixels, based 

on current pixels in different directions. To avoid the 

imbalanced neighbor covering limitation with the asymmetric 

LGS, in this approach, a symmetrically shaped neighborhood 

is considered for every pixel point. The enhanced retinal image 

pixel gray intensities are considered as vertices. In the earlier 

work, only the left and right regions of the pixel are considered 

for forming a symmetric region [41] that represents the pixel’s 

neighbor relationship. In this approach, the top and bottom 

regions are considered along with the left and right regions to 

form symmetric regions for every pixel. Symmetric regions 

are considered for the immediate neighbors of the current pixel 

in a predefined order, as indicated in Figure 4. 

The LGS operator compares pair-wise pixel gray values 

starting from the center pixel in the given directions. While 

moving between a pair of points (directions are shown by 

arrows), the connecting edge is assigned a label of zero in the 

case of a higher to lower intensity value; otherwise, it is 

assigned a label of one. This process is continued for every 

pair of vertices in the central pixel neighborhood symmetric 

region (SNR). It results in two patterns of size P bits: PatternLR 
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by threshold bits from the left to right regions and PatternTB 

by threshold bits from the top to bottom regions. The 

magnitude of the neighbor relation pattern (NRP) is generated 

from the threshold operation (Thr) (A3:S6 to S9). 

 

 
 

Figure 4. Neighbor relation pattern extraction using LGS 

operation 

 

 
 

Figure 5. Sample result of proposed LGS (a) Enhanced and 

(b) Resulted LGS retinal image 

 

A threshold operation is applied on every central vertex (CV) 

with horizontal and vertical neighbor vertices (HNV or VNV) 

that results in two magnitude values for the left-to-right 

(NRPLR) and top-to-bottom directions (NRPTB) of the CV to 

generate the final NRP (NRPFinal) (A3:S10). Each CV is then 

replaced with the corresponding NRPFinal value to generate 

mapped retinal images, as shown in Figure 5. A histogram 

(HLGS) is generated for the resultant retinal LGS image of size 

𝑁𝑟 × 𝑁𝑐. The histogram features for every intensity level (L) 

are generated using the probability density (ProbLGS) of HLGS 

(A3:S12). 

 

Graph shortest path (GSP) features. The proposed GSP 

approach is a powerful tool that explores retinal image textures 

using shortest path statistics between different pixel points in 

terms of a graph G (V, E). Pixels are represented by vertices 

𝑣 ∈ 𝑉 and the relationships between pixel points using edges 

𝑒 ∈ 𝐸. The weights of each edge represent the significance of 

the vertex-pair relationship. Initially, the 2D gray retinal image 

is converted into 1D data that represents the vertices V in the 

resultant retinal image graph. Following this, an undirected 

edge (e) is inserted between pairs of vertices 𝑣1, 𝑣2 ∈ 𝑉 based 

on their Chebyshev distance to form an edge set, EdgeG 

(A3:S19). 

The edge weight (Ew) is a combination of the cost of moving 

from 𝑣1to 𝑣2 and the transition altitude in the SP finding. To 

capture the local and global texture patterns of the retinal 

image, it has been split into multiple equal-sized (NB) blocks. 

This makes it possible to analyze and capture the retinal image 

texture more locally by forming SP-based texture descriptors. 

The whole retinal image is split into blocks (IB) and 

corresponding graphs are generated. The SPs are generated 

between the source (Sv) and destination (Dv) vertex pairs using 

Dijkstra’s algorithm (A3:S26). 

To capture the in-depth image texture characteristics, four 

pairs of vertices are selected to represent the horizontal 

direction (0°), the vertical direction (90°), and both diagonal 

directions (45° and 135°) to find the SPs, as shown in Figure 

6. Each image block produces four paths, P0, P90, P45, and P135 

for four directions, including all the intermediate vertices for 

path construction. Then each SP vertices are mapped into 

corresponding gray level intensities. Thus, each path Pi is now 

a collection of pixel intensities that appear in its construction. 

The corresponding mean (Pi-mean) is calculated for each path Pi, 

i ϵ {0°,45°, 90°, 135°}. 

As the original retinal image is divided into NB blocks, every 

block generates its corresponding Pi-mean. Using these, vectors 

(Mean00 ,Mean450 ,Mean900 ,Mean1350) of size NB are formed 

by grouping the Pi-mean corresponding to each direction, as 

illustrated in Figure 7. Using each Mean𝑖0 ,  the statistical 

measures kurtosis, skewness, standard deviation, and quantiles 

(Q25, Q50, Q75, Q135) are generated. By comparing quantiles 

of one data set with quantiles of another data set, they can be 

grouped into similar or dissimilar categories [42]. 

 

 
 

Figure 6. Four directional paths for retinal image (a) Horizontal path (0°), (b) Vertical path (90°), (c) Diagonal path (45°), and (d) 

Diagonal path (135°) 
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Figure 7. Graph based shortest path retinal image feature extraction 

 

 
 

Figure 8. The architecture of WNN 

 

Retinal image classification for glaucoma. WNN and MLP 

are utilized for glaucoma classification in this approach. The 

working principles of biological neurons are inherited by NN. 

The advanced version of NN is WNN. The WNN incorporates 

both discrete wavelets and MLP learning capabilities to 

become a powerful classifier. In WNN, instead of non-linear 

activation functions (such as sigmoid), discrete wavelet 

functions are used for neuron activation as illustrated in Figure 

8. The characterization of input is done using the inner product 

of weighted input vectors and wavelet base activation 

functions. To construct the activation function of a neuron, the 

mother wavelet needed to be selected first. As we have various 

mother wavelet functions, but some of them have no specific 

functional representation, their derivatives are difficult to 

generate. Hence, in our approach, we have considered the 

mother wavelets such as Mexican hat, Gaussian, Shannon, 

Morlet, Haar, GGW, and Meyer [43, 44] to construct the 

activation function for WNN. The supplied retinal features 

contain significant information about eye abnormalities that 

should be captured by neurons in the form of activation 
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functions. In the activation function, the wavelet coefficients 

recognize the supplied input significance and activate to get 

the output in the training process. 

As shown in Figure 8, the input vector {𝑥1, 𝑥2, . . . , 𝑥𝑛} 
represents the retinal image features and the output vector 

{𝑦1, 𝑦2, . . . , 𝑦𝑝} represents the p possible outputs predicted by 

WNN. Each hidden layer is connected to all nodes of the input 

layer, and receives inputs with a weighting factor 𝑤𝑖𝑘 . At the 

hidden layer, the output is generated using wavelet activation 

functions 𝜓ℎ𝑘
(𝑡) as: 

 

ℎ(𝑘) = 𝜓ℎ𝑘
(𝑡) [

∑ 𝑤𝑖𝑘𝑥𝑖 − 𝑆𝐻𝑘
𝑛
𝑖=1

𝑆𝑇𝑘
] , 𝑘 =1,2, . . . , 𝑚 (1) 

 

where, SHk is the shifting factor, STk is the scaling factor, and 

m is the number of hidden layer nodes. The mother wavelet 

activation function 𝜓ℎ𝑘
(𝑡)  can be one from the mentioned 

wavelets that yields the least prediction error. The output layer 

predicts the label by considering weighted inputs from the 

hidden layer as, 

 

( ) ( )
1

, 1,2,...,p
m

kj

k

y j w h k j
=

= =  (2) 

 

where, wkj is the connection weight. The weights wik , wkj of 

input, hidden and output layers are updated iteratively until the 

objective function attains the lowest possible error value. 

During this updating process, the values of shifting, scaling, 

and weights are reached to their optimum values for proper 

predictions. 

On other side, the learning in MLP is based on a back 

propagation function applied to a feed-forward network. The 

general structure of MLP includes one input, one output, and 

one or more hidden layers. In our experiment, the sigmoid 

activation function is applied for the identification of 

glaucomatous retinal images. The quantitative and qualitative 

result analysis is presented in the next section. 
 

Algorithm 3: Retinal image feature extraction 

Input: Enhanced retinal images 

Procedure: FEATURE EXTRACTION (IMGenh) 

1. 
enhIMG IMGfor do  

2. ( )2LevelCf DWT IMG−  

3.   ( ) ( ) ;IMG IMGFoS FoS Cf SoS GLCM Cf   

4. ( )0 , {10,50,90,130,180}IMG A
HoC HOC Cf A   

5. ( ) ( ) ( ), , ,IMG HoS HoS dgHoS Entropy Cf Mean Cf Ent Cf  

6.   _ ( )GVertex Graph Mapping IMG  

7.  GV Vertexfor do  

8.  , ( )V V V VHN VN SNR C C V    

9.  
1

0

( ,HN )2 , ,
P

p

dr V V

p

NRP Thr C dr LR TB
−

=

   

10. ( ) ( )
2 2

Final LR TBNRP NRP NRP +  

11. ( )( )_LGS FinalGraph MappiIMG IMG V NRn Pg   

12. 

( ) ( )

( ) ( )

( ) ( )

, ,

,

,

LGS LGS

IMG LGS LGS

LGS LGS

Mean Variance

Skewness Ku

IMG IMG

LGS IM rtosis

Energy Entr

G IMG

IMG o IMGpy

 
 

  
 
 

 

13. end  

14.   ( )BlockIMG Partition IMG  

15.  IB , 1i

BlockIMG i ton for do  

16.   _ (IB )i

GVertex Graph Mapping  

17.  v ,vi j GVertexfor do  

18. ( ) ( ), max ,ij i j M i j i j ee v v A x x y y T  − − ==  

19.  G ijEdge e  

20. end  

21.  ij Ge Edgefor do  

22. 
( , ) ( , )

( , ) ( , )
2

vi i i vj j j

w vi i i vj j j

I x y I x y
I x y I x ye

+
 − +  

23.   wwE e  

24. end  

25.  0 0 0 0, , 0 ,45 ,90 ,135Iv v ABIdentify S D Path A for  

26.   ( ), , IBA v vP S D Dijkstra's procedure  

27.    _ ,A mean AP mean P  

28.  _ _IB ,ii

A mean A meanP n   

29. end  

30. 1i nfor from to do  

31. _ }IB{{ } i

A A meanMean mean  

32. end  

33. { }IMG AGSP Mean  

34. _
IMG IMG IMG

IMG

IMG IMG IMG

FoS , SoS , HoS ,
Feature vector

HoC , LGS , GSP

 
=  
 

 

35. end  

36. end  
Output: Retinal images’ statistical and graph-based features 

 

 

4. RESULT ANALYSIS 

 

This approach started with retinal image preprocessing, 

followed by the enhancement phase. Novel features are 

extracted from qualitative retinal images, which are fed to 

MLP and WNN classifiers, and the obtained results are 

discussed in this section. 

Image preprocessing concentrates on improving the image’s 

brightness and contrast. Image brightness is improved using 

quantile-based histogram modification based on QRTM-based 

CDF transformation. The results of this approach are 

compared with those of the HE approaches. The HE over-

enhances the image brightness, which leads to unwanted 

image structural alterations. Improvements in brightness and 

contrast of the retinal image using the proposed approach and 

the HE approach are qualitatively compared in Figure 9. 

Simultaneously, this method improves the brightness of the 

image while preserving the contrast difference between retinal 

structures. In the case of the HE method, both the OD and optic 

cup (OC) areas are filled with the same contrast, and it 

becomes difficult to identify the borders of the cup and disc 

areas, as visualized in Figure 10. The next phase of our 

approach is the enhancement of preprocessed retinal images to 

improve the edges of retinal structures. 
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Figure 9. Image pre-processing comparison: (a) input 

images; (b) Images by HE; (c) Images by the proposed 

enhancement 

 

 
 

Figure 10. The OD and OC areas of (a) Original image;  

(b) HE enhanced image; (c) The proposed pre-processing 

 

 
 

Figure 11. Illustration of DSE usage: (a) pre-processed image; 

(b) enhanced image with t=0 and (c) enhanced image with 

different t values of DSE in the proposed method 

The enhancement approach is based on independent 

modifications of low and high sub-band image DT-CWT 

coefficients using DSE. The value of t is dynamically changed 

with each image based on the s-curve transformation. In this 

approach, some images' enhancement stops at smaller values 

of t, and some images require larger t values, as shown in 

Figure 11. 

Increasing the t value above the value defined by the s-curve 

transformation has not shown any improvement in the retinal 

structures. We have employed the mean squared error (MSE) 

as a quality evaluation metric, and its lower value indicates the 

originality between the improved and the original images. The 

MSE is calculated on images resulting from the proposed 

method and compared with the HE, CLAHE, and RRIE [45] 

approaches as shown in Table 1. 

The comparison results show that enhanced images 

resulting from the proposed preprocessing and enhancement 

approach have lower MSE values than other methods in the 

literature. The MSE histogram plot for RRIE and the proposed 

enhancement in Figure 12 show that the proposed approach 

keeps the images closer to the ground truth. For better 

visibility of the plot, HE and CLAHE results are not included 

in the plot. 

 

Table 1. Comparison of MSEs of the proposed approach 

with the other approaches 

 

Sl. 

No 

Image 

Name 

MSE by 

HE 

MSE by 

CLAHE 

MSE by 

RRIE 

MSE by 

Proposed 

Approach 

1 Im0010 0.0676 0.0114 0.0020 0.0007 

2 Im0012 0.0533 0.0084 0.0020 0.0007 

3 Im0023 0.0449 0.0110 0.0007 0.0013 

4 Im0026 0.0521 0.0081 0.0011 0.0003 

5 Im0028 0.0382 0.0092 0.0014 0.0005 

6 Im0145 0.0722 0.0134 0.0012 0.0004 

7 Im0146 0.0345 0.0114 0.0010 0.0004 

8 Im0206 0.1004 0.0216 0.0007 0.0003 

9 Im0208 0.0664 0.0117 0.0010 0.0005 

10 Im0618 0.1221 0.0195 0.0005 0.0002 

11 Im0600 0.0738 0.0131 0.0020 0.0007 

12 Im0586 0.0379 0.0131 0.0009 0.0004 

13 Im0579 0.0586 0.0093 0.0011 0.0002 

14 Im0510 0.0513 0.0116 0.0014 0.0007 

15 Im0494 0.0740 0.0123 0.0008 0.0002 

 

 
 

Figure 12. The MSE histogram plots 

 

The enhanced retinal images are utilized to extract statistical 

and graph-based retinal image features to form a feature vector 

(FV). The input feature vector set is divided using 70:30 ratio 

for training and testing/validation. The classification has been 

carried out by changing the number of nodes in the hidden 

2346



 

layer to find the optimum number. We have conducted several 

tests to fix the network regulation parameters, i.e., hidden units 

(HU), batch size (BS), and number of epochs, to get optimum 

performance. In this approach, the WNN’s performance is 

measured in terms of the testing error rate. In the training 

processes of WNN and MLP, the network parameters are 

updated using batch-wise validation and training sets. As 

shown in Table 2, the wavelet activation function is selected 

based on the testing error rate of the WNN for 50 epochs. The 

WNN with Mexican hat wavelet activation function performs 

best with given retinal image features as it achieves lower 

testing error. 

 

Table 2. Testing error for various mother wavelet functions 

 
S.No Wavelet Function Testing Error 

1 Mexican 3.6721% 

2 Mayer 9.4129% 

3 Gaussian 9.1360% 

4 GGW [44] 10.2434% 

5 Morlet 9.9666% 

 

Table 3. The performance comparison of WNN and MLP 

 

HU BS Epochs 

WNN MLP 

Verror 

(%) 

Terror 

(%) 

Verror 

(%) 

Terror 

(%) 

05 128 

10 7.7577 9.5761 11.7367 16.1169 

50 7.7235 8.5823 11.9211 13.2096 

100 7.7235 8.5823 11.8456 13.1794 

150 7.7235 8.5821 11.7848 13.1992 

200 7.7235 8.5821 11.7059 13.1597 

10 64 

10 3.3829 5.7433 13.6408 22.3587 

50 3.2350 3.6721 11.6332 13.3025 

100 3.2350 3.6551 11.4426 12.9429 

150 3.2350 3.6550 11.3670 12.8472 

200 3.2350 3.6550 11.3458 12.8151 

15 32 

10 8.2755 14.147 15.3465 28.2071 

50 7.4569 8.8066 10.9941 14.2841 

100 7.4549 8.5861 10.8401 12.6525 

150 7.4549 8.5797 10.8175 12.6018 

200 7.4549 8.5795 10.7969 12.6636 

25 16 

10 9.1212 17.039 9.7857 16.0400 

50 7.4751 9.5205 8.3456 9.5431 

100 7.4482 8.7373 8.2088 9.2851 

150 7.4479 8.6547 8.1546 9.2164 

200 7.4479 8.6547 8.1394 9.1934 

 

In this approach, WNN performance is measured in terms 

of testing error (Terror) and validation error (Verror). We 

have obtained Terror as 3.65% for 200 epochs. We have also 

implemented the MLP network for glaucoma classification 

and obtained a 9.19% test error for 200 epochs. In this 

experiment, it has been observed that WNN performance is 

superior to MLP for the glaucoma classification. The sigmoid 

activation function is used in MLP with 25 hidden neurons. 

However, WNN achieved a lower testing error with 10 hidden 

neurons using the Mexican hat wavelet activation function. In-

depth WNN and MLP performance comparisons are shown in 

Table 3. The WNN achieves minimal testing error at the 50th 

epoch, irrespective of the number of hidden nodes. Thus, the 

rest of the experiment has been carried out using the optimal 

combination, i.e., 10 HU and 64 BS for WNN and 25 HU and 

16 BS for MLP. 

Initially, the proposed approach has been tested only with 

statistical features and the classification results are shown in 

Table 4. Then the proposed approach is tested by considering 

graph-based features. The classification performance has 

improved over the statistical features, as shown in Table 5. 

Finally, the proposed glaucoma screening approach has been 

tested with both statistical and graph-based retinal image 

features. The classification performance has tremendously 

improved, as shown in Table 6. In the case of statistical 

features, the maximum accuracies achieved with WNN and 

MLP are 76.4% and 73.1% before enhancement, respectively. 

The accuracies have been improved to 80.6% and 76.8% after 

the enhancement. The classification accuracies of WNN and 

MLP are positively improved with the graph-based retinal 

image features. Using graph-based features, the maximum 

accuracies of WNN and MLP are 88.2% and 86.7%, 

respectively. In this case, the performances of WNN and MLP 

are improved by an average of 4% with the proposed image 

enhancement. This case has shown the significance of graph-

based features over statistical features. Finally, the 

combination of both statistical and graph-based features has 

been tested for the classification using both the WNN and 

MLP. The accuracy, sensitivity, and specificity plots have 

been shown in Figure 13. 

 

 
 

Figure 13. WNN and MLP classification performance plots 

 

This combination has considered the statistical intensity 

relationships among pixels as well as pixel neighborhood 

relationship patterns in the identification of glaucomatous 

images. The WNN has achieved 96.36% and 98.24% accuracy 

with the ORIGA and ACRIMA datasets, which are far better 

than the accuracies achieved by MLP, i.e., 90.90% and 91.22%. 

However, both WNN and MLP have achieved less accuracy, 

i.e., 85.71% with the DRISHTI, due to its smaller dataset size. 

Before retinal image enhancement, WNN classifies the images 

of ORIGA and ACRIMA with accuracies of 92.72% and 

94.73%, whereas MLP classifies them with accuracies of 

89.09% and 91.22%. The performance of WNN is the same 

with the DRISHTI dataset with or without enhancement, but 

the MLP performance is degraded in the absence of image 

enhancement. The false positive and negative prediction rates 

are higher with the statistical features when compared with the 

graph-based features. But these false prediction rates have 

been minimized in the best possible way with the combination 

of statistical and graph-based features. 

The ROC curves corresponding to statistical features-based, 

graph-based, and combined features-based glaucoma 

screening have been depicted in Figures 14-16 for both before 

and after image enhancement (BE and AE). The glaucoma 

screening by MLP and WNN using statistical features is 

suboptimal, as evidenced by the ROC plots in Figure 14, 

which show a maximum Area Under the Curve (AUC) of 80%. 

The model is misclassifying images and struggling to capture 
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relevant patterns with the usage of only statistical features. For 

graph-based features, both MLP's and WNN's screening 

performance has relatively improved, with the maximum AUC 

reaching 89%, as indicated in Figure 15. The screening 

capacities for MLP and WNN improved considerably with the 

combination of statistical and graph-based retinal features as 

shown in Figure 16. However, WNN achieved a maximum 

AUC of 99%, while MLP's performance reached up to 92% 

AUC. This indicates that WNN outperforms MLP. 

 

 
 

Figure 14. The ROC plot for glaucoma classification using 

statistical features 

 

 
 

Figure 15. The ROC plot for glaucoma classification using 

graph features 

 

 
 

Figure 16. The ROC plot for glaucoma classification using 

statistical and graph-based features 

The accuracy, sensitivity, and specificity plots for various 

combinations are shown in Figures 17-19. The accuracy has 

been improved with the application of WNN. The sensitivity 

of MLP and WNN is almost linear, with or without 

enhancement. The specificity of both MLP and WNN has been 

improved with the proposed enhancement. However, the 

WNN plots are more consistent and optimal than the MLP 

classification plots. 

The performance of the proposed approach has been 

analyzed with state-of-the-art approaches, as shown in Table 

7. Retinal images’ texture features are extracted in current 

approaches [46, 47] using GLCM and run length matrices. 

These features are utlized by SVM and k-NN for glaucoma 

screening. However, pre-processing, which includes blood 

vessel segmentation and removal, might overlook critical 

structural changes relevant to glaucoma. Additionally, 

GLCM's sensitivity to image quality factors like resolution and 

lighting conditions can compromise feature extraction and 

model generalization. The combination of first-, second-, or 

higher-order texture features of retinal images is classified 

using k-NN, NB and SVM [48]. In this approach also blood 

vessels are removed in the pre-processing phase which has less 

impact on the classification accuracy. Though the optimized 

NN are utilized in the study [49], the obtained screening 

accuracies are quite low since the approach is solely depends 

only on the lower and higher order texture features. This 

approach employed a NN with a single hidden layer, whereas 

the proposed approach utilized WNN, which offer more 

reliable performance compared to standard NNs. Entropy-

based approach [50] is not optimal for glaucoma classification 

due to their sensitivity to noise and variability in image 

acquisition. However, this approach did not incorporate any 

noise reduction or texture improvement techniques during the 

pre-processing phase, resulting in suboptimal outcomes. 

Glaucoma screening proves to be more optimal with LBP 

features compared to first and second order features [51]. By 

observing these existing approaches, the classification 

accuracies are improved when the statistical features are 

considered in combination with other feature categories, such 

as LBP. It has further been observed that texture enhancement 

enhances classifier discriminative power and robustness by 

emphasizing crucial patterns. Thus, in the proposed approach, 

the combination of statistical features and graph-based 

features has been considered along with the image specific 

texture improvement. The obtained results substantiate the 

significance of this integrated approach, showcasing its 

effectiveness. 

The proposed approach can be applied to screen the other 

human eye diseases such as diabetic retinopathy, macular 

edema, vascular occlusions, and retinopathy of prematurity 

(ROP) from retinal images. The proposed image improvement 

phase enhances the retinal structures based on specific details 

within the image. This improves the identification of structural 

changes associated with different retinal diseases. 

Furthermore, both statistical and graph-based features have 

been extracted from the entire area of the fundus image. This 

feature extraction primarily captures the structural alterations 

in eye fundus due to retinal diseases. Thus, this approach 

exhibits high generalizability for screening various retinal 

diseases. 
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Figure 17. Accuracy plots obtained with MLP and WNN 

 

 
 

Figure 18. Sensitivity plots obtained with MLP and WNN 

 

 
 

Figure 19. Specificity plots obtained with MLP and WNN 

 

Table 4. The proposed approach’s glaucoma classification performance using statistical features 

 

 Dataset No. of Images Accuracy (%) Sensitivity (%) Specificity (%) 
Confusion Matrix (%) 

TP FP TN FN 

Before retinal images enhancement 

WNN 

ORIGA 650 71.4 68.6 72.4 0.68 0.27 0.73 0.32 

ACRIMA 705 76.4 81.5 71.4 0.81 0.28 0.72 0.19 

DRISHTI 101 70.9 71.4 70 0.71 0.30 0.70 0.29 
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MLP 

ORIGA 650 71.4 58.8 72.4 0.58 0.27 0.73 0.42 

ACRIMA 705 73.1 80.5 64.5 0.80 0.35 0.65 0.20 

DRISHTI 101 64.5 66.6 65.5 0.66 0.34 0.66 0.34 

After retinal images enhancement 

WNN 

ORIGA 650 75 70.5 76.5 0.70 0.23 0.76 0.29 

ACRIMA 705 80.6 86.5 61.9 0.86 0.38 0.61 0.13 

DRISHTI 101 77.4 76.1 80 0.76 0.2 0.8 0.23 

 

MLP 

ORIGA 650 72.4 60.7 73.1 0.60 0.26 0.73 0.39 

ACRIMA 705 76.8 84.7 67.7 0.84 0.32 0.67 0.15 

DRISHTI 101 70.9 76.1 65.5 0.76 0.34 0.65 0.23 
 

Table 5. The proposed approach’s glaucoma classification performance using graph-based features 
 

 Dataset No. of Images Accuracy (%) Sensitivity (%) Specificity (%) 
Confusion Matrix (%) 

TP FP TN FN 

Before retinal images enhancement 

WNN 

ORIGA 650 82.6 88.2 80.6 0.88 0.19 0.80 0.11 

ACRIMA 705 84.4 89.9 78.4 0.89 0.21 0.78 0.10 

DRISHTI 101 74.1 76.1 70 0.76 0.3 0.7 0.23 

MLP 

ORIGA 650 80.6 54.9 71 0.54 0.28 0.71 0.45 

ACRIMA 705 82.2 81.3 64.5 0.81 0.35 0.64 0.18 

DRISHTI 101 70.9 66.6 64.5 0.66 0.35 0.64 0.33 

After retinal images enhancement 

WNN 

ORIGA 650 86.2 76.4 77.9 0.76 0.22 0.77 0.23 

ACRIMA 705 88.2 89.9 68.2 0.89 0.31 0.68 0.10 

DRISHTI 101 80.6 85.7 80 0.85 0.2 0.8 0.14 

 

MLP 

ORIGA 650 84.1 64.7 74.4 0.64 0.25 0.74 0.35 

ACRIMA 705 86.7 83 68.8 0.83 0.31 0.68 0.16 

DRISHTI 101 74.1 76.1 65.5 0.76 0.34 0.65 0.23 
 

Table 6. The proposed approach’s glaucoma classification performance using statistical and graph-based features 
 

 Dataset No. of Images Accuracy (%) Sensitivity (%) Specificity (%) 
Confusion Matrix (%) 

TP FP TN FN 

 

WNN 

ORIGA 650 92.72 92 83.33 0.91 0.17 0.83 0.09 

ACRIMA 705 94.73 96 88.88 0.94 0.12 0.88 0.06 

DRISHTI 101 85.71 83 83.33 0.84 0.17 0.83 0.16 

MLP 

ORIGA 650 89.09 88 75.2 0.86 0.25 0.75 0.14 

ACRIMA 705 91.22 97 81.48 0.95 0.19 0.81 0.05 

DRISHTI 101 71.42 87 66.66 0.87 0.34 0.66 0.13 

 

WNN 

ORIGA 650 96.36 93 91.66 0.92 0.09 0.91 0.08 

ACRIMA 705 99.3 96 96.29 0.94 0.04 0.96 0.06 

DRISHTI 101 85.71 85 83.33 0.86 0.17 0.83 0.14 

 

MLP 

ORIGA 650 90.9 91 79.16 0.83 0.21 0.79 0.17 

ACRIMA 705 91.22 92 81.48 0.93 0.19 0.81 0.07 

DRISHTI 101 85.71 90 83.33 0.89 0.17 0.83 0.11 
 

Table 7. The performance comparison of the proposed approach with state-of-the-approaches 
 

Reference Approach 

Performance Measures 

Remarks Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

[46] 

ML classification using the 

texture and morphological 

features 

88.3 93.3 83.3 
Image preprocessing phase is not applied 

before feature extraction 

[47] 
ANN-based classification using 

statistical features 
89.3 98 90 Image pre-processing is not applied 

[48] 
ML-based classification using 

FOS, SOS, HOC, HOS features 
97.22 91 96 

Image enhancement has not been applied 

before the feature extraction 

[49] 

Optimized NN-based 

classification using FOS, SOS, 

and HOC features 

93.1 91.6 94.1 
This approach is highly sensitive to false 

positive or negative predictions 

[50] 
Entropy features-based 

classification 
91 89 93 

Images are not enhanced or purified before 

feature extraction 

[51] 
Local binary patterns (LBP) and 

SOS features 
97.5 -- -- 

Image’s quality has not been not improved 

before pattern extraction 

The proposed 

approach 

WNN-based classification using 

both statistical and graph-based 

features 

99.3 96 96.29 

The combination of graph and statistical 

features from the enhanced images has 

attained the optimal classification 
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5. CONCLUSION 

 

The proposed technique has contributed to all major CAD 

phases, including retinal image improvement, feature 

extraction, and classification. Our approach initially 

concentrated on retinal image quality enhancement, which is 

carried out in two phases: preprocessing and enhancement. 

The preprocessing improves the retinal image brightness and 

contrast using QRTM-transformed CDF-based image quantile 

histogram modification. The proposed preprocessing method 

ensures that brightness and contrast are optimized. Image 

enhancement improves the retinal structures using an 

independent modification of the retinal images' DT-CWT low 

and high-pass sub-band coefficients. Retinal image texture 

patterns are captured using graph-based retinal image features 

using proposed LGS and GSP paths in various directions, 

along with statistical features. The glaucoma classification is 

carried out using WNN and MLP networks by selecting 

activation functions systematically. In this approach, WNN 

performs better than MLP for glaucoma classification. The 

classification results are tabulated for various network 

parameter combinations. According to the available literature, 

our strategy is a new approach that combines retinal images' 

graph-based feature extraction with the WNN-based glaucoma 

classification. The performance of this approach has been 

tested with various combinations of statistical and graph-based 

features. The results obtained have proven the efficacy of the 

proposed approach. 
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NOMENCLATURE 

 

I Gray scale intensity 

m,n Coefficients’ row and column positions 

R Rows 

C Columns 

M,N Total rows and columns 

Cf DWT coefficients 

t Count in the SE formation 

e Graph edge 

 

Greek symbols 

 

α, ϑ Constants between 0 to 1 

δ  

К Control limit 

β Median adjustment factor 

 

Subscripts 

 

i,j Vertex position 

C Edge content 

G Graph 

A0 Angle 

dr Direction 

V Graph vertex 

w Weight 

B Image block number 

se Struturing element 

min, max Minimum and maximum intensitites 

LR Left-to-right 

TB Top-to-bottom 
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