
Design of a Real-Time Monitoring and Early Warning System for Engineering Safety 

Hazards Using Image Analysis Technology 

Haoran Xing

Art, Design & Architecture, University of New South Wales, Sydney 2033, Australia 

Corresponding Author Email: xing3345183562@gmail.com

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410513 ABSTRACT 

Received: 15 April 2024 

Revised: 26 September 2024 

Accepted: 12 October 2024 

Available online: 31 October 2024 

As the scale of engineering projects continues to grow, safety management on construction 

sites faces significant challenges. Traditional methods such as manual inspections and 

periodic checks struggle to achieve real-time and effective monitoring of potential hazards, 

which can lead to accidents. In recent years, image analysis technology has increasingly 

been applied to the monitoring of engineering safety hazards due to its automation, real-time 

capabilities, and high efficiency. However, existing image analysis algorithms still 

encounter issues such as insufficient tracking accuracy and delayed warning responses in 

complex engineering environments. To address these problems, this study proposes a real-

time hazard tracking and identification method based on an improved Mean Shift algorithm, 

combined with a support vector machine (SVM) for critical state early warning of 

engineering safety hazards. The system improves recognition accuracy and early warning 

response speed in complex environments through algorithm optimization, offering higher 

practicality and reliability. This provides a technical safeguard for safety management at 

construction sites. 
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1. INTRODUCTION

With the continuous expansion and increasing complexity 

of modern engineering projects, the demand for monitoring 

and early warning of engineering safety hazards is becoming 

increasingly prominent [1-5]. Traditional methods such as 

manual inspections and periodic checks can no longer meet the 

needs for efficient and precise identification of safety hazards. 

In recent years, with the rapid development of image analysis 

technology, its application in the real-time monitoring of 

engineering safety hazards has become an important research 

direction [6-8]. By integrating intelligent algorithms with 

video surveillance technology, the real-time and intelligent 

levels of safety management at construction sites can be 

greatly improved, effectively preventing major safety 

accidents. 

The application of image analysis technology in the 

monitoring of engineering safety hazards has significant 

importance [9-11]. It can conduct uninterrupted, 

comprehensive monitoring of the site environment and 

automatically identify potential risks through intelligent 

algorithms, issuing timely warnings, thus greatly reducing the 

hazards caused by human negligence [12, 13]. Such 

technologies not only improve monitoring efficiency but also 

demonstrate superior performance in accurately identifying 

hazards, ensuring the safe and stable operation of engineering 

projects. 

However, existing image analysis algorithms still have 

some shortcomings when applied in complex engineering 

scenarios [14-18]. For example, in complex backgrounds, 

traditional object tracking algorithms are easily affected by 

noise interference, making it difficult to maintain high-

precision real-time tracking. In the early warning stage of 

safety hazards, existing algorithms have limited capability in 

identifying boundary states, making it difficult to accurately 

predict the critical point of risk [19-23]. Therefore, how to 

further optimize image analysis algorithms to improve the 

accuracy of identification and early warning has become a key 

challenge in current research. 

This paper addresses the above problems by proposing a 

real-time monitoring and early warning system for engineering 

safety hazards based on an improved Mean Shift algorithm and 

SVM. First, the improved Mean Shift algorithm is used for 

real-time tracking and identification of safety hazards at 

construction sites, solving the problem of tracking accuracy in 

complex environments. Second, SVM is used to identify the 

critical state of safety hazards and implement early warning 

actions, improving the system's response capability and 

accuracy. This study helps to enhance the intelligence and 

practicality of the engineering safety hazard monitoring 

system, providing strong technical support for engineering 

safety management. 

2. REAL-TIME TRACKING AND IDENTIFICATION

OF ENGINEERING SAFETY HAZARDS

In the monitoring and tracking of engineering safety hazards, 

real-time performance and accuracy are two crucial factors. 

The traditional Mean Shift algorithm, known for its good 
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computational efficiency and unsupervised nature, is often 

applied to object tracking tasks, especially for tracking smooth 

movements of objects in dynamic scenes. However, when 

directly using the Mean Shift algorithm, the color feature 

description of engineering safety hazards tends to be rough, 

making it susceptible to external factors such as background 

complexity and lighting changes. These limitations can lead to 

deviations in tracking under certain conditions, such as when 

the color of the target object is similar to the background or 

when the hazardous object undergoes deformation. This issue 

is particularly prominent in complex engineering 

environments, where lighting conditions are often uneven, 

hazardous targets frequently change shape, and various noise 

interferences exist. Therefore, improving the Mean Shift 

algorithm is key to enhancing real-time tracking and 

identification capabilities of engineering safety hazards. 

To address these challenges, this paper combines Scale-

Invariant Feature Transform (SIFT) with the Mean Shift 

algorithm, using Principal Component Analysis Scale-

Invariant Feature Transform (PCA-SIFT) features to provide 

a more robust description of hazardous targets. The advantage 

of the PCA-SIFT algorithm lies in its scale and rotation 

invariance of key points in images, which is critical for 

handling complex engineering environments. During the 

engineering monitoring process, the hazardous target may 

change due to variations in camera angles, the scale of the 

hazard, or fluctuations in environmental lighting. PCA-SIFT 

can effectively enhance the feature description of the 

hazardous target, allowing it to remain stable in complex 

engineering backgrounds. Furthermore, when the scale of the 

hazardous target changes, the scale invariance of the PCA-

SIFT algorithm ensures that feature points are not lost due to 

target deformation, enabling the Mean Shift algorithm to 

maintain precise target localization even under scale variations. 
 

Specifically, this is implemented in five stages: 
 

Stage one: Establishing the scale space and detecting stable 

key points 

The core of this process is to represent and process the 

hazardous target at different scales through multi-scale 

analysis, addressing changes in the target's size, position, and 

viewing angle in engineering scenarios. 

First, to construct the scale space, the system needs to 

perform multi-scale representation of the input engineering 

monitoring images. In practical applications, engineering 

hazards may be at different distances or angles and may 

undergo scaling or deformation due to changes in engineering 

machinery or the environment. Therefore, describing the target 

at a single scale often cannot guarantee its stability and 

consistency. To address this issue, a Gaussian pyramid is used 

to represent the image at different scales. Specifically, 

assuming that the spatial coordinates are represented by (a, b), 

and the scale space factor is represented by δ, the 

representation of image U(a, b) at different scales is the result 

of the convolution of this image with the Gaussian kernel 

function H(a, b, δ): 
 

( ) ( ) ( ), , , , ,M a b H a b U a b =   (1) 
 

By adjusting the value of δ, the image is smoothed to 

different degrees to meet the needs of different scales. The 

construction of the Gaussian pyramid enables the 

representation of image features at different resolutions, 

ensuring the stability of hazardous targets at various scales. 

H(a, b, δ) is the scale-variable Gaussian function, expressed as: 
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Based on the construction of the Gaussian pyramid, the key 

points are further extracted using the Difference of Gaussians 

(DoG) method. Specifically, the system performs a difference 

operation on images at adjacent scales to obtain a DoG image, 

which can more accurately detect key points that remain stable 

across different scales. In engineering safety hazard scenarios, 

these key points typically correspond to significant features 

such as edges and corners of hazardous targets. Each pixel 

point in the DoG scale space is detected as a potential key point 

by comparing its extremum with its surrounding points. In this 

way, the system can identify key points in the image that 

remain prominent across different scales, which will serve as 

stable descriptions of the target in subsequent tracking 

processes. The DoG scale space is defined as: 
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Stage two: Accurate localization of key points and 

generation of PCA-SIFT descriptors 

After constructing the scale space and detecting local 

extrema points, the next step is to accurately locate these 

extrema points to determine their precise position and scale. 

To improve localization accuracy, further optimization of the 

detected local extrema points is required. Specifically, by 

fitting a three-dimensional quadratic function to the DoG scale 

space, the curve fitting process allows for more accurate 

determination of the position and scale of the key points. The 

three-dimensional quadratic function fitting effectively 

smooths the variations of key points across different scales and 

positions, ensuring that the selected key points exhibit higher 

stability in practical engineering scenarios. In complex and 

variable engineering sites, environmental factors such as 

lighting and noise may result in edge response points and low-

contrast points, which often lack stable features and are 

unsuitable for subsequent tracking. Therefore, it is necessary 

to filter the detected key points and eliminate those unstable 

edge response points and low-contrast points. Specifically, by 

calculating the principal curvature of the key points, it can be 

determined whether a key point is an edge point. Points with 

high principal curvature are typically edge points, which are 

prone to interference during subsequent tracking and should 

be removed. At the same time, by setting a contrast threshold, 

key points with contrast below the threshold are discarded to 

ensure that the remaining key points maintain high 

distinguishability and stability under varying lighting 

conditions. Specifically, the Taylor expansion of H(a, b, δ) is 

as follows: 
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Setting the first derivative of the above equation to 0, we 

can get the extrema points: 
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Substituting the extrema points into Eq. (4), we get: 
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After obtaining the precise position and scale of the feature 

points, we further assume that the scale of each key point is 

represented by M, and compute the gradient magnitude and 

direction at (a, b) to ensure the rotation invariance of the 

descriptor: 
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To further enhance the stability and interference resistance 

of hazard tracking, this paper uses the PCA-SIFT algorithm to 

generate feature descriptors. Specifically, the neighborhood of 

the feature points is divided into 41×41 pixel blocks, and by 

calculating the gradients in the horizontal and vertical 

directions within a 39×39 range, a feature vector of size 3042 

is formed. This vector provides a detailed description of the 

gradient changes around the feature points, offering rich local 

information. However, directly using high-dimensional 

feature vectors for matching requires significant computation, 

which is detrimental to real-time performance. To address this 

issue, the PCA method is employed to reduce the 

dimensionality of the feature vector. PCA is based on the 

covariance matrix of the variables, and by calculating the 

eigenvalues and eigenvectors of the covariance matrix, it 

compresses and extracts the information. Specifically, by 

selecting the top few principal components, these components 

cover most of the information in the feature vector, thus 

representing the original high-dimensional data with fewer 

dimensions. This not only significantly reduces the 

computational load and improves matching efficiency but also 

effectively preserves the main information of the feature 

points, improving the accuracy and stability of the matching 

process. 

 

Stage three: Establishing the tracking feature model of 

engineering safety hazards 

In this step, the initial frame model of the hazard target is 

determined based on the position and scale information of the 

key points. Suppose the first pixel's coordinates are denoted as 

su(sua, sub), meaning that in the initial frame, the exact position 

of each pixel can be determined through the feature vector 

description of the detected key points. Additionally, based on 

the description of the key point feature vector, the local 

features of each key point can be represented as a high-

dimensional vector, thus forming a complete initial frame 

feature model. 

The essence of tracking is to match the features of the initial 

frame with those of the current frame to achieve continuous 

monitoring of the hazard target. In the initial frame, the center 

position of the hazard target can be denoted as f0, and in the 

current frame, the tracking algorithm determines the new 

center position of the target, f1, by matching the feature vectors 

of the key points. By comparing the displacement and feature 

changes between these two center points, the movement of the 

target can be determined, and the target position is updated 

accordingly. This key point-based tracking method can cope 

with complex situations such as changes in target scale, angle, 

and partial occlusion in engineering scenarios. Let the total 

number of pixels be represented by v; the kernel function by 

j(||a||2), and the template radius by g. Functions y and σ are 

used to determine whether the color value of the u-th pixel 

belongs to the feature value i, with normalization coefficients 

Z and Zg. The following expressions represent the feature 

models for initial and current frame target tracking based on 

key point feature vector descriptions: 
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The two normalization coefficients satisfy the following 

conditions: 
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Specifically, by using the scale information of the key 

points, the local feature regions of the hazard target can be 

calculated, and a complete target feature model is generated 

based on these regions. The feature models of the initial and 

current frames are compared through the matching of key 

point positions, scales, and feature vectors. When the features 

in the current frame meet a certain similarity threshold with 

those in the initial frame, the system can confirm that the target 

in the current frame is the hazard target that needs to be tracked. 

In this way, the system can continuously lock onto the hazard 

target in dynamic engineering environments. Even when 

environmental lighting changes, equipment interference 

occurs, or the hazard target changes position, the system can 

still achieve stable target tracking. 

 

 
 

Figure 1. Region matching diagram 

 

Stage four: Applying the improved Mean Shift algorithm 

for tracking 
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Mean Shift is an iterative optimization method based on 

density estimation, primarily used to find the position of the 

maximum local density by shifting the center of the target 

model. In engineering safety hazard tracking and identification, 

the Mean Shift algorithm completes tracking by calculating 

the region in each frame that is most similar to the hazard 

target in the previous frame. Figure 1 shows a schematic 

diagram of region matching. Specifically, at the starting 

position of each frame, i.e., the center f1 of the hazard target in 

the previous frame, the system gradually adjusts the target 

position by comparing feature models, aiming to maximize the 

Bhattacharyya similarity coefficient between the current target 

and the hazard target model. Let l represent the number of 

features, and the target vectors of the initial and current frames 

be represented by ŵi and ôi, respectively. The Bhattacharyya 

similarity coefficient is calculated as follows: 
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In practical engineering hazard tracking, optimization of the 

Bhattacharyya similarity coefficient is achieved using Taylor 

expansion. Suppose the search in the current frame starts from 

the hazard center f1 in the previous frame, then the similarity 

coefficient can be expanded using a Taylor series, and this 

approximation can be used to calculate the displacement of the 

hazard target during tracking. Since the displacement of the 

hazard target between consecutive frames is typically small, 

using Taylor expansion simplifies the computation and makes 

the tracking process more efficient. The Taylor expansion 

starting at f1 is as follows: 
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In practical tracking, since the displacement of engineering 

safety hazards between consecutive frames is small, the above 

expression can be approximated as: 
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where, 
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In the process of solving for the extreme value of the 

Bhattacharyya similarity coefficient, the system computes the 

Mean Shift vector, which represents the displacement vector 

of the hazard target center position in the current frame. By 

solving the gradient of the similarity coefficient, the system 

obtains the position update vector of the hazard target, and 

adjusts the target position accordingly. The Mean Shift vector 

for engineering safety hazard tracking is expressed as: 
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The Mean Shift vector represents the difference between the 

current target position and the center of the target feature 

density distribution. In each frame, the system calculates the 

current frame's Mean Shift vector based on the position from 

the previous frame, guiding the movement of the target 

position. As the Mean Shift vector iterates and updates 

continuously, the position of the hazard target gradually 

converges to the location of maximum density, thereby 

completing the tracking for the current frame. 

 

Stage five: Describing and predicting the development 

trend of engineering safety hazards using linear prediction 

In real-time tracking and identification of engineering 

safety hazards, using linear prediction methods to describe and 

predict the development trend of hazards can help the system 

maintain stable tracking even when the target is temporarily 

obscured or under other complex situations. This is primarily 

because the movement of safety hazards in practical scenarios 

is typically continuous. For example, some large machinery 

may cause equipment tilting or steel structure loosening during 

operation, creating safety hazards that do not instantaneously 

jump from one location to another but gradually develop. The 

trajectory often follows certain physical laws and has strong 

predictability. Linear prediction methods, based on this 

continuity characteristic, analyze historical movement data to 

predict the next movement direction and position. In tracking 

engineering safety hazards, when a target is temporarily 

obstructed, the system cannot directly acquire its position. 

However, the hazard's trajectory can be considered a smooth 

curve. Linear prediction can use this feature to reasonably 

infer the target's location, ensuring that the target is still 

effectively tracked when it reappears. Through linear 

prediction, even if the hazard temporarily disappears, the 

system can predict its next position using the historical 

trajectory, thereby reducing the risk of losing the target. 

The six detailed steps for describing and predicting the 

development trend of engineering safety hazards using linear 

prediction methods are as follows: First, assume that the 

position of the engineering safety hazard can be represented 

by a function of time d(s), where s represents time. This 

position function describes the trajectory changes of the 

hazard target over continuous time. In practical engineering 

environments, the position of the hazard target is usually 

affected by various factors, such as slight movements in 

equipment operation or stress changes in building structures. 

The expression for d(s) is given as: 
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To predict the position of the hazard target, linear 

approximation of its past trajectory is required. Specifically, a 

linear approximation equation can be constructed to describe 

the trend of the hazard target's position changes. Let the linear 
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approximation equation be: 

 

( ) ( )1 1 1 0 1 1d s B d s x x s = − = − −  (20) 

 

To ensure the accuracy of the linear approximation equation, 

the mean squared error (MSE) must be used to evaluate the 

error between the approximation equation and the true motion 

trajectory. The MSE is calculated using the following formula: 
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To achieve the optimal prediction results, the parameters x 

and y in the linear approximation equation must be adjusted to 

minimize the MSE. By solving the objective function that 

minimizes the MSE, the optimal parameter values can be 

obtained, resulting in the best linear approximation equation. 

This process can be achieved using gradient descent or the 

least squares method: 
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where, 
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Once the optimal linear approximation equation is obtained, 

it can be used to predict the position of the hazard target in 

future frames. Let j be the frame number at the current moment, 

then the position of the hazard target in the next frame, j+1, 

can be predicted using the following formula: 
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By solving for x0 and x1 based on su and d(su), we obtain: 
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This formula represents the prediction of the development 

trend of the engineering safety hazard. 

 

 

3. ENGINEERING SAFETY HAZARD CRITICAL 

STATE DETECTION AND IMPLEMENTATION OF 

EARLY WARNING BEHAVIOR 

 

The detection of critical states and the implementation of 

early warning behaviors for engineering safety hazards is a 

complex yet crucial research task. Its primary goal is the early 

identification and warning of potential safety hazards in 

engineering projects to prevent significant safety incidents. To 

achieve this, this study employs the SVM method for training 

and classification. SVM is selected due to its excellent 

performance in handling high-dimensional data and small 

sample learning, making it effective in identifying complex 

nonlinear relationships. 

SVM achieves classification by finding a hyperplane that 

maximizes the margin between two classes. For engineering 

safety hazard data, the system needs to categorize different 

states of safety hazards, such as "normal," "critical," and 

"dangerous," into distinct categories through the SVM model. 

The SVM, based on the training dataset {au,bu}, where au is 

the feature vector and bu is the corresponding state label, 

determines a mapping relation d(a)=q·a+y, where q is the 

weight vector and y is the bias term, representing the model's 

decision boundary. 

To effectively apply SVM in the early warning system, the 

hazard data is represented as multi-dimensional vectors. Each 

vector contains multiple features describing the system's 

current state, such as vibration frequency, stress distribution, 

temperature changes, etc. These features are input into the 

SVM, which adjusts the values of q and y to maximize the 

margin between "critical state" and "non-critical state," 

ensuring that data from different states are accurately 

classified. 

In detecting critical states, the goal of SVM is to find a 

regression model that can approximate all training data within 

a precision γ. This precision allows SVM to tolerate a certain 

range of errors, adapting to potential noise or outliers in the 

engineering data. Specifically, assume that the safety hazard 

data can be represented by a linear regression model 

d(a)=q·a+y. However, due to the complexity of the data in 

real-world environments, the model's error needs to be 

controlled within an acceptable range. Because data in 

engineering environments is often affected by external factors 

such as noise and equipment errors, strict linear regression 

may not meet practical requirements. This paper introduces a 

precision parameter γ, allowing SVM to permit some sample 

points to deviate from the model's predictions within this range 

while still maintaining high-precision fitting for the majority 

of the data. Let the slack factors be represented by ςu and ς*
u, 

and assume that all training data is processed with a precision 

of γ, i.e.: 
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In many cases, engineering hazard data is not linearly 

separable, meaning that a simple linear model cannot 

accurately identify critical and safe states. To address this, 

SVM introduces kernel functions, which map data to a higher-

dimensional space. In this space, data that was originally 

inseparable can be separated by a linear hyperplane, achieving 

classification. Common kernel functions include the linear 

kernel, radial basis function (RBF) kernel, and polynomial 

kernel. In the engineering hazard early warning system, 

selecting an appropriate kernel function is critical. The RBF 

kernel is often used to handle complex nonlinear data. It 

classifies data based on distances, allowing SVM to adapt to 

various complex data features in engineering. 
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The optimization problem is then transformed into its dual 

form: 
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MAX Q(β,β*)=-1/2∑m
u,k=1(βu,β*

u)(βk,β*
k)+∑m

u=1(βu,β*
u)bu-

∑m
u=1(βu,β*

u)γ, which is subjected to: 
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After solving βu and β*
u, and using y=-

1/2∑m
u=1(βu,β*

u)(au·as+au·at) to get y, wherein at and au are any 

two non-support vectors, the fitting function is obtained:  
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After completing the learning from the training samples, the 

SVM model can classify new data. In engineering hazard early 

warning, the SVM processes real-time monitored data inputs 

to determine whether the system is in a critical state. When the 

system is in a critical state, the SVM model triggers a warning 

signal based on the output of the classification boundary, 

alerting managers to take necessary safety measures. 

Simultaneously, the engineering hazard early warning 

behavior database is gradually improved. Every time a 

warning is triggered, the current data is recorded and used to 

further optimize the model. Through regular updates and 

training, the SVM model achieves adaptive learning. This 

means that as the amount of data increases and the engineering 

environment evolves, the model can automatically adjust its 

classification rules, improving the accuracy of future warnings. 

The realization of this adaptive mechanism can be achieved in 

two ways: (1) Periodic retraining of the model using new data 

samples to optimize the classification boundary; and (2) 

Incremental learning, where new data is directly added to the 

existing classification model, making local adjustments. This 

enables the SVM to maintain efficient warning capabilities in 

a constantly changing engineering environment. 

 

 
 

Figure 2. Schematic diagram of the two-dimensional linear 

classification method proposed in this paper 

 

After classifying critical states, the engineering safety 

hazard early warning system triggers specific preemptive 

actions based on the classification results. For instance, when 

the SVM model detects that a hazard is approaching a 

dangerous state, the system automatically initiates emergency 

response measures such as shutting down equipment, blocking 

off areas, or evacuating personnel. These early warning 

actions can be pre-stored in an early warning action database, 

allowing the system to select the appropriate response based 

on the type of hazard. Every time an early warning is triggered, 

the system records the actual hazard development and 

compares it with the model’s prediction, using this feedback 

to retrain and optimize the model. This feedback loop allows 

the SVM model to continuously improve its predictive 

accuracy, ensuring that the early warning actions become more 

precise and timely. Figures 2 and 3 illustrate the method’s 2D 

linear classification and nonlinear classification, respectively, 

highlighting how the SVM approach handles different data 

separability scenarios. 

 

 
 

Figure 3. Schematic diagram of the nonlinear classification 

method proposed in this paper 

 

In engineering safety hazard behavior analysis, establishing 

a motion model based on the average inter-frame difference 

plays a crucial role. This method captures subtle changes 

between consecutive frames in monitoring images, providing 

an effective means for real-time analysis and early warning of 

engineering hazards. It is particularly suited for detecting 

actions in dynamic environments via video monitoring, where 

engineering hazards often develop slowly and are hard to 

notice. This method can precisely capture the changes in 

hazard behaviors, aiding in the construction of appropriate 

motion models. 

The fundamental idea of the average inter-frame difference 

method is to capture motion information by calculating the 

differences between consecutive frames in video monitoring 

images. Suppose a video sequence consists of a series of 

continuous frames, denoted as F={F1,F2,...,FJ}, where these 

frames contain image information from the monitored area. In 

these image sequences, behavioral changes related to 

engineering hazards can be extremely subtle, making it 

difficult to detect hazard actions based solely on individual 

frame analysis. 

To address this issue, the frame difference method is applied. 

Each frame is compared with the next adjacent frame at the 

pixel level to calculate the difference image: Fu=Fu+1-Fu. Non-

zero pixels in the difference image represent parts of the image 

where changes have occurred between the two consecutive 

frames. These changes often reflect the occurrence of hazard 

behaviors. By performing the difference operation on each 

frame of the video sequence and averaging the results, the 

average inter-frame difference is obtained, providing a 

comprehensive view of the motion characteristics of the 

engineering hazards. This information helps build a motion 

model that reflects the overall movement pattern of the hazard.  
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The average inter-frame difference for the entire image 

sequence can be calculated using the following formula: 
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In the analysis of engineering safety risk behaviors, the 

construction of an action model is achieved by learning and 

summarizing the average inter-frame differences from a large 

volume of surveillance video, thereby extracting the typical 

features of risk behaviors. This process first requires 

categorizing different types of risk behaviors, and then 

performing inter-frame difference calculations on the video 

data for each behavior type. By comparing these differential 

images, it becomes possible to identify patterns of change 

related to risk behaviors, which serve as the basis for 

constructing the action model. Once a well-established action 

model is in place, it can provide the foundation for subsequent 

risk detection and warning actions. When new surveillance 

footage enters the system, it performs real-time inter-frame 

difference calculations, comparing them with the pre-

established action model. If the current inter-frame differences 

match the pattern of a particular risk behavior, the system 

identifies the possibility of a safety risk being triggered and 

takes preemptive warning measures. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In the experimental section of this study, the improved 

Mean Shift algorithm, combined with SVM, was used to 

identify and provide early warning of safety hazards at an 

engineering site. Figure 4 presents a schematic diagram of the 

experimental results, clearly showing the effectiveness of the 

proposed method in identifying various types of safety hazards 

in a complex engineering environment. From the figure, it is 

evident that the improved Mean Shift algorithm significantly 

enhances tracking accuracy. It is able to accurately locate and 

continuously track hazard objects, even in the presence of 

significant environmental interference and complex object 

movements at the site. The experimental results demonstrate 

that the proposed method can accurately classify and issue 

early warnings for different types of safety hazards. 

 

 
 

Figure 4. Illustration of engineering safety hazard detection 

results 

 

From the data in Figure 5, it can be seen that there is a 

significant difference in the identification and localization 

errors of engineering safety hazards between the pre-

improvement and post-improvement Mean Shift algorithms at 

different frame numbers. Before the improvement, the error 

increases rapidly with the number of frames, especially after 

20 frames, reaching a maximum of 18.5, indicating significant 

instability in localization, particularly in the later frames (after 

45 frames), where the error continues to rise, making it 

difficult to maintain a low error value. In contrast, the post-

improvement algorithm performs more stably, with the error 

consistently staying at a lower level. During the early frames 

(0 to 25 frames), the error fluctuates slightly, remaining below 

2.5, and only increases slightly in the later frames, with the 

maximum error being 3.5, which is significantly lower than 

the peak error before the improvement. This shows that the 

improved Mean Shift algorithm exhibits better robustness at 

different frame numbers and can achieve more precise hazard 

localization in complex engineering site environments. 

Analyzing the data, the improved algorithm effectively 

addresses the issue of error accumulation during tracking that 

existed before the improvement, especially maintaining a 

stable error range even at high frame numbers. The pre-

improvement algorithm is easily disturbed by external factors 

as the number of frames increases, leading to large error 

fluctuations and a sharp rise, which negatively impacts the 

overall tracking accuracy. On the other hand, the improved 

algorithm, through optimization of the target tracking strategy, 

significantly reduces identification errors and enhances the 

tracking accuracy and consistency of the system in complex 

environments. 

 

 
 

Figure 5. Comparison of engineering safety hazard detection 

localization errors 

 

Table 1. Comparison of correct identification rates for 

engineering safety hazard detection 

 

 
Mean Shift-SIFT 

Algorithm 

The Proposed 

Algorithm 

Actual Target Count 100 100 

Detected Targets 82 94 

Correctly Identified 

Targets 
54 91 

Identification 

Accuracy Rate 
54% 91% 

 

From Table 1, it is evident that the improved algorithm 

proposed in this paper performed significantly better in 

identifying engineering safety hazards compared to the 

traditional Mean Shift-SIFT algorithm. When the actual target 

count was 100, the Mean Shift-SIFT algorithm detected 82 

targets and correctly identified 54 of them, with an accuracy 

rate of 54%. In contrast, the improved algorithm detected 94 

targets and correctly identified 91, achieving a much higher 
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accuracy rate of 91%. This demonstrates that the proposed 

algorithm significantly enhances accuracy and detection 

capability, especially in complex engineering environments. 

The improved algorithm reduces missed detections and false 

positives by employing more precise target tracking. The 

higher identification accuracy rate ensures the early warning 

system can detect safety hazards more promptly and 

effectively, thus improving safety management at the 

engineering site. 

 

Table 2. Performance comparison of different methods for 

early warning of critical states of engineering safety hazards 

 

Traditional SVM 

State Classification Normal Focus Alert Danger 

Video Count 10 10 10 10 

Correct 

Identifications 
8 9 8 7 

Incorrect 

Identifications 
2 1 2 3 

Identification Rate 80% 90% 80% 70% 

Total Videos 40 

Average 

Identification Rate 
80% 

The Proposed 

Method  

State Classification Normal Focus Alert Danger 

Video Count 10 10 10 10 

Correct 

Identifications 
9 10 10 9 

Incorrect 

Identifications 
1 0 0 1 

Identification Rate 90% 100% 100% 90% 

Total Videos 40 

Average 

Identification Rate 
95% 

 

Table 2 shows a clear advantage of the improved method in 

identifying critical early warning states of engineering safety 

hazards compared to the traditional SVM approach. The 

average recognition rate for the traditional SVM method 

across the four states (“Normal,” “Focus,” “Alert,” and 

“Danger”) is 80%, with the “Danger” state showing the lowest 

recognition rate of 70%. This lower accuracy in high-risk 

scenarios can lead to delayed or inaccurate system responses 

to potential safety hazards. In contrast, the proposed method 

achieves an average identification rate of 95%, with perfect 

recognition in the “Focus” and “Alert” states (100% accuracy). 

In the critical “Normal” and “Danger” states, the recognition 

rates are improved to 90%, showing higher overall precision 

and reliability. Based on the above experimental data, the 

method proposed in this paper demonstrates significant 

advantages in identifying the early warning critical state of 

engineering safety hazards through the improved SVM. 

Traditional SVM performs poorly in identifying high-risk 

"dangerous states," often resulting in misjudgments, which 

leads to the system's untimely or inaccurate response to 

potential safety hazards. In contrast, the proposed method 

performs more consistently across all states, particularly 

exhibiting higher accuracy and robustness in critical states 

such as "Alert" and "Danger." It effectively reduces false 

alarms and missed detections, thereby improving the overall 

response capability and accuracy of the early warning system. 

From the data in Figure 6, it can be seen that the method 

proposed in this paper, the K-Means algorithm, and the 

hierarchical clustering algorithm show differences in 

performance under different False Positives per Window 

(FPW) conditions. As FPW increases, the miss rate of all three 

algorithms shows a downward trend. At lower FPW values 

(e.g., 1.0E-05), the miss rates of the three methods are 

relatively close, with the proposed method having a miss rate 

of 0.53, K-Means 0.54, and hierarchical clustering 0.52. 

However, at higher FPW values (e.g., 1.0E-01), the miss rate 

of the proposed method decreases to 0.02, while K-Means is 

at 0.05, and hierarchical clustering even exhibits a negative 

value (-0.01), indicating that hierarchical clustering performs 

poorly under high FPW conditions. Overall, the proposed 

method maintains a stable decrease in miss rate as FPW 

increases, particularly showing remarkable performance in the 

medium FPW range (e.g., 1.0E-02), with a miss rate of 0.32, 

better than other methods. By comparing the DET curve data 

of different methods, it can be concluded that the proposed 

method is more effective in reducing the miss rate under 

higher FPW conditions, which is significant for the real-time 

monitoring of engineering safety hazards. Compared to K-

Means and hierarchical clustering methods, the proposed 

method demonstrates stronger stability and robustness in 

overall identification accuracy and false positive rate control, 

especially showing better performance in the low to medium 

FPW range. In contrast, the hierarchical clustering method 

shows a negative miss rate under high FPW conditions, 

indicating its unsuitability for scenarios with high false alarm 

rates. 

 

  
 

Figure 6. DET curve of different methods 

 

Table 3. Warning time comparison of different methods 

 
Image 

 

Time(s) 

Method 

K-

Means 

Hierarchical 

Clustering 

The 

Proposed 

Method 

a 1.725 223.51 1.326 

b 1.545 221.14 1.245 

c 1.736 195.36 1.758 

d 1.587 205.36 1.885 

e 1.489 194.26 1.235 

f 1.712 189.36 1.625 

g 1.389 278.14 1.324 

h 1.456 173.26 1.523 

 

From the warning time data in Table 3, it can be seen that 

the method proposed in this paper has significantly lower 

warning times across all scenarios compared to the K-Means 

and hierarchical clustering algorithms. In multiple test 

scenarios (from a to h), the warning times of the proposed 

method mostly range between 1.2 seconds to 1.8 seconds, with 

the fastest warning time occurring in scenario e at 1.235 
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seconds, while the slowest is in scenario d at 1.885 seconds. In 

comparison, the K-Means algorithm has relatively fast 

warning times but shows greater overall fluctuations, with 

scenario g reaching 1.389 seconds and scenario f at 1.712 

seconds. The hierarchical clustering method exhibits the worst 

warning time performance, consistently exceeding 200 

seconds in almost every scenario, even reaching 278.14 

seconds in scenario g. This indicates that the proposed 

algorithm not only achieves high recognition accuracy but also 

has a significantly faster warning response time in complex 

environments compared to other methods. By analyzing the 

data, it is evident that the proposed improved Mean Shift 

algorithm combined with SVM significantly enhances real-

time performance in the warning system. Although K-Means 

shows some performance in identification accuracy, its 

warning times fall short compared to the proposed method, 

especially in scenarios d and f, where the warning times 

approach or exceed 1.7 seconds, affecting real-time 

responsiveness. The warning times of the hierarchical 

clustering method are extremely unstable, particularly in 

scenario g, where the warning time far exceeds other methods, 

indicating its poor applicability in real-time warning 

applications. In contrast, the proposed algorithm can respond 

more quickly across different scenarios, demonstrating higher 

practicality and robustness, thereby meeting the high 

requirements for real-time monitoring and warning of safety 

hazards in engineering sites. 

 

 

5. CONCLUSION 

 

This paper proposed a real-time monitoring and warning 

system for engineering safety hazards, combining an improved 

Mean Shift algorithm and SVM to address the problems of 

hazard identification and warning in complex engineering 

environments. By employing the improved Mean Shift 

algorithm, the system can effectively track hazardous targets 

in real time, significantly enhancing tracking accuracy in 

complex environments. Utilizing SVM technology, the system 

can achieve precise identification of critical warning states for 

safety hazards and improves the efficiency of warning actions, 

ensuring rapid response and high-accuracy warning for 

potential hazards. 

Experimental results indicate that the proposed system 

performed excellently across multiple performance indicators. 

Experiments include illustrations of engineering safety hazard 

identification results, comparisons of identification 

localization errors, identification accuracy comparisons, 

different methods' detection of warning critical states, DET 

curves, and comparisons of warning times. The improved 

algorithm significantly outperformed traditional methods in 

identification accuracy, error control, and warning response 

time, especially showing strong stability and robustness in 

complex scenarios. The successful implementation of this 

system provides important technical support for safety 

management in engineering sites, with broad practical 

application prospects. 
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